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The triple differential cross section for laser-assisted ionization of a helium target by slow electrons is analyzed
within the framework of the second Born approximation. We evaluate the S-matrix elements using Volkov and
Coulomb-Volkov wave functions for describing the continuum states of the scattered and the ejected electrons,
respectively. The required scattering amplitudes are performed by expanding the atomic wave functions onto a
complex-scaled Sturmian basis, which allows us to exactly take into account the contribution of the continuous
spectrum to the dressing of the atomic states. Our results have been improved by taking into account exchange
effects. Furthermore, the second-order Born correction is seen to be important and significantly affects the
magnitudes of the binary and recoil peaks.
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I. INTRODUCTION

Electron-impact ionization of atoms is a fundamental
process which is relevant to understand and interpret a wide
range of scientific phenomena and technological applications,
including plasma physics [1], planetary atmospheres [2],
and radiation interactions with living tissue [3]. The study
of such processes provides important information about
target structure, target wave function, and collision dynamics.
Since the pioneering (e, 2e) experiment carried out by
Ehrhardt et al. [4], many (e, 2e) coincidence experiments
were performed for various atomic targets and for a wide
range of kinematic parameters [5–10]. Meanwhile, theoretical
investigations have been performed to calculate the triple
differential cross section (TDCS) using different models
[9–16]. In the past few years, there has been particular interest
for the study of (e, 2e) processes in the low-incident-energy
regime in coplanar symmetric geometry [17–20]. A number of
theoretical calculations [21–29] exist in the literature for the
laser-assisted (e, 2e) process of hydrogen and helium atoms,
prior to the first realization of the kinematically complete
experiment of Höhr et al. [30] for the laser-assisted single
ionization of a helium atom.

The first theoretical treatment in which all the characteristic
features of the experiments of Ehrhardt et al. were reproduced
was a second Born calculation of the (e, 2e) triple differential
cross sections performed by Byron et al. [31] in atomic
hydrogen. Pathak and Srivastava [32] used the second Born
approximation for the ionization of atomic hydrogen and
compared their results to the first (e, 2e) experiments of
Weigold et al. [33]. Then they also made calculations for the
ionization of helium by using the closure approximation and
compared their results to those of Ehrhardt et al. [34]. Byron
et al. [35] also calculated TDCSs for the ionization of helium
by using the closure approximation and found results which
disagreed with those of Pathak and Srivastava [32]. Later on,
Byron et al. [36] applied the second Born approximation by
using very few discrete states as intermediate states and by
taking into account the closure approximation and adding the
contribution of the third Born approximation calculated with
the Glauber approximation. It was found that the second Born

calculation plays a crucial role in understanding the (e, 2e)
process. The comparison between experiment and theory
showed that second-order effects are essential in explaining the
angular positions, shapes, and magnitudes of both the binary
and recoil peaks. Recently, Zheng et al. studied laser-assisted
electron-impact [37] and positron-impact [38] ionization of
atomic hydrogen in the second Born approximation. They
found that the second-order corrections are significant and
that the second Born results for electrons and positrons show
some obvious discrepancies.

The Born approximation has been most widely used to
calculate ionization cross sections. This model is flexible in
analytical and numerical calculations and remains a preferable
model to investigate the collision processes. At sufficiently
high energies it is generally believed that the first Born
approximation can be used to describe the direct ionization
process. It is therefore obviously necessary to extend the Born
approximation by treating the projectile-target interaction up
to second-order Born amplitude in the range of the low-
energy regime. In this paper, we investigate the application
of the second Born approximation (SBA) for the laser-assisted
single ionization of a helium atom by low-energy electrons.
This formalism is improved by the consideration of the
exchange effect between the free outgoing electrons. Most
work on the laser-assisted (e, 2e) reactions employed the first
Born approximation (FBA) [25,39–41], due to the difficulty
of the numerical calculation of the second Born term. In
fact, the second Born approximation needs a difficult triple
numerical integration [42] and often many authors find some
controversial results. The present work extends our previous
study [43] on laser-assisted (e, 2e) collisions of atomic
hydrogen using a second Born treatment which includes the
double interaction between the incoming electron and the
target.

The remainder of this paper is presented in four sections.
Section II describes the theoretical treatment of the ionization
process. Our second- and first-order Born results are presented
and discussed in Sec. III. Finally, Sec. IV draws conclusions
from this investigation. Atomic units are used throughout
unless otherwise stated.
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II. THEORY

During a laser-assisted electron-impact ionization process,
� photons may be exchanged with the laser field. Schemati-
cally, the laser-assisted (e, 2e) reaction of a helium atom can
be written as

e−(ki) + He(11S) + �ω −→ He+ + e−(ka) + e−(kb), (1)

where positive integer values of � correspond to the photon
absorption, negative integer values to photon emission, and
� = 0 to the (e, 2e) process in a laser background with no
net transfer of photons; ω refers to the laser frequency and
ki , ka , and kb are, respectively, the momenta of the incident,
scattered, and ejected electrons. We assume that the laser field
is treated classically as a single-mode, spatially homogenous,
monochromatic, linearly polarized electric field

E(t) = E0 sin(ωt + ϕ). (2)

The corresponding vector potential is A(t) = A0 cos(ωt + ϕ)
with A0 = c E0/ω and ϕ is the initial phase.

The energy conservation equation corresponding to the
laser-assisted (e, 2e) reaction of Eq. (1) reads

Eki
+ EHe

0 + �ω = EHe+
0 + Eka

+ Ekb
, (3)

where EHe
0 = −2.90372 a.u. is the ground-state energy of

helium and EHe+
0 = −2 a.u. the ground-state energy of He+.

Eki
= k2

i /2, Eka
= k2

a/2, and Ekb
= k2

b/2 represent the kinetic
energies of the incident, scattered, and ejected electrons,
respectively.

As in our previous work on atomic hydrogen [43], we carry
out a second Born treatment of reaction (1). We are aware
of the fact that higher terms of the Born series (in particular
the second Born term) play a significant role in obtaining
accurate values of TDCSs for laser-assisted (e, 2e) collisions at
low incident energies. The prior form of the scattering matrix
element for the process (1) in the first Born approximation
is

SB1
ion = −i

∫ +∞

−∞
dt〈ψf |Vd |ψi〉, (4)

where Vd is the electron-atom interaction potential given by

Vd = − 2

r0
+ 1

r01
+ 1

r02
. (5)

In this equation r0 denotes the coordinate of the incident
(and scattered) electron, r1 and r2 are the coordinates of
the target electrons, r01 = |r0 − r1|, and r02 = |r0 − r2|. The
wave function ψi is the asymptotic initial-state wave function
and ψf is the final-state wave function satisfying the incoming
wave boundary condition. It is evident from Eq. (4) that the
perturbation Vd vanishes asymptotically for r0 → ∞.

In the present model the projectile-laser interaction is
treated to all orders while the laser-target interaction is
considered in the framework of the first-order time-dependent
perturbation theory. The initial channel asymptotic wave func-
tion ψi is chosen as ψi(r0,r1,r2,t) = χki

(r0,t)φ0(r1,r2,t),
where χki

(r0,t) denotes the plane-wave Volkov solution for
the laser dressed incident electron with momentum ki . It is
given by expression of the form [44]

χk(r0,t) = (2π )−
3
2 exp[i(k · r0 − k · α0 sin(ωt) − Ekt)], (6)

where k denotes the electron wave vector, Ek = k2/2 is its
kinetic energy, and α0 = E0

ω2 is the amplitude associated with
the classical quiver motion of the electron in the laser field. The
Volkov wave function of Eq. (6) is normalized to a δ function.

The wave function φ0(r1,r2,t) represents the dressed wave
function of the ground-state helium atom [45]:

φ0(r1,r2,t) = e−ia·Re−iEHe
0 t

[
ψ0(r1,r2)

+ i

2

∑
j

(
eiωt

Ej − EHe
0 +ω

− e−iωt

Ej − EHe
0 − ω

)

× Mj0 ψj (r1,r2)

]
, (7)

where a(t) = A(t)/c and R = r1 + r2, ψj is the unperturbed
wave function of the helium atom of energy Ej , and Mj0 =
E0 · 〈ψj |R|ψ0〉 is a dipole-coupling matrix element. The factor
e−ia·R ensures the gauge consistency between the Volkov wave
function of Eq. (6) and the dressed target wave function of
Eq. (7).

The helium ground-state wave function ψ0 which we used
in Eq. (7) is that of Byron and Joachain [46]. It is an analytical
fit to a Hartree-Fock wave function given by

ψ0(r1,r2) = φHe
0 (r1)φHe

0 (r2), (8)

where

φHe
0 (r) = 1√

4π
(Ae−αr + Be−βr ), (9)

with A = 2.60505, B = 2.08144, α = 1.41, and β = 2.61.
The final-state wave function ψf is approximated

as ψf (r0,r1,r2,t) = χka
(r0,t)φkb

(r1,r2,t), where χka
(r0,t)

refers to the scattered electron wave function in the final
channel, which corresponds to the Volkov wave function
given by Eq. (6). φkb

(r1,r2,t) denotes the dressed continuum
wave function representing the state of an ejected electron of
asymptotic momentum kb moving in the combined field of the
residual He+(1s) ion and the external laser field. It is given by
expression of the form [25]

φkb
(r1,r2,t) = e−iEkb

t e−iEHe+
0 t e−ia·Re−ikb ·α0 sin(ωt)

[
ψ

(−)
kb

(r1,r2)(1 + ikb · α0 sin(ωt))

+ i

2

∑
j

(
eiωt

Ej − EHe+
0 − Ekb

+ ω
− e−iωt

Ej − EHe+
0 − Ekb

− ω

)
Mjkb

ψj (r1,r2)

]
, (10)
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where

ψ
(−)
kb

(r1,r2) = 1√
2

[
φHe+

0 (r1)φ(−)
c,kb

(r2) + φHe+
0 (r2)φ(−)

c,kb
(r1)

]
.

(11)
Here φHe+

0 (r) = √
8π exp(−2r) is the He+(1s) wave function,

while

φ
(−)
c,kb

(r) = ψ
(−)
c, kb

(r) − 〈
φHe

0 (r)
∣∣ψ (−)

c, kb
(r)

〉
φHe

0 (r) (12)

is a modified continuum Coulomb wave function with incom-
ing spherical wave behavior, orthogonalized to the ground-
state helium orbital φHe

0 . In Eq. (12)

ψ
(−)
c, kb

(r) = (2π )−3/2 eπ/2kb �

(
1 + i

kb

)

× 1F1

[
− i

kb

,1, − (ikbr + kb · r)

]
(13)

is a Coulomb wave function with incoming spherical wave
behavior, corresponding to a charge Z = 1 and asymptotic
momentum kb. In Eq. (10) Mjkb

= 〈ψj |E0 · R|ψ (−)
kb

〉 is a
dipole coupling matrix element.

In both Eqs. (7) and (10), the field-free excited states of
helium (both discrete and continuous) have been taken to be
of the form

ψj (r1,r2) = 1√
2

[φ1s(Z = 2,r1)φn�m(Z = 1,r2)

+φ1s(Z = 2,r2)φn�m(Z = 1,r1)], (14)

where φn�m(Z,r) is a hydrogenic wave function corresponding
to the n�m state, and n can take both discrete and con-
tinuous values. We also note that φ1s(Z = 2,r) = φHe+

0 (r).
The energies Ej corresponding to the wave functions ψj of
Eq. (14) are given by Ej = EHe+

0 + EZ=1
n , where EZ=1

n are
the hydrogen atom energies (both discrete and continuous). In
writing Eq. (14), we have neglected the contribution of doubly
excited target states, which is known to be small for excitation
processes.

Equation (4) is evaluated analytically to obtain the first
Born ionization S-matrix element, which for the present laser-
assisted (e, 2e) reaction is given by

SB1
ion = i(2π )−1

�=+∞∑
�=−∞

δ
(
Eka

+ Ekb
+ EHe+

0

−Eki
− EHe

0 − �ω
)

f B1,�
ion . (15)

Here f B1,�
ion is the first Born amplitude for the laser-assisted

(e, 2e) process involving the exchange of � photons. This
quantity is given by

f B1,�
ion = f1 + f2 + f3, (16)

with

f1 = −2−2
〈
ψ

(−)
kb

∣∣ei�·r1 + ei�·r2 |ψ0〉J�(λ), (17a)

f2 = i−2
∑

j

〈
ψ

(−)
kb

∣∣ei�·r1 + ei�·r2 |ψj 〉Mj0

×
(

J�−l(λ)

Ej − EHe
0 − ω

− J�+l(λ)

Ej − EHe
0 + ω

)
, (17b)

and

f3 = i−2
∑

j

〈ψj |ei�·r1 + ei�·r2 |ψ0〉M∗
jkb

×
(

J�−l(λ)

Ej − Ekb
− EHe+

0 + ω
− J�+l(λ)

Ej − Ekb
− EHe+

0 − ω

)

− 2−2kb · α0J
′
�(λ)

〈
ψ

(−)
kb

∣∣ei�·r1 + ei�·r2 |ψ0〉. (17c)

In these equations, J� is a Bessel function of order �, � =
ki − ka is the momentum transfer, and λ = (� − kb) · α0.

Let us now consider exchange effects in laser-assisted (e,
2e) collisions. The exchange amplitude with the transfer of �

photons is approximated by its dominant part coming from the
first Born approximation

g�
ion(�) 	 J�(λ)gOch

ion , (18)

with

gOch
ion = 2

k2
i

f B1
ion . (19)

where gOch
ion is the exchange amplitude in the Ochkur approx-

imation [47], and f B1
ion is the field-free first Born ionization

amplitude. The term proportional to k−3
i [48] was not taken

into account in our calculation since the term proportional to
k−2
i is the leading term in the exchange scattering amplitude.

The first Born triple differential cross section corresponding
to the (e, 2e) process accompanied by the transfer of � photons
is then given by

d3σB1,�
ion

d�ad�bdE
= kakb

ki

∣∣f B1,�
ion − g�

ion

∣∣2
. (20)

The second Born S-matrix element is much more compli-
cated than the first Born one discussed above. It is given by
the expression

SB2
ion = −i

∫ +∞

−∞
dt

∫ +∞

−∞
dt ′

〈
χka

(r0,t)φkb
(X ,t)

∣∣Vd (r0,X)

×G
(+)
0 (r0,X,t,r ′

0,X ′,t ′)Vd (r ′
0,X ′)

× ∣∣χki
(r ′

0,t
′)φ0(X ′,t ′)

〉
, (21)

where G
(+)
0 is the causal propagator. This term is second order

in the electron-atom interaction potential Vd and contains
atomic wave functions corrected to first order in E0 for the
target dressed states. One finds that SB2

ion is the sum of two
terms which are respectively of zero and first order in E0.
We may concentrate our discussion on the computation of the
zero-order term SB2,0

ion .
Thus, the lowest-order component SB2,0

ion evaluated at the
shifted momenta �i and �f can be expressed in terms of a
second Born amplitude as

SB2,0
ion = −(2π )−1i

�=+∞∑
�=−∞

δ
(
Eka

+ Ekb
+ EHe+

0

−Eki
− EHe

0 − �ω
)
f B2,�,0

ion (�), (22)

where

f B2,�,0
ion (�) = J�(λ)f B2

ion (�), (23)
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with

f B2
ion (�) = − 1

π2

∫ +∞

0
dq

× 〈ψ (−)
kb

| Ṽd (�f ,X)Gc(ξ ′)Ṽd (�i ,X) | ψ0〉
2

i 
2
f

, (24)

where �i = ki − q, �f = q − ka , and � = �i + �f .
Ṽd (�,X) = ei�·r1 + ei�·r2 − 2 and Gc(ξ ′) = ∑

n
|ψn〉〈ψn|
ξ ′−En

is the

Coulomb Green’s function with argument ξ ′ = Eki
+ EHe

0 −
Eq − Ekb

+ �ω, where Eq is the virtual projectile energy.
The electron-atom amplitude with the transfer of � photons

may be written in the second Born approximation as

f �
ion(�) = f B1,�

ion (�) + f B2,�,0
ion (�). (25)

The integral in Eq. (24) over the virtual projectile states
χq(r0,t), with wave vector q, is prohibitively difficult, and
is actually zero at some values of incident electron energies.
We overcome this difficulty by using the exact upper boundary
of integral (24) over the virtual projectile, which is obtained
by the requirement [49]

q � inf(ki,ka). (26)

The first and second Born amplitudes for the laser-assisted
electron-impact ionization have been computed by expanding
the atomic wave functions onto a Sturmian basis [26,50].
This method of calculation constitutes an important advantage
with respect to earlier computations relying on the closure
approximation [37,45,51–53].

The expression of the triple differential cross section in the
second Born approximation accompanied by the transfer of �

photons is given by

d3σB2,�
ion

d�a d�b dE
= kakb

ki

∣∣f �
ion − g�

ion

∣∣2
. (27)

III. RESULTS AND DISCUSSION

In this section, we report on the results of a study into the
laser-assisted (e, 2e) reaction of a helium target for which
the prospects of performing experiments are favorable. The
fully differential cross sections are calculated in the coplanar
asymmetric geometry. Without loss of generality, we choose
the origin of the coordinate system to be the target nucleus
and the wave vector of the incoming electron along the z

axis. We set the x axis in the plane defined by the incident
momentum and the polarization vector of the laser field. The
angle of the scattered electron and that of the ejected electron
are denoted respectively by θa and θb; θa is measured in
the counterclockwise direction, while θb is measured in the
clockwise direction. The azimuth angle between the scattering
plane and the zx plane is referred to by φ. Our detailed
calculations are evaluated for two distinct orientations in which
the laser polarization vector ε̂ is either parallel or perpendicular
to the momentum transfer � (see Fig. 1). We present our results
for the following parameters: the incident electron energy is
Eki

= 40 eV, the ejected electron energy is Ekb
= 5 eV, and

the laser photon energy is ω = 1.17 eV, which is of interest
because it corresponds to the first harmonic of a Nd:YAG
laser. The electric field amplitude is E0 = 1 × 107 V/cm,

FIG. 1. Selected orientations of laser polarization for electron-
impact ionization in the presence of a linearly polarized laser field:
(a) ε̂ ‖ � and (b) ε̂ ⊥ �.

the scattering angle is θa = 4◦, and the azimuth angle is
φ = 0◦. For this choice, higher-order contributions such as
a second-order Born term and exchange corrections become
important and are discussed below.

In what follows, the detection energy of the ejected electron
is kept fixed at 5 eV. Accordingly, when the projectile-target
system exchanges photons with the laser field, the final energy
of the scattered electron changes as given by the energy
conservation equation (3), which here reads

Eka
= Eki

+ EHe
0 − EHe+

0 − Ekb
+ �ω. (28)

We have chosen first to address the case of laser-assisted
electron-impact ionization in the course of which no photons
are exchanged between the projectile-atom system and the
laser field; i.e., we consider the case in which the energy of the
scattered electron is the same as the one for the field-free
case. This corresponds to replacing � by 0 in the energy
conservation relation. It then makes sense to compare the
TDCSs for field-free and laser-assisted collisions, computed
within the first and second Born approximations.

In Fig. 2, we show the variations of the TDCSs for no
photon transfer. In the field-free situation, the results revealed
the presence of two different peaks: the binary and the recoil
peaks. The binary peak is the result of an encounter between
the incoming electron and one of the atomic electrons and is
essentially independent of the nucleus. In this case the scattered
and ejected electrons emerge on opposite sides of the incident
electron direction. The recoil peak is governed by the attraction
between the electron and the nucleus. In fact, the elec-
tron which has been initially scattered in the direction of
the binary peak has subsequently suffered a reflection due
to the attractive potential of the ion. We observe that, in a
second Born treatment of the field-free (e, 2e) collisions,
the angular distribution of the ejected electron admits the
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FIG. 2. (Color online) Triple differential cross sections corre-
sponding to the laser-assisted electron-impact ionization process of
a helium atom as a function of the ejected angle θb with no net
exchange of photons (� = 0). The laser frequency is 1.17 eV and the
electric field strength is 1 × 107 V/cm. The incident electron energy
is Eki

= 40 eV, the ejected electron energy is Ekb
= 5 eV, and the

scattering angle is θa = 4◦. The laser polarization in (a) is parallel
to the momentum transfer (ε̂ ‖ �) and in (b) perpendicular to the
momentum transfer (ε̂ ⊥ �). Solid lines, second Born approximation
results with including exchange effects; dashed lines, second Born
approximation results without including exchange effects; dash-
dotted lines, first Born approximation results; dotted lines, field-free
results in the second Born approximation.

direction of the momentum transfer � as a symmetry axis.
Indeed, the TDCSs in Fig. 2 are symmetrical with respect
to the angles θb = 4◦ and 180◦ − θb, which correspond to
the maxima of the binary and recoil peaks, respectively. The
second Born TDCS including exchange effects deviates from
the field-free one in the vicinity of the recoil peak when ε̂ ‖ �

while the two results are almost similar when ε̂ ⊥ � as long
as the laser field strength is not larger than ∼5 × 107 V/cm.
When ε̂ ‖ �, the recoil peak almost disappears in the first
and second Born approximations with respect to the field-free
case. This indicates that, for this laser polarization direction,

the ejected electron is weakly attracted by the residual nucleus.
For both parallel- and perpendicular-field vectors, the binary
peak is dominant in the results of � = 0 which means that the
electron-electron interaction is important against the attraction
between the electron and the nucleus. Comparing with the
first-order Born results, the binary peak is greatly enhanced
in the second Born approximation, whereas the recoil peak is
slightly suppressed.

We now turn to the examination of the importance of
exchange effects in laser-assisted single ionization of a helium
atom by slow electrons. It is well known from field-free
electron-atom collision theory that exchange effects lose their
importance when the velocity of the incoming electron is
considerably larger than that of the atomic electrons [54]. In
order to demonstrate the importance of exchange effects, we
have chosen to compare the corresponding second-order Born
TDCSs results by including the exchange amplitude with the
TDCSs generated singly by the direct amplitude. It can be
seen from Fig. 2 that the inclusion of the exchange alters
the magnitude of the TDCS by lowering it significantly in
comparison to that of the SBA without exchange; i.e., the
TDCSs are mainly contributed by the exchange amplitude
which shows that the exchange effects between two outgoing
electrons cannot be ignored. This effect is manifested more
clearly for an atomic system with more than one electron [55]
and for slow velocities of the incident electron [54].

Figure 3 shows our results of triple differential cross
sections when the ionizing process is accompanied by the
absorption of one photon (� = 1). We observe that, for both
laser polarization directions, the second Born approximation
gives an enhanced binary peak and a reduced recoil peak in
contrast to the results of the FBA. In Fig. 3(a), we notice
a dominance of the recoil peak with a notable reduction of
the magnitude of the binary peak. This can be interpreted in
the following way: the binary peak results from the direct
interaction between the projectile and the atomic electron.
In such an electron-electron encounter, the probability for
exchanging a photon with the field is very small. This is the
same situation as for the bremsstrahlung radiation emitted in
electron-electron collisions. In contrast, the recoil peak results
from a strong interaction with the nucleus, and the probability
for undergoing a radiative transition is much higher. Again,
this situation is similar to what is observed when discussing
bremsstrahlung spectra in atoms. This may explain why the
recoil peak becomes larger than the binary one. In Fig. 3(a)
only the binary peak is split, whereas in Fig. 3(b) both the
binary and recoil peaks are split. The splitting of the peaks
is a typical signature of the laser effects on the TDCSs. In
fact, the presence of the laser breaks the symmetry of the
angular distribution which, without the field, is symmetrical
with respect to the orientation of �. This is due to the
presence of a new preferred direction associated with the laser
field polarization. This behavior is owing to the fact that the
argument of the Bessel functions J�(λ), appearing in the direct
amplitudes of Eqs. (17) and (23), varies with the angle θb

leading thus to the observed zeros of the Bessel functions
which coincide with the minimums of the TDCSs. Note that,
for ε̂ ‖ � and ε̂ ⊥ �, the effects of exchange are to reduce the
magnitudes of the cross sections. This indicates the importance
of including exchange in calculating ionization cross sections
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FIG. 3. (Color online) All the parameters are the same as in
Fig. 2, but with the absorption of one photon (� = 1).

for a helium target at low-incident-energy range. Changing
the polarization orientation significantly affects the angular
distribution. Indeed, in Figs. 3(a) and 3(b), � − kb is the
same; however, the quantity α0 · (� − kb) is different since
the orientation of α0 is different.

In Fig. 4, the dependence of the cross sections on the
ejected electron angle is shown for the emission of one photon
(� = −1). When the laser polarization vector is parallel to the
momentum transfer, the splitting of the binary and recoil peaks
disappears due to the absence of a new preferred direction,
responsible for the splitting, associated with the laser field. In
this case, the symmetry with respect to the momentum transfer
� is restored. The second-order Born model reproduces higher
triple differential cross sections in the binary peak, whereas it
yields lower cross sections in the recoil peak than the first Born
treatment does. When ε̂ ‖ �, the binary and recoil collision
become equally important in the SBA. Another interesting
point is the fact that the angular distribution is strongly
modified as the respective magnitudes of the binary and recoil
peaks are reversed. Indeed, the recoil (binary) peak for ε̂ ‖ �

(ε̂ ⊥ �) becomes dominant over the binary (recoil) peak. The
observed inversion between the magnitudes of the binary and
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FIG. 4. (Color online) All the parameters are the same as in
Fig. 2, but with the emission of one photon (� = −1).

recoil peaks is likely to result from the physical mechanism
leading to the occurrence of each of those peaks. This clearly
shows that the collision dynamics is strongly affected by the
orientation of the laser polarization, even at moderate laser
intensities. By comparing Figs. 3(a) and 4(a) and Figs. 3(b)
and 4(b), we observe that the inverse bremsstrahlung processes
dominate those of stimulated bremsstrahlung, meaning that the
system absorbs net energy from the radiation background.

The differences observed in TDCSs between Figs. 3(a)
and 3(b) and between Figs. 4(a) and 4(b) are strongly
dependent on the orientation of the laser polarization. In fact,
the first and second Born amplitudes of Eqs. (17) and (23)
depend on the laser polarization direction via the argument
λ of the Bessel functions, i.e., via the scalar products α0 · �

and α0 · kb. In a more physical perspective, the scalar product
α0 · � can be associated to the coupling of the laser field
with the scattered electron which experiences the momentum
change � during the course of the collision, while the scalar
product α0 · kb corresponds to the coupling of the laser field
with the ejected electron. Changing the orientation of ε̂

with respect to these characteristic momenta allows one to
modify accordingly the coupling of the field with either of the
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electrons. The magnitude of the cross sections for ε̂ ‖ � is
larger than that for ε̂ ⊥ �. Indeed, the choice ε̂ ‖ � allows us
to maximize the cross sections since the argument of the Bessel
functions appearing in Eqs. (17) and (23) is also maximized.
This is due to the fact that the coupling between the laser
and the scattered electron reaches the maximum in this laser
orientation.

IV. CONCLUSION

In this work, we have performed a study of laser-assisted
electron-impact ionization of a helium atom at an incident
energy of 40 eV. The motivation was to extend our previous

studies in hydrogen to the case of helium, which is expected
to be more accessible to experiments. We report accurate
results of triple differential cross sections using a second-order
Born treatment. In addition, the exchange effects have been
considered. Numerical results show that the TDCSs are notably
modified by taking into account exchange effects. Important
modifications of the angular distribution of the ejected electron
can take place by changing the orientation of the laser
polarization. Furthermore, second-order Born calculations
are significantly different from the results obtained in the
first-order Born theory. When we add the contribution of the
second Born term we observe a fall of the recoil lobe amplitude
and a rise of the binary lobe amplitude for both ε̂ ‖ � and
ε̂ ⊥ � orientations.
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