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Experimental observation of saddle points over the quantum control landscape of a two-spin system
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The growing successes in performing quantum control experiments motivated the development of control
landscape analysis as a basis to explain these findings. When a quantum system is controlled by an electromagnetic
field, the observable as a functional of the control field forms a landscape. Theoretical analyses have predicted
the existence of critical points over the landscapes, including saddle points with indefinite Hessians. This paper
presents a systematic experimental study of quantum control landscape saddle points. Nuclear magnetic resonance
control experiments are performed on a coupled two-spin system in a 13C-labeled chloroform (13CHCl3) sample.
We address the saddles with a combined theoretical and experimental approach, measure the Hessian at each
identified saddle point, and study how their presence can influence the search effort utilizing a gradient algorithm
to seek an optimal control outcome. The results have significance beyond spin systems, as landscape saddles are
expected to be present for the control of broad classes of quantum systems.
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I. INTRODUCTION

The control of quantum phenomena is gathering increasing
interest for fundamental reasons and potential applications.
Quantum system optimal control is concerned with active
manipulation of physical and chemical processes at the atomic
and molecular scale, such as creation of particular molecular
vibrational excitations, selective breaking of chemical bonds,
and manipulation of electron transport in nanoscale devices
(see [1] for a review). The control objective is generally
addressed through the introduction of a semiclassical elec-
tromagnetic field whose shape is honed for the particular
application. The generally successful outcomes of optimal
control experiments and the extensive simulations on model
systems suggest that while searching through the vast space
of possible control fields it is relatively easy to find good
solutions. Seeking a fundamental explanation for this good for-
tune motivated the development of quantum control landscape
analysis [2–4], which provides quantitative predictions on the
landscape features that can be assessed in the laboratory. For
laser field manipulation of atomic, molecular, or condensed
phase systems, various experimental complexities can make
quantitative testing of landscape principles challenging. The
advanced nature of nuclear magnetic resonance (NMR) instru-
mentation producing high signal-to-noise ratios (S/N) provides
ideal laboratory circumstances for testing the predictions from
control landscape analysis. In this work we will utilize these
capabilities for the study of a control landscape in a two-spin
system which possesses saddle points.

In quantum control applications, the system evolution
is governed by a time-dependent Hamiltonian including an
applied electromagnetic field. The amplitudes, phases, and/or
frequencies of the field can be modulated to meet the control
objective, i.e., maximizing or minimizing an experimental
measurable objective J at the target time T . The time interval
T is conventionally chosen to be sufficiently long to permit
unfettered control, while being short enough to consider the
dynamics to form a closed system. The functional dependence
of J upon the control field forms a control landscape, whose

topology, especially the distribution of critical points, may
determine the effectiveness of a search for an optimal control.
A critical point is defined as a location on the landscape
where the gradient (the first functional derivative of J with
respect to the control) is zero for t ∈ [0,T ]. An analysis of
the Hessian matrix (second derivative of J ) can identify the
intrinsic topological character at a critical point [4]: a negative
(or positive) semidefinite Hessian indicates that the critical
point is locally maximal (or minimal) to second order, while
an indefinite Hessian is associated with a saddle point.

Upon satisfaction of some underlying assumptions (see
Sec. II for details), control landscape analysis predicts that the
critical points only exist at particular values of the objective J

and that there are no local suboptimal maxima or minima
(traps) over the landscape; i.e., the critical points located
between the global maximum and minimum, if any, have
to be saddle points [3]. Another important conclusion is the
low rank of the Hessian at critical points; i.e., there exists a
specific maximum number of positive and negative eigenval-
ues dependent on the nature of the quantum system and the
control problem [4]. Many of the theoretical predictions have
been successfully tested in large numbers of simulations [5,6],
but experimental affirmation in the laboratory is important
for fundamental and practical reasons. A laser experiment on
pure state transitions in atomic rubidium was found consistent
with expectations in terms of the Hessian structure at the
global minimum and maximum of the landscape [7], and as
a foundation for the present paper we explored the control
landscape for a proton spin-1/2 two-level system [8]. The
landscapes in both of the two latter works are devoid of saddle
points. Thus, in order to fully test the predictions provided
by landscape theoretical analysis we have to consider other
more complex quantum systems with the simple example in
this paper being a coupled two-spin system.

NMR provides a desirable domain for studying fundamen-
tal properties of quantum control due to the simple and well-
defined Hamiltonians involved, slow relaxation, high signal-
to-noise ratio, etc. [8]. The dynamical process underlying
NMR can be viewed as the manipulation of magnetization
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vectors (proportional to spin angular momenta) with pulsed
magnetic fields in the radio frequency (rf) regime as controls.
Quantum control of spin systems has been treated theoretically
and experimentally [9–14]. More specifically, for coupled
two-spin systems the techniques of polarization or coherence
transfer have attracted much interest [15–17] motivated by
the desire of enhancing the signals of a low gyromagnetic
ratio nucleus by transferring to it the larger magnetization
of a higher gyromagnetic ratio nucleus [18]. Optimal control
theory has been used to derive the physical limits of coherence
or polarization transfer between two coupled spins in the
presence of relaxation effects [19–21]. In the latter work
the optimized pulse sequences were achieved experimentally
and exhibited improved transfer efficiency compared with
conventional schemes. The maximal amount of coherence
that can be transferred in a given time in the absence of
relaxation losses has also been studied [22–24]. The present
paper investigates the dynamics of a coupled two-spin system
by addressing the underlying control landscape features.

The remainder of the paper is organized as follows. In Sec. II
we summarize the quantum-mechanical description of a two-
spin system and the theoretical analysis of the associated topo-
logical nature of the control landscape. Section III includes
the setup of our NMR experiments and some algorithmic and
analysis tools that facilitate the landscape exploration in the
laboratory. Experimental results are provided in Sec. IV and a
brief conclusion is given in Sec. V.

II. THEORETICAL ANALYSIS OF THE QUANTUM
CONTROL PROBLEM

The dynamics of a heteronuclear system consisting of two
weakly coupled spin-1/2 nuclei, labeled I and S, is quantum-
mechanically formulated as follows. The four-dimensional
Hilbert space is conventionally described by the basis of prod-
uct operators [25] with Ij := (σj/2) ⊗ I2, Sj := I2 ⊗ (σj/2),
and 2IjSk := 2(σj/2) ⊗ (σk/2), where σj ,σk ∈ {σx,σy,σz} are
the Pauli matrices and I2 is the 2 × 2 identity matrix. Upon
introduction of a static, homogeneous magnetic field B0 whose
orientation defines the z axis, the internal Hamiltonian of the
system is

H0 = �
(
ωI

0Iz + ωS
0 Sz + 2πJISIzSz

)
, (1)

where ωI
0 = −γ IB0 is the Larmor frequency of spin I

depending on its gyromagnetic ratio γ I (and similarly for
spin S); JIS is the strength of the scalar coupling between
spins I and S in units of frequency. Note that H0 is given in
the weak-coupling regime, i.e., 2π |JIS | � |ωI

0 − ωS
0 |, which

is commonly satisfied for two heteronuclear spins [26].
The system is simultaneously controlled by two pulsed

oscillating magnetic fields along a particular orientation
(defined as x) in the x-y plane, whose carrier frequencies
are resonant with the Larmor frequencies of spins I and S,
respectively [18], i.e.,

BI (t) = 2AI (t) cos
[
ωI

0 t + φI (t)
]
,

(2)
BS(t) = 2AS(t) cos

[
ωS

0 t + φS(t)
]
.

The envelope amplitudes AI and AS and phases φI and φS

of the two control fields can be tailored as functions of time.

Provided that the control fields are sufficiently weak such that
each spin can be addressed individually, i.e., the interaction
between BI and spin S is negligible and vice versa, the full
Hamiltonian in the laboratory frame is

H (t) = H0 − �[γ IBI (t)Ix + γ SBS(t)Sx]. (3)

Within the rotating wave approximation, the Hamiltonian H̃

in a doubly on-resonance rotating frame [26] reads

H̃ ≈ �[2πJISIzSz − γ IAI (cos φI Ix + sin φI Iy)

− γ SAS(cos φSSx + sin φSSy)]

:= �
(
2πJISIzSz − uI

xIx − uI
yIy − uS

xSx − uS
ySy

)
, (4)

where the controls uk
x(t) := γ kAk(t) cos φk(t) and uk

y(t) :=
γ kAk(t) sin φk(t), k = I,S, are introduced for each spin. This
Hamiltonian form has been used in simulations [9], and
provides full controllability for the system [27] to satisfy the
first assumption of the control landscape analyses below. In the
remainder of this paper we will describe the controls in terms
of uI

x , uI
y , uS

x , and uS
y , which have the units of Rabi frequency.

Some key results of control landscape analysis are briefly
summarized below. For a generic closed quantum system
under control, the Hamiltonian H (t) including the control
fields generates a unitary transformation U (t) governed by
the time-dependent Schrödinger equation:

i�
d

dt
U (t) = H (t)U (t), U (0) = I. (5)

The state of the system at time t is described by its density
matrix ρ(t) = U (t)ρ(0)U †(t). For a specified initial state ρ(0)
and target observable operator O, the control landscape

J = Tr[ρ(T )O] = Tr[U (T )ρ(0)U †(T )O] (6)

can be treated as a function of the unitary transformation U (T ),
which forms the kinematic landscape [4]. The topology of
the kinematic landscape J [U (T )] is simply determined by
the eigenspectra of ρ(0) and O. The necessary and sufficient
condition for a critical control, defined at the landscape
gradient being zero, is that

[ρ(T ),O] = 0. (7)

Thus, there are critical final states ρ(T ) located at some
particular levels of the landscape [3], which are denoted by
Jcrit’s. The Hessian signatures at a critical point, i.e., the
maximal allowed numbers of positive and negative eigenvalues
of the Hessian, denoted by D+ and D−, respectively, are proved
to be finite and can be determined from the degeneracies of
ρ(0) and O by the contingency table method [4]. The set of
critical points sharing common values of Jcrit and D+,D− form
a critical submanifold (CM). The dynamical landscape (i.e., J
as a functional of the control fields) topology characterized
by Jcrit and D+ and D− values is fully consistent with
its kinematic counterpart if three assumptions are satisfied:
(i) the system is controllable [27,28], (ii) the control to
the final state map is surjective [29], and (iii) the controls
are unconstrained [30]; a discussion of the assumptions is
given in the cited references. Practical evidence suggests
that assumptions (i) and (ii) may be commonly satisfied,
while assumption (iii) is always a concern in the laboratory
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TABLE I. Summary of the theoretical analysis of the critical
submanifolds (CMs) over the landscape J = Tr[ρ(T )O] with ρ(0) =
Iz + rSz and O = Ix (or Sx , etc.).

CM Jcrit D+ D−

Top 1 0 8
Saddle B r 2 6
Saddle A 0 4 4
Saddle B′ −r 6 2
Bottom −1 8 0

where control resources are inevitably limited. The primary
issue is whether the assumptions are satisfied to a practical
degree in order to give good quality control performance. The
comparison of kinematic versus dynamic landscapes has been
extensively discussed in a number of papers and we refer the
reader to Ref. [29] for details.

In this paper we use the thermal equilibrium state ρeq of the
two-spin system as the initial state, which is determined by the
Boltzmann distribution and approximated under the condition
that ‖H0‖ � kBT as

ρeq = e−H0/kBT

Tr(e−H0/kBT )
≈ 1

4

(
I4 − H0

kBT

)

= I4

4
− �

4kBT

(
ωI

0Iz + ωS
0 Sz + 2πJISIzSz

)
. (8)

In conventional NMR experiments, JIS (100 ∼ 102 Hz) is
orders of magnitude smaller than |ωI

0 | and |ωS
0 | (∼108 Hz),

therefore the coupling term in ρeq is negligible, and the
landscape topology is invariant to whether this term is
retained. We may ignore the term with I4 and simply specify
ρeq = Iz + rSz in the following landscape analysis, where
r := ωS

0 /ωI
0 = γ S/γ I is defined on the range 0 < r < 1

without loss of generality. For the target observable we choose
O = Ix , the in-phase x magnetization of spin I [25], as an
example, but the same landscape topology applies for any
operator unitarily equivalent to Ix , such as Sx , 2IzSx , and
2IxSz.

The topological nature of the landscape can be derived
theoretically [4], and the outcome is summarized in Table I.
ρ(0) = Iz + rSz has four nondegenerate eigenvalues, −(1 +
r)/2, −(1 − r)/2, (1 − r)/2, and (1 + r)/2, while O = Ix

has two doubly degenerate eigenvalues, ±1/2. Using these
numbers, the landscape CMs are calculated to lie at five distinct
values of Jcrit [3], and we name them top, saddle B, saddle A,
saddle B′, and bottom from the highest Jcrit to the lowest (see
Table I). The Hessian signatures of each CM are also given in
Table I. We find that all three suboptimal CMs, lying between
the global maximum Jcrit = 1 and minimum Jcrit = −1, have
indefinite Hessians and therefore their topology is that of
saddles. As Jcrit transcends its values from 1 to −1, the index
D+ increases from zero to eight while D− drops from eight to
zero. The CMs at the top and bottom are symmetric in terms
of D+, D−, and Jcrit, and so are saddle B and B′. Thus, we will
focus on three representative CMs in the following study, i.e.,
top, saddle A, and saddle B. This analysis specifies a control
landscape in a two-spin quantum ensemble system, which will

be studied experimentally in the following sections to assess
the theoretical topological predictions.

III. EXPERIMENTAL SETUP

A. NMR experiments

The NMR experiments presented in this paper were
implemented on a Bruker Avance-III 500-MHz spectrometer,
equipped with a dual 13C − 1H (DCH) cryoprobe and
highly digitized and linear rf signal generators (SGU)
(Bruker-Biospin, Billerica, MA). We used a sealed 13C-labeled
chloroform (13CHCl3) sample in DMSO-d6 with a small
quantity of added Gd(NO3)3 to reduce relaxation times. The
scalar coupling between the two spins, I = 1H and S = 13C,
is JIS = 215 Hz as measured from the frequency difference of
the two lines of the 13C doublet in the NMR spectrum. After
careful manual tuning and shimming, all the experiments
were performed at 295 K. The sample was simultaneously
irradiated with two independently shaped rf pulses, whose
carrier frequencies were set exactly on resonance with the
1H and 13C nuclear spins, respectively. Both pulses had
a fixed length of T = 5 ms, which was picked to make
JIST � 1, allowing for full dynamical controllability [24]
as well as relatively weak relaxation loss. Each shaped
pulse was represented by its field values during four equal
time intervals of the length T/4 = 1.25 ms, so the entire
control could be expressed as a vector of length 16, i.e., 	x =
[uI

x(1), · · · ,uI
x(4),uI

y(1), · · · ,uI
y(4),uS

x (1), · · · ,uS
x (4),uS

y (1),
· · · ,uS

y (4)]ᵀ, where uI
x(1) is the value of the control uI

x at
time interval 1, etc. Note that the control variables were
converted back in terms of amplitudes and phases according
to Eq. (4) when specifying the two pulses in the laboratory,
with each interval having constant amplitude and phase. As
a reference, constant 90◦ pulses for spins 1H and 13C over
the period T = 5 ms, respectively, have magnitudes of 20.2
and 18.5 by our setup [see the amplitudes of shaped pulses
in Figs. 1(a) and 7(a) for comparison]. With the experimental
setup a single measurement took 1.2 s of laboratory time for
data acquisition, and at least an additional ∼3 s to allow for
both spins to relax back to equilibrium, leading to overall
∼4.2 s for recycle time.

The thermal equilibrium initial state of the sample is
ρ(0) = Iz + rSz, with r = γ (13C)/γ (1H) ≈ 0.25 [26], and
the objective J can be read from the frequency-domain
NMR spectrum. The 1H− or 13C-detected spectrum of the
sample has a doublet peak with two lines separated by the
coupling constant JIS [see Fig. 1(b) for examples]. The sum
of the integrated areas of the two lines characterizes the
in-phase magnetization of the corresponding spin along a
particular orientation in the x-y plane at the target time.
This orientation is specified by the experimental detector
phase parameter, so for spin I we can set the observable as
O(θ ) := cos θIx + sin θIy with any value of the phase angle θ .
By referring to simulation results we found a proper detector
phase that gives O = Ix , although the topological nature of the
landscape given in Table I is independent of θ . To determine
the noise level we took 100 repeated measurements of several
typical control pulses producing J values at different locations
on the landscape. The error approximately obeyed a Gaussian
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FIG. 1. (Color online) (a) The controls at landscape critical
points within three different submanifolds, with top, saddle A, and
saddle B, corresponding to the final iteration in trajectory 1 and
the initial iterations in 2 and 3 in Fig. 2, respectively. The initial
iterations at two saddle points were found by simulation and then
refined in the laboratory, as explained in Sec. IV B. The components
uI

x and uI
y address spin I (1H), while uS

x and uS
y address spin S (13C).

For the critical points in top and saddle A shown here, the uS
x and

uS
y components are approximately zero. (b) The 1H-detected NMR

spectra in the chemical shift range of 7.79–8.79 ppm, acquired with
control pulses at the three critical points. The small kink in the middle
of the two lines is ascribed to the proton signal in unlabeled 12CHCl3,
which is eliminated when integrating the peaks as the objective J .

distribution, and the standard deviation was about 10−4–10−3

of the maximum value of J = 1.

B. Algorithms for laboratory landscape exploration

A recent work introduced a flexible Rover algorithm [8]
for guiding an exploratory trajectory over the landscape in
the laboratory in order to reveal the underlying structure. A
trajectory can be characterized by a progress parameter s � 0,
i.e., the vector of controls 	x(s), and the corresponding objective
value J [	x(s)]. The control trajectory corresponding to roving
over the landscape can be generally described by the ordinary
differential equation

d 	x(s)

ds
= 	F [	x(s)], (9)

where the form of the roving direction 	F is dictated by
the particular landscape exploration goal, often aided by
utilization of the gradient and/or Hessian at 	x(s). In this paper
we will employ various rover algorithms based on the form in
Eq. (9) to optimize the objective value, approach saddle points,
and explore the neighborhoods of saddles. Specific forms of
	F for the particular applications will be given in Sec. IV. As

the landscape gradient and Hessian at an arbitrary point can be
experimentally measured, Eq. (9) will be numerically solved
in real time with the ongoing experiments. In this work the
forward Euler method was found to be sufficient:

	x(k + 1) = 	x(k) + α · 	F [	x(k)], k = 0,1, · · · , (10)

where 	x(k) is the control in the kth iteration (i.e., the kth step of
s) and α > 0 is the step size. In other applications, especially
when the S/N is not high, statistical averaging of the data at
each step as well as higher-order integration methods may be
needed.

Over an experimental landscape J [	x], the gradient and
Hessian about a current control 	x0, respectively, correspond
to a vector 	∇J and matrix H. Experimental determination of
the gradient and Hessian in this work is based on making small
increments about 	x0 and then measuring the resultant changes
in the associated J values. For the landscape gradient a simple
central difference method was found to be stable for the present
application (except when 	x0 is very close to a critical point):

∂J

∂xi

≈ J (· · · ,xi + di, · · · ) − J (· · · ,xi − di, · · · )

2di

, (11)

where di is a small increment of the variable xi which should
be reasonably chosen based on the nature of xi and J in a
particular experiment. Estimation of the Hessian in a similar
fashion can be problematic because of the higher sensitivity
to noise involved in the second-order differencing. With this
consideration, statistical strategies have been employed to
reliably extract quality gradients, and especially Hessians,
from experimental data [7,31]. In this work we utilize least
squares (LS) to determine the Hessian from the data J [	x0 +
�	x] over a random set of perturbation �	x. For this purpose
the landscape can be approximated about 	x0 by a second-order
Taylor series:

J [	x0 + �	x] ≈ J [	x0] + 	∇J [	x0]ᵀ · �	x + 1
2�	xᵀ · H[	x0] · �	x.

(12)
With sufficient random samplings of �	x ’s about 	x0 the overde-
termined linear system can be solved with LS to obtain the
Hessian and gradient simultaneously; when only the gradient
was required, Eq.(11) was implemented experimentally.

IV. RESULTS AND DISCUSSION

A. Gradient ascent over the landscape

Sections IV A through IV C focus on the control landscape
of the observable O = Ix , with the experimental J value
obtained from the the integral of the 1H doublet peak; Sec. IV D
will examine like behavior of O = Sx for 13C. First, we started
from the initial control with all field components set to zero and
maximized the objective J with the gradient ascent algorithm
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FIG. 2. (Color online) Three gradient ascent trajectories starting
from different initial controls. Trajectory 1: Zero control fields.
Trajectory 2: Saddle A at J � 0. Trajectory 3: Saddle B at J � 0.25.
The iteration step size is constant for all the three trajectories.
Trajectory 1 starting at a noncritical point rapidly ascends on the
landscape and climbs to the top, while trajectories 2 and 3 linger near
their respective saddles. Furthermore, trajectories 2 and 3 are gradient
ascent (instead of saddle-seeking) trajectories, so the final iterations
are not necessarily better saddle controls than the initial ones. In fact,
the late iterations of trajectory 2 are clearly moving farther away from
the saddle.

[cf. Eq. (10)]:

	x(k + 1) = 	x(k) + α 	∇J [	x(k)]. (13)

With a proper step size α > 0, J should increase monotoni-
cally until reaching a critical point. For this search trajectory
it was found that J increased from zero and converged within
∼20 iterations (see trajectory 1 in Fig. 2 ); the control pulse
at the optimum and the resultant NMR spectrum are shown in
Fig. 1. The same procedure was also performed in simulation,
where the value of J could be calculated by numerically
solving the Schrödinger equation (5) with the Hamiltonian
in Eq. (4) and substituting U (T ) into Eq.(6). We confirmed
that the optimum obtained from this experimental search
was actually the global maximum, i.e., it belonged to the
CM top lying at Jcrit = 1 in Table I. Thus, the experimental
objective value at the maximum, originally in arbitrary units,
is normalized to 1.0 and will be used as a scale for other
experimental data. The pulse shapes at the landscape maximum
determined experimentally and by simulation also exhibited
good agreement (not shown here). Among the four components
of the control, uI

x , uI
y , uS

x , and uS
y in this illustration, only uI

y was
altered to gain a nonconstant shape during optimization of the
target observable O = Ix , while the other three components
stayed at zero. This field is a particular solution on the top
CM, where other solutions will generally have all four field
components at coordinated nonzero values. From simulation
we further discovered that the shape of uI

y at the landscape
maximum point, obtained by optimizing from zero fields, is
dependent on the final time T .

B. Finding the landscape saddles in the laboratory

Searching for landscape saddle points in the laboratory
can be a challenging task, since a gradient ascent or descent
trajectory may approach but likely not arrive at a saddle.

Here we first performed a simulation to find a control whose
corresponding dynamics reach a particular desired saddle.
This saddle-seeking procedure was performed by specifying
a proper final state ρ(T ) consistent with the desired saddle.
At a saddle point of the landscape J = Tr[ρ(T )O], the state
ρ(T ) must satisfy two conditions that [ρ(T ),O] = 0 and
Tr[ρ(T )O] is a suboptimal value with −1 < J < 1. Suppose
the system density matrix ρ(0) is diagonalized to form �ρ

and the observable operator is diagonalized as O = UO�OU†
O ,

then ρ(T ) = ρtarget within any CM will have the general form
ρtarget = UO(
�ρ
†)U†

O , with 
 being a permutation matrix
associated with a desired CM (including the saddles) [3].
It is easy to identify a particular permutation matrix 
 for
any of the saddles in Table I. Thus, having designed a target
density matrix ρtarget for the desired saddle CM in this way, we
optimized the new cost function in a simulation:

J := Tr[U (T )ρ(0)U †(T )ρtarget]. (14)

A control producing the maximum value of J will satisfy
U (T )ρ(0)U †(T ) = ρtarget, and the control must correspond
to a saddle point of the original landscape J . In the cases
where ρ(0) or O have degeneracies, the choice of ρtarget for
a particular CM can be nonunique. We have also developed
a more general theoretical method for optimizing an arbitrary
initial control to move toward a given saddle submanifold,
which does not require specifying ρ(T ) in advance [32].

Due to the generally high quality of the NMR control
experiments and the good understanding of the Hamiltonian,
we were able to transfer a simulation-determined control at
a saddle point to the laboratory. Such trial fields often called
for some further adjustment discussed below, thereby forming
an efficient procedure for closely approaching a saddle. The
experimentally measured gradient at a near-saddle control
should be close to zero, but when this was not the case
we employed the following experimental scheme to refine
the control and draw it closer to creating a saddle point on
the landscape. The procedure is based on minimizing the
norm squared of the gradient, ‖ 	∇J‖2, in order to approach
the saddle. Thus, consider the derivative with respect to the
progress variable s given by the chain rule:

d

ds
‖ 	∇J [	x(s)]‖2 = d 	xᵀ(s)

ds
· ∂

∂ 	x ‖ 	∇J [	x]‖2, (15)

where we have

∂

∂ 	x ‖ 	∇J [	x]‖2 = 2H[	x] · 	∇J [	x]. (16)

By combining Eqs. (15) and (16) the magnitude of ‖ 	∇J‖2

can be minimized by moving along the direction specified by
d 	x/ds = −αH 	∇J in control space, i.e.,

	x(k + 1) = 	x(k) − αH[	x(k)] · 	∇J [	x(k)], (17)

where α > 0. When many iterations are required, remeasure-
ment of the Hessian could be slow in the laboratory. In our
experiments we found that the initial field determined by
simulation was close enough to the target saddle point such
that the refinement could be accomplished within only a few
rounds of iteration.
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With the methods above we successfully found particular
control fields within the CMs saddle A and saddle B, respec-
tively, whose pulse shapes and corresponding NMR signals are
given in Fig. 1. In the example shown for saddle A the control
only excited the target spin I = 1H (other solutions in the same
saddle CM will generally also involve the field components
addressing 13C). For saddle B in Fig. 1 both spins were
significantly excited by their respective resonant pulses, and
polarization or coherence transfer was thus induced between
them. The line shapes of the peaks in NMR spectra should
generally be a combination of absorption and dispersion
modes if a phase correction is not performed [18]. However, for
all the landscape critical points shown in Fig. 1(b) both lines of
the doublet have the absorption mode only and no dispersion
feature. This circumstance arose because the dispersion mode
results from the spin magnetization orthogonal to the detector
phase, which does not commute with the observable O [e.g.,
if O = Ix then the dispersion line shape corresponds to the
components of Iy and 2IySz in the final state ρ(T )], and must
be absent at any critical point according to the criterion in
Eq. (7).

After finding the two near-saddle controls they were used
as starting points for landscape gradient ascents. In Fig. 2 the
trajectories starting from near the critical points in saddle A
and B are labeled 2 and 3, which should be compared with
trajectory 1 that started from zero. With a constant step size
for each trajectory, the optimization rate of the objective J

from a near-saddle point is much lower than from a noncritical
point with a relatively large gradient. The neighborhoods of the
saddle points form low-gradient regions about some particular
suboptimal values of the observable landscape, which increase
the search effort of a gradient-based trajectory running close
to them. In the laboratory the determination of the gradient to
sufficient accuracy, especially when the gradient is relatively
small, possibly can be problematic for ready escape from the
neighborhood suboptimal saddle region. Thus, the gradient
algorithm should be exploited with care in optimal control
experiments, especially for complex quantum systems with
little a priori knowledge of the landscape topology, where
encountering a low gradient norm does not necessarily indicate
that the global optimum of the landscape is being approached.
A host of other algorithms (e.g., conjugate gradient, stochastic,
etc.) can be exploited if ascent alone is the goal, but a gradient
algorithm (more generally the Rover suite of procedures) is
necessary for experiments seeking to identify topological and
other landscape features.

Another gradient ascent trajectory is shown in Fig. 3, where
the initial control was obtained by perturbing the control at
saddle B above. During the optimization process, the rate of
increase for J slowed down when it approached the neighbor-
hood of the saddle at J � 0.25 again, but passed through that
region smoothly and accelerated afterward. The procedure is
also characterized by the evolution of the gradient norm ‖ 	∇J‖,
also shown in Fig. 3. This behavior is typical of a gradient
optimization coming near a saddle point [6]. Together with the
trajectories in Fig. 2, the results demonstrate that the saddle
regions are distributed like “islands” at their corresponding
J values of the landscape, since other controls producing the
same J value as a saddle could have even large associated
gradients with trajectories exhibiting no saddlelike features.

0 10 20 30 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration

J
||∇ J || × 50

FIG. 3. (Color online) A gradient ascent trajectory passing
nearby saddle B at J � 0.25. The initial control at the zeroth iteration
is chosen by perturbing the control at saddle B, which is shown in
Fig. 1(a). The trajectory slows down when again coming close to the
saddle, but then continues up the landscape. The norm of the gradient
is also shown.

C. Local landscape topology near the saddles:
the Hessian signatures

In order to assess the theoretical predictions on Hessian
signatures in Table I, we measured the Hessian matrices at
the three critical points found above, which belong to top,
saddle A, and saddle B, by the LS method utilizing 1000
random samples around each critical point. The eigenspectra
of the respective Hessians are shown in Fig. 4. Although
none of the eigenvalues, which are expected to be zero,
exactly have that value under the imperfect experimental
conditions, some eigenvalues have dominantly large magni-
tudes compared with the others. In addition, as confirmed
by simulation, for particular dynamical controls some of the
nonzero Hessian eigenvalues may be much smaller than others.
This circumstance can result in the latter eigenvalues being
practically indistinguishable from the zero eigenvalues due to
experimental error influencing the quality of the Hessian. We
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FIG. 4. (Color online) Hessian eigenspectra at the three critical
points in Fig. 1. Each Hessian was estimated by least squares with
1000 random samples taken in the neighborhood of the fields at their
respective critical points. Theoretical analysis summarized in Table I
shows that top, saddle A, and saddle B should have at most 0/8,
4/4, and 2/6 positive/negative Hessian eigenvalues, respectively. The
predictions are affirmed within experimental error.
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FIG. 5. (Color online) Estimation of the Hessian eigenvalues of
the control at saddle B and extrapolation using the expected scaling
as ∼1/

√
M , where M is the number of random samples taken for

determining the Hessian. The extrapolated spectrum shows several
clear positive and negative eigenvalues along with a set of null
eigenvalues consistent with theoretical predictions. The error bars
at a given M are estimated from the eigenspectra determined from
ten data subsets of size M , which are taken from the total ∼2600
samples.

may conclude that the experimental results are in agreement
with theoretical predictions, as the numbers of significantly
positive and negative eigenvalues do not exceed their upper
bounds D+ and D− upon comparing Fig. 4 with Table I.

Among the three cases, the Hessian for saddle B has the
smallest norm, resulting in the boundary between “zero” and
“nonzero” eigenvalues being least clear in its eigenspectrum.
For this Hessian a statistical bootstrapping strategy [7] was
used for estimating the error associated with the eigenvalues.
We took a total of ∼2600 random samples about the control
in saddle B, and randomly chose ten subsets, each with sizes
of M = 600, 800, 1000, 1200, and 1400. The Hessian was
then calculated with the data from each subset using LS,
and for each sampling size M the eigenvalues were sorted
and averaged (see Fig. 5). The error bars show the standard
deviations of each single eigenvalue at a particular level of M .
In the Hessian spectrum there are a group of small eigenvalues
which are roughly symmetrically distributed about zero, and
the spacings between adjacent ones are comparable with the
random error. These “zero” eigenvalues become smaller in
magnitude as the sampling size M increases from 600 to
1400; i.e., more data averaging is utilized in determining
the Hessian spectra. By extrapolating the eigenvalues with
the expected scaling of ∼1/

√
M to the limit M → ∞, we

find that the group of “zero” eigenvalues converges into a
narrow interval around zero and clearly separates from the
nonzero eigenvalues. The data analysis supports the theoretical
conclusion of the presence of an extensive Hessian null space
at the critical points [3,4].

The Hessian eigenvectors associated with the nonzero
eigenvalues at a landscape critical point describe the inde-
pendent paths for driving off the CM, and the magnitudes of
the corresponding eigenvalues characterize the sensitivity of
J to variation along these paths in control space. For a saddle
CM, moving along the Hessian eigenvectors with positive
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FIG. 6. (Color online) Driving off the critical points at sad-
dle A (a) and saddle B (b), shown in Fig. 1(a), along their respective
Hessian eigenvectors associated with the dominant eigenvalues. The
eigenvector vi corresponds to the ith eigenvalue in the Hessian
spectrum (see Fig. 4). The presence of parabolas opening both
upward and downward, resulting from positive and negative Hessian
eigenvalues, respectively, affirms the saddle topology of these two
critical points. The roving distance along each eigenvector is in
reference to the starting field at the respective saddle points.

(or negative) eigenvalues should locally lead to a quadratic
increase (or decrease) of the objective value. We explored the
neighborhoods of the controls at saddle A and B by roving
along each of their respective dominant Hessian eigenvectors
(for saddle A, those associated with the four most negative and
four most positive eigenvalues; for saddle B, those associated
with six most negative and two most positive ones), determined
with the largest sampling size M without extrapolation. The
trajectories are shown in Fig. 6, where the roving distance is
calculated as the Euclidean distance of the vector of control
variables, 	x, from the saddle starting point 	x0. Parabolalike
curves are obtained as expected, which can be precisely fitted
by second-order polynomials, indicating that the higher-order
terms in the Taylor expansion of the landscape are negligible in
the regions explored. Some trajectories may look asymmetric
about the starting point, which appears mostly due to the
small, but nonzero, residual gradient at the experimentally
determined near-saddle points.

D. Control on the 13C landscape

The control landscape with the observable being O = Sx

should also have the topological properties given in Table I.
The main distinction is that the spin S = 13C is of a lower
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FIG. 7. (Color online) Two critical points over the landscape of
the observable O = Sx belonging to top and saddle B in Table I. The
objective J at saddle B, determined from the peak integral in the 13C
NMR spectrum, is ∼0.24 when the J value of top is normalized to 1.0.
(a) The control fields at the two critical points. Note that for saddle
B the field addressing spin I is zero. (b) The Hessian eigenspectra at
the two critical points. The solid and dashed lines in the inset give the
eigenvectors of the 15th and 16th (almost degenerate) eigenvalues at
saddle B, respectively, which turn on the field components for spin I

in order to enable climbing away from the saddle.

gyromagnetic ratio, or less sensitive, than the spin I = 1H;
therefore, we expect that utilizing spin coupling for transfer
of spin polarization from 1H to 13C should provide a valuable
assist for reaching the global maximum of the 13C landscape.
For the two-spin system at its initial state ρ(0) = Iz + rSz, if
we only irradiate spin S with its resonant rf pulse and leave
spin I unexcited, the component Iz in the density matrix will be
invariant, and thus the maximal reachable objective value for
O = Sx is J = r . This local maximum is caused by insufficient
system controllability [27,28], and corresponds to saddle B in
Table I kinematically upon removing the constraints on the
control, as demonstrated by the experimental results in Fig. 7
and explained below.

With the field components uI
x and uI

y fixed to zero we
optimized uS

x and uS
y with the final fields shown in Fig. 7(a).

Then we measured the Hessian at the suboptimal critical point
with all four components of the control released. To make
up for the relatively lower S/N of the 13C nucleus, we took
a greater number of random samples (∼6000) for the LS

Hessian estimation. In the Hessian spectrum six negative and
two positive eigenvalues are clearly discernible in Fig. 7(b)
from the other approximately zero eigenvalues, consistent with
the predicted Hessian signature of saddle B. The eigenvectors
of the two almost degenerate positive eigenvalues are found
to be associated with uI

x and uI
y [see inset in Fig. 7(b)], which

implies that in order to overcome the critical value and further
ascend the landscape by perturbing the control at this saddle
point the control field on spin I must be turned on. We also
note that the two positive Hessian eigenvalues at this type of
saddle can vanish in some special cases due to singularity,
i.e., violation of the assumption (ii) in Sec. II, thus turning
the saddle to a dynamical second-order trap. Nevertheless,
this circumstance does not invalidate the landscape analysis
derived in the kinematic picture (see [33,34] for the discussion
on similar examples). A more detailed assessment of this
issue will be provided in an additional study [35], where the
suboptimal maximum deduced from the Hessian is shown to
actually remain a saddle when further analyzed considering
higher-order variation of J with respect to the controls.

We also addressed a global maximum point of the 13C
landscape (top in Table I). The J value at the maximum is
enhanced from that at saddle B by a factor of ∼4.1, which is
close to γ (1H)/γ (13C) as in conventional polarization transfer
experiments [16]. Figure 7(a) shows that at the landscape
maximum both spins are manipulated by their resonant pulses,
and the Hessian has eight significantly negative eigenvalues
in Fig. 7(b). The results presented here demonstrate the
effectiveness, and even the necessity, of exploiting polarization
transfer for signal enhancement of a low gyromagnetic ratio
nucleus from the perspective of attaining optimal control
performance.

V. CONCLUSIONS

This work reported systematic experimental observation of
saddle points on a quantum control landscape with liquid-state
NMR as the testbed by exploiting the Rover algorithms in a
coupled heteronuclear two-spin system, i.e., 1H and 13C in
a sample of 13CHCl3. We first summarized the theoretical
analysis of the landscape topology, and successfully found
the predicted critical points of specified local topological
nature in the experiments, especially for the two saddle
points. Coming near a suboptimal saddle point manifold
on gradient optimization of the control objective may slow
down an ascent but should not stop the landscape climb,
given that the gradient measurement is of sufficient accuracy.
Similar behavior should be generally observed on any control
landscape containing saddles. The Hessian eigenspectra at
different critical points were measured, and they agreed
with the theoretical predictions within the experimental noise
level. The neighborhoods of the saddles were also explored to
show the special local landscape structures in those regions.
Numerical simulations assisted the experimental studies, es-
pecially in providing initial controls near the landscape saddle
points. The findings of this particular landscape topological
assessment concern two coupled spins under control, but the
implications extend further for the control of other quantum-
mechanical phenomena with electromagnetic fields, as the
landscape principles are generic.
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