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Time scales at quantum phase transitions in the Lipkin-Meshkov-Glick model

F. de los Santos
Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional,
Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain

E. Romera
Departamento de Fisica Atomica, Molecular y Nuclear and Instituto Carlos I de Fisica Teorica y Computacional,
Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain

O. Castanos
Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, Distrito Federal 04510, Mexico
(Received 29 August 2014; published 13 April 2015)

We report on quantum revivals and classical periodicities of wave packets centered around the ground state
within the Lipkin-Meshkov-Glick model. Special attention is paid to the behavior at first- and second-order phase
transitions. In line with previous studies, we find that away from criticality, characteristic times exhibit smooth,
nonsingular behavior, but upon approaching the transition points they diverge as power laws with associated
critical exponents. Finite-size effects are studied and the observed phenomenology is discussed in the framework

of the time-energy uncertainty relation.
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I. INTRODUCTION

The wave packet evolution in quantum systems is dra-
matically different from the classical ones due to, among
other things, its associated interference effects. A striking
example is provided by the unexpected periodicities observed
in the long-time evolution of wave packets: Under suitable
conditions (which we shall discuss shortly), propagating wave
packets initially oscillate with the same period as they would
in the classical limit, but eventually spread out and collapse.
At later times, wave packets regain their initial shape, behave
quasiclassically again, and a new cycle commences. This rich
nonclassical behavior is embodied in the system’s spectrum
E,, through the time evolution of the eigenstates e~*£+ (in
units such that &z = 1). More precisely, if the wave packet
is tightly spread around a large central level ny and the
distance between levels is small enough, it is then legitimate
to Taylor-expand E, about this value,
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and consequently it is straightforward to obtain
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where we have defined Tcy = 2n/|E;, | and Tr = 47/|E} |.
Now, each term in the above expansion defines a relevant
time scale. The first one —i E,,, just generates an unobservable
overall phase. (In relativistic quantum mechanics, however,
when both positive and negative levels are populated, Tz =
n/E,, provides the frequency of Zitterbewegung oscillations
[1,2].) The second one provides the so-called classical period,
that is, the time over which the wave packet exhibits classical
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features. Lastly, the third term defines the revival time scale,
which is purely quantum in origin and corresponds to the
time it takes for the wave packet to regain (approximately)
its original shape. Here, we shall not be concerned with other
time scales that can be defined through Eq. (1), for instance
the super-revival time. Revivals have attracted a great deal
of attention over recent decades and to date several skillful
applications have been developed [3].

At a quantum phase transition, due to quantum fluctuations
systems undergo abrupt changes of state when a parameter,
say y, is varied [4]. The transition between two quantum
phases can be of different orders and in every case the energy
spectrum E(y) becomes nonanalytic at that value of y, in the
thermodynamic limit, and consequently the temporal scales
for the time evolution as described in Eq. (2) may become
nonanalytic as well. In [5], we addressed this problem by
investigating the implications for time development of wave
packets of traversing a quantum phase transition. There, by
analyzing two different models, namely, the vibron model for
the bending of polyatomic molecules and the Dicke model for
aquantum radiation field interacting with a system of two-level
atoms, we found evidence of revival behavior for wave packets
centered around energy levels as low as the ground state.
Furthermore, away from criticality, revival and classical times
displayed a smooth, nonsingular behavior that changed to
power-law divergences upon approaching a quantum critical
point. Here, we expand on this subject by studying the time
evolution of wave packets within the Lipkin-Meshkov-Glick
(LMG) model of interacting fermions [6]. This model exhibits
shape phase transitions of different orders (first-, second-, and
third-order; see below) [7]. We confirm the general picture
described above and extend the analysis to first-order phase
transitions. Finite-size effects are studied and our findings
are discussed in the context of the time-energy uncertainty
relation.

