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Relativistic calculation of the electron-momentum shift in tunneling ionization
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We describe a procedure for the solution of the time-dependent Dirac equation. The procedure is based on
the relativistic generalization of the matrix iteration method. We use this procedure to study electron-momentum
distribution along the laser-beam propagation direction for the process of the tunneling ionization of a hydrogen
atom. We found, in agreement with the experimental observations [C. T. L. Smeenk, L. Arissian, B. Zhou,
A. Mysyrowicz, D. M. Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106, 193002 (2011)], that
relativistic effects lead to appreciable deviation of the distribution from the strict left-right symmetry present
in the nonrelativistic case. The expectation value of the momentum along the laser-beam propagation direction
grows linearly with intensity and follows closely the behavior of the expectation value of the kinetic energy
divided by the speed of light. These features agree with the experimental results [C. T. L. Smeenk, L. Arissian,
B. Zhou, A. Mysyrowicz, D. M. Villeneuve, A. Staudte, and P. B. Corkum, Phys. Rev. Lett. 106, 193002 (2011)].
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Keldysh’s pioneering work [1] and its subsequent develop-
ments [2,3] laid out a basis of our current understanding of
the main features of the strong field ionization of atoms and
molecules. According to this theory ionization phenomena
can be separated into two broad classes: the multiphoton and
tunneling ionization. Whether an ionization process can be
characterized as a multiphoton or a tunneling one depends
on the value of the Keldysh parameter γ = w

√
2I/E (where

w and E are the frequency and strength of the laser field,
respectively, and I is the ionization potential of the target in
atomic units). Values of γ � 1 correspond to the tunneling
regime, which interests us in the present work.

Original Keldysh theory relied on a completely nonrela-
tivistic approach. A relativistic modification of this theory was
proposed in [4]. It is clear that such relativistic modification
is indispensable if our goal is the proper description of the
ionization phenomena occurring for the field intensities of the
order of several units of 1 × 1022 W/cm2 which are currently
available [5], or if we are interested in ionization driven by
high-frequency electromagnetic fields. However, even for the
infrared (IR) laser fields of much lower intensity, relativistic
effects can manifest themselves. Even though the momentum
of a photon is small, for the processes with participation of
a large number of photons the total momentum delivered
to the atom can be non-negligible. Smeenk et al. [6] report
results of the study of the ionization process driven by the
laser pulses with wavelengths of 800 and 1400 nm under
experimental conditions where a large number of photons
(30–50) is absorbed. The experiment demonstrated that the
average electron-momentum component along the laser prop-
agation direction grows linearly with the laser field intensity
and is nearly equal to the average photoelectron energy divided
by the speed of light. Another example is provided by the recent
study [7] of momentum sharing between the photoelectron and
the parental ion in the processes of single- and multiphoton
ionization. It was found [7] that momentum sharing is very
different for the two processes, with intense transfer of the
momentum from the field to the ion-electron system occurring
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for field intensities of several units of 1 × 1014 W/cm2. A
detailed study of the relativistic features of the tunneling
ionization was reported in [8]. Introducing a gauge-invariant
notion of the potential barrier for the process of the relativistic
tunneling and reducing the problem to a one-dimensional
tunneling model, the authors showed that there is a clear
manifestation of the relativistic effects in tunneling ionization.
Even for moderate field intensities an ionized electron acquires
a non-negligible momentum shift along the direction of the
laser-pulse propagation.

This is not the only instance where relativistic effects
manifest themselves in the tunneling ionization even for
moderately high field intensities. It was shown in [8,9] that
correct treatment of the relativistic effects may prove important
for the solution of the problem of the “tunneling time”—the
time it takes a bound electron to tunnel through the barrier and
become ionized. A rapid progress of the attosecond angular
streaking techniques [10,11] offers a unique opportunity to
study this question experimentally. An interesting and impor-
tant issue arising in relation to the problem of the tunneling
time is whether one can consider sub-barrier motion of the
electron as instantaneous, an assumption which contradicts
the special theory of relativity [12]. Another manifestation
of the relativistic effects in an apparently nonrelativistic
setting was found in [13]. The authors used a relativistic
version of the intense field S-matrix approach [2] to study the
spin-flip process in a hydrogen atom in circularly polarized
near-infrared and XUV laser fields. Considerable intensity-
dependent spin-flip asymmetry was found, which was shown
to survive even when relativistic effects, such as retardation
and spin-orbit effects, were very small.

To be able to address these questions we need to include
relativistic effects in the theory describing the evolution of
the atomic system under the action of the laser pulse in time.
Below we describe such an approach based on the numerical
solution of the time-dependent Dirac equation for an atom in
the presence of an external electromagnetic field. The Dirac
equation for a single electron provides the framework allowing
one to take into account relativistic effects in an ab initio
way, as long as the effects of quantum electrodynamics can be
neglected. In the literature the Dirac equation is often solved
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using approximations similar to the well-known nonrelativistic
strong-field approximation (SFA), where the effect of the
atomic potential on the ionized electron is neglected [7,14]. In
[15,16] approaches to the solution of the full time-dependent
Dirac equation based on the use of the so-called split operator
method have been described. We propose and describe below
a procedure which is based on the relativistic generalization
of the so-called matrix iteration method [17]. We used a
nonrelativistic implementation of this procedure to study the
evolution of atomic systems in strong fields of arbitrary
polarization [18–20] and found this method to be accurate,
fast, and reliable. We try to show below that relativistic
generalization of the matrix iteration procedure inherits many
of these features. Atomic units with � = 1, e = 1, m = 1, and
c ≈ 137.036 (here e and m are charge and mass of the electron,
and c is the speed of light) are used throughout the paper.

I. THEORY

We solve the time-dependent Dirac equation

i
∂�(r,t)

∂t
= Ĥ�(r,t) (1)

for the bispinor �(r,t) with the Hamiltonian operator

Ĥ = Ĥatom + Ĥint, (2)

with

Ĥatom = cα · p̂ + c2(β − I ) + I V (r) (3)

and

Ĥint = cα · A (4)

In these expressions,

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
, I =

(
I 0
0 I

)
,

σ are Pauli matrices, 0 and I are 2 × 2 null and identity matri-
ces, and c is the speed of light. To facilitate comparison with the

nonrelativistic calculations, we subtracted the constant term
Ic2 corresponding to the rest mass energy of the electron from
the field-free atomic Hamiltonian (3). In Eq. (3) V (r) = − 1

r

is the Coulomb potential. We use Coulomb gauge, interaction
of the atom, and the external electromagnetic field is described
by means of the vector potential A in Eq. (4). We employ here
the definition of the vector potential commonly used in atomic
physics so that electric field and vector potential are related as
E = − ∂ A

∂t
.

To solve Eq. (1) we modify the strategy used in [18,19,21]
for solution of the nonrelativistic time-dependent Schrödinger
equation (TDSE). The solution is represented as a series in
basis bispinors:

�(r,t) =
∑

j

l=j±1/2

j∑
M=−j

�jlM (r,t), (5)

where each basis bispinor is

�jlM (r,t) =
(

gjlM (r,t)�jlM (n)

fjlM (r,t)�jl′M (n)

)
, (6)

and two-component spherical spinors are defined as

�jlM (n) =
⎛
⎝ C

jM

l M− 1
2

1
2

1
2
Yl,M− 1

2
(n)

C
jM

l M+ 1
2

1
2 − 1

2
Yl,M+ 1

2
(n)

⎞
⎠ ,

where C
jM

lm 1
2 μ

are the Clebsch-Gordan coefficients, Ylm(n) the

spherical harmonics, and n = r/r . Parameters l and l′ in
Eq. (5) must satisfy the relation l + l′ = 2j .

The action of the operators Ĥatom and Ĥint on the basis
bispinors �jlM (r,t) in Eq. (6) can be easily found using well-
known formulas [22,23]. To save the space we give here only
one of the formulas, the explicit form of which we need below:

Ĥatom�jlM (r,t) =
({

ic
(

1
r

d(rfjlM (r,t))
dr

− �
fjlM (r,t)

r

) + V (r)gjlM (r,t)
}
�jlM (n){

ic
(

1
r

d(rgjlM (r,t))
dr

+ �
gjlM (r,t)

r

) + (V (r) − 2c2)fjlM (r,t)
}
�jl′M (n)

)
, (7)

where � = −j − 1/2 for j = l + 1/2, and � = j + 1/2 for
j = l − 1/2.

In the most general case the vector potential A in Hamil-
tonian (4) is a function of temporal and spatial variables.
Taking as an example a linearly polarized pulse traveling in the
direction of a unit vector k̂, we may write the vector potential
as

A(r,t) = êh(ζ ), (8)

where ê · k̂ = 0, ζ = t − r·k̂
c

, and h(ζ ) has a compact support
[i.e., it is zero outside an interval (0,T1)] for a pulse of finite
temporal duration and spatial extension. The logic of the
calculational procedure we describe dictates that dependence
of the vector potential on the spatial variables should be treated
by means of an expansion in spherical harmonics. At every

step during time integration, therefore, we expand the vector
potential as

A(r,tn) = ê
∑
kq

hkq(r,tn)Ykq(r), (9)

with

hkq(r,tn) =
∫

Y ∗
kq(r)h(ζ ) d�. (10)

These integrals are computed numerically using Gaussian
quadratures. The radial functions gjlM (r,t) and fjlM (r,t) in
Eq. (5) and Hamiltonian operator Ĥ in Eq. (1) are discretized
on the grid with the step size δr in a box of size Rmax.
Substitution of the expansion (5) in the discretized Dirac
equation gives a set of coupled equations on the radial
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amplitudes gn
jlM (t) = gjlM (rn,t), and f n

jlM (t) = fjlM (rn,t).
These equations are solved using the matrix iteration method
(MIM) [17]. This well-known technique is often applied for
the solution of the nonrelativistic TDSE for atoms in the
laser field [18–20,24]. For the present case of the Dirac
equation some aspects of the application of this technique
differ from the nonrelativistic case. Therefore, we describe the
application of the matrix iteration method for the solution of
the time-dependent Dirac equation in more detail.

As in the nonrelativistic case, the starting point for the
development of the MIM procedure is the expression for
the short-time Crank-Nicolson (CN) propagator [25] (this
expression can also be regarded as a Cayley representation
of the unitary short-time propagator):

�(r,tn + δ) = 1 − iĤ (tn + δ/2)δ/2

1 + iĤ (tn + δ/2)δ/2
�(r,tn). (11)

The most difficult and time-consuming part of the cal-
culation is finding the inverse of the operator in the de-
nominator in Eq. (11). This operator can be represented
as 1 + iĤ (tn + δ/2)δ/2 = Â + B̂, where Â = 1 + iĤatomδ/2
and B̂ = iĤint(tn + δ/2)δ/2.

Using the Neumann expansion for (Â + B̂)−1,

(Â + B̂)−1 = Â−1 − Â−1B̂Â−1 + Â−1B̂Â−1B̂Â−1 − · · · ,

(12)

one reduces the problem of computing the inverse of the
operator 1 + iĤ (tn + δ/2)δ/2 in Eq. (11) to the repeated com-
putation of the inverse of the operator Â. We note that Â inherits
all its properties from the atomic Hamiltonian Ĥatom. This
means, in particular, that Â is diagonal in quantum numbers
j lM . Operator Â, therefore, can be inverted separately in every
subspace spanned by the bispinors with a given j lM . As Eq. (7)
shows, to find the action of the atomic Hamiltonian on the basis
bispinor �jlM (r,t), we have to compute first derivatives of the
functions gjlM (r,t) and fjlM (r,t). We use central differences to
represent these derivatives in the discretized version of Eq. (7).
In order to compute the action of the atomic Hamiltonian on
the basis bispinor at a given grid point rn we need, therefore,
to know gk

jlM (t) and f m
jlM (t) with k = n ± 1, m = n ± 1. One

can see now that, reordering, if necessary, the grid variables
gk

jlM (t) and f m
jlM (t), we may describe the action of the atomic

Hamiltonian on the grid variables by means of a band matrix.
The same statement is true, of course, for the operator Â.
Its inversion, therefore, requires inversion of a band matrix
which can be easily and efficiently done using standard
algorithms. Convergence of the Neumann expansion (12) can
be monitored, choosing the time step size δ appropriately [17].

Electron spectra P (E) were obtained by projecting the
solution of the time-dependent Dirac equation after the end
of the pulse on the set of the continuum states �jlM (r)
of Hamiltonian (3) and summing over all possible j lM .
Photoelectron angular distributions (PADs) were calculated
by computing ionization amplitudes a(μ, p), where μ is
polarization (which can be visualized as the spin direction
in the electron’s rest frame) and p is asymptotic electron
momentum. The amplitudes were obtained by projecting the
solution of the time-dependent Dirac equation after the end of
the pulse on the set of the ingoing relativistic scattering states

�−
μ, p(r) of the hydrogen atom [22]:

�−
μ, p(r) =

∑
j lM

ile−iδjl (p)〈�jlM ( p̂)|vμ〉�pjlM (r), (13)

where �pjlM (r) are continuous-spectrum wave functions of
the Dirac Hamiltonian normalized to δ(p − p′), δjl(p) is the
relativistic Coulomb phase shift, �jlM ( p̂) is a two-component
spherical spinor, and vμ is a two-component spinor describing
the polarization state.

Of particular interest to us was the distribution of the
electron-momentum component along the laser-beam propa-
gation direction. We use below the geometry in which the beam
propagates along the x axis. The distribution was, therefore,
computed as

W (px) =
∑

μ

∫
|a(μ, p)|2 dpy dpz. (14)

II. RESULTS

Before presenting our results for the tunneling ionization
we would like to discuss briefly an issue which makes the
Dirac problem rather different from the nonrelativistic case.
This issue arises from the well-known fact of the absence
of the lower bound for the Hamiltonian operator (3). This
fact has far-reaching consequences and led, ultimately, to the
discovery of a positron. We are concerned here with purely
numerical aspects of this fact. Negative energy states have
energies hugely different from those with positive energies.
In the atomic units system we are using, the difference is
approximately 2c2 = 2 × 137.0362. If, therefore, we have in
the initial state a superposition of the states with positive
and negative energies, we will have two hugely different
time scales in the problem. This fact is responsible for the
so-called Zitterbewegung [26]. To reproduce this phenomenon
faithfully we must use an integration time step 
 � 1/c2.
Figure 1 illustrates the Zitterbewegung for two observables:
operator r , and Ĥ for the evolution starting from the initial
state prepared as a superposition (with equal weights) of the
bispinor describing the ground 1s 1

2 state, and the bispinor
obtained if upper and lower components are swapped (such a
state has an energy below the value of −2c2).

Results shown in Fig. 1 have been obtained for the time
step 
t = 1 × 10−6 a.u. and show the expected oscillations
of the expectation values. We should note that this issue
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FIG. 1. (Color online) Time dependence of the expectation val-
ues of operators r and Ĥ . Evolution starts from the initial superposi-
tion of states with energies which differ by approximately 2c2.
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is not central to our paper; we touch upon it very briefly
only to illustrate that our method is accurate enough to
reproduce these tiny features. Of course, in any calculation
of tunneling ionization, using time steps of the order of
1 × 10−6 a.u. would be utterly impossible. Fortunately, we
do not have to do that. The situation here is similar to the
one encountered when stiff (the ones having very different
time scales) systems of equations are solved numerically. The
proper choice of the stable integration method ensures that
while very tiny features (due to the smaller time scale) cannot
be reproduced, the overall behavior (governed by the larger
time scale) can be reproduced faithfully. In the calculations of
the tunneling ionization reported below we use the time step

t = 1 × 10−1 a.u., and matrix iteration procedure of order
20 [i.e., we use the first 20 terms of the Neumann series (12)
to compute the operator inverse].

We performed calculations for the linearly polarized pulse
with polarization vector along the z axis, propagating in the
positive direction of the x axis. To describe such a pulse we
used the following expression for the vector potential:

A(r,t) = −ẑ
E0

ω
T (ζ ) sin2

(
�ζ

2

)
sin(ωζ ), (15)

where ζ = t − x/c, ẑ is a unit vector in the z direction, T (ζ )
is a rectangular window function, such that T (ζ ) = 1 for ζ ∈
(0,T1) and zero outside this interval, and � = 2π/T1. The
parameters in Eq. (15) were carrier frequency ω = 0.057 a.u.,
corresponding to the wavelength of 800 nm; parameter T1

(total duration of the pulse) was chosen as T1 = 2T , where
T = 2π/ω = 2.667 fs is the duration of an optical cycle.

We used atomic hydrogen as a target. The Hamiltonian
operator was discretized on a grid with the step size δr = 0.1
a.u., and the radial variable was restricted to an interval
(0,Rmax), with Rmax = 400 a.u. The maximum value of
the parameter j in Eq. (5) was Jmax = 60 1

2 . The initial
state was prepared by solving the eigenvalue problem for
the discretized Hamiltonian, which resulted in the ground-state
energy of −0.500006661 a.u., which is to be compared with
the value −0.500006657 a.u. given by the Dirac formula (we
remind that, to facilitate comparison with the nonrelativistic
calculations, we subtract the rest mass energy term mc2 from
the Hamiltonian).
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FIG. 2. (Color online) Relativistic (solid red line) and nonrela-
tivistic (dashed green line) energy spectra for the field intensity of
1 × 1014 W/cm2.
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FIG. 3. (Color online) Distribution W (px) for the field intensity
of 5.05 × 1014 W/cm2 a.u.

The energy spectrum for the field intensity of 1 ×
1014 W/cm2, obtained using the computational procedure we
described above, is shown in Fig. 2. We present results of
both relativistic calculation, performed using the approach de-
scribed above, and the nonrelativistic calculation relying on the
nonrelativistic implementation of the matrix iteration method
[18]. The results of both relativistic and nonrelativistic calcula-
tions for the energy spectra are virtually identical. A finer char-
acteristic, allowing one to actually see the relativistic effects,
is W (px), the electron-momentum distribution in the direction
of the laser-beam propagation. This distribution, computed
according to Eq. (14), is shown in Fig. 3 for the laser field inten-
sity of 5.05 × 1014 W/cm2. Figure 3 shows a slight asymmetry,
which can be conveniently characterized by the first moment
of the distribution W (px), the expectation value 〈px〉.

Figure 4 shows the expectation value 〈px〉 as a function
of the laser intensity. 〈px〉 grows linearly with intensity and
follows very closely the curve showing dependence of the
average kinetic energy divided by the speed of light, which is
the behavior observed in the experimental work [6].

III. CONCLUSION

We described a procedure for the solution of the time-
dependent Dirac equation. The procedure is based on the
relativistic generalization of the well-known matrix iteration
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FIG. 4. (Color online) Expectation value 〈px〉 (red crosses) as a
function of the field intensity; 1

c
〈Ekin〉 (green dashed line).
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method [17]. The method has been often used in nonrelativistic
calculations [17,18,24] and is known to be reliable, accurate,
and easily adaptable to complicated field geometries, such as
fields of arbitrary ellipticity [19,20]. We described application
of the relativistic matrix iteration method to the case of the
linearly polarized laser pulse; the procedure can also be applied
for the driving field of arbitrary polarization.

We used this procedure to study the electron-momentum
distribution along the laser-beam propagation direction for
the process of tunneling ionization of a hydrogen atom.
We found, in agreement with experimental observations [6],
that relativistic effects lead to appreciable deviation of the

distribution from the strict left-right symmetry present in the
nonrelativistic case. The first moment of this distribution,
the expectation value of the momentum along the laser
beam propagation direction, grows linearly with intensity
and mimics closely the behavior of another observable, the
expectation value of the kinetic energy divided by the speed of
light. These features agree with the experimental results [6].
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