©2015 American Physical Society
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II. THE LMG MODEL

The LMG model was originally designed to describe shape
phase transitions in nuclei [6], but it has also been used to
describe many-body systems in other fields of physics, such
as quantum optics, Bose-Einstein condensates, or Josephson
junctions [8—14]. Phase transitions in the LMG model have
been studied by means of different methods (see [7,15-21]),
including a recent characterization in terms of the zeros of the
Husimi function [22]. The LMG model considers N interacting
fermions occupying two N-fold degenerate levels, separated by

an energy €. In terms of quasispin operators, the standard form
of its Hamiltonian reads [6]

H=cel +iVU;+IDH+IWULI_+JI_J), ()

where the angular momentum operators take their usual
meaning and are related to the creation and annihilation of
fermions [6].

The transformation
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casts the LMG Hamiltonian in the form
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which facilitates a semiclassical analysis. Dividing now by
¢/2 and adding the irrelevant constant — j2/(2j — 1)(yx + Vy)
leads to the final expression
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A classical analysis of the Hamiltonian Eq. (6) allows one
to distinguish different regions in the parameter space y,-y,
according to the nature of the transition points [7,22]: (a)
the crossing of the straight line y, =y, (yx < —1) yields a
first-order transition; (b) second-order phase transitions take
place when the straight lines y, = —1 and y, = —1 and the
point (yy,yy) = (—1,—1) are crossed; (c) the crossing of the
point (yx,yy) = (—1,—1) along the straight line y, = —y, —
2 yields a third-order phase transition. We shall consider
trajectories of the type: y, = —y, — b. For b < —2, the model
Hamiltonian exhibits first-order quantum phase transitions at
the point (yx,yy) = (—b/2,—b/2) while for b > —2 second-
order quantum phase transitions are present at the points

He =

Ve, vy) ={(=b+1,—-1,(=1,1 = b)}.

As examples of the first- and second-order phase transitions we
consider the values b = 4 and b = 0, respectively, as shown in
Fig. 1.

III. RESULTS

According to the classical analysis, along the path y, =
—yy — 4afirst-order quantum phase transition should be found
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FIG. 1. (Color online) y,-y, phase diagram of the LMG model.
The straight lines y, = —y, and y, = —¥, — 4 denote the trajectories
discussed in the text. The various phase transition points along these
trajectories are represented by thick dots.

at (yx,yy) = (—2,—2), and along the path y, = —y, second-
order transitions should be found at (yx,yy) = (£1,F1). The
distinct character of these transitions can be seen in the
behavior of of the ground-state expectation value of J,/j as
a function of y,, which is half the difference between the
numbers of fermions in the excited state and in the ground
state. Hence, (J,/j) = —1/2 at the first-order phase transition
(see the left panel of Fig. 2) implies that 3/4 of the particles
occupy the ground state, while in the second-order case the
value (J,/j) = —1 in the thermodynamic limit implies that
all the particles are accommodated in the ground state in the
whole range y, € [—1,1] (see the right panel of Fig. 2).

The LMG Hamiltonian commutes with the parity operator,
i.e., rotations by s around the z axis. We shall consider
initial wave packets constructed as linear combinations of
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FIG. 2. (Color online) Ground-state expectation value of J,/j as
a function of y,. Left panel: 3/4 of the particles occupy the ground
state at the transition point in the thermodynamic limit. From top to
bottom, the lines correspond to j =5, 10, 15, 20, and 100. Right
panel: All the particles are accommodated in the ground state in the
whole range y, € [—1,1].
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FIG. 3. Gaussian coefficients ¢, = (y|u) for a wave packet
centered at the ground state and o = 2. Left and right panels
correspond, respectively, to first- and second-order phase transitions.
The k index runs over positive-parity levels only, which depend on
the type of transition.

even- (positive-) parity eigenfunctions uy

Y= chuk» 7
k

with coefficients with Gaussian distributions around the
ground state (with label k), ¢; oc exp[—(k — ko)?/20%], where
o is chosen to include a significant number of energy levels
(see below). The time evolution is then given in terms of the
eigenenergies E; by

V()= cue’™. ®)
k

Experiments where wave packets are constructed in similar
form to study quantum revivals are described in, for example,
[3,23-25]. In general, revivals are observed when the wave
packet is so constructed as to contain a large number of energy
levels centered around a highly weighted one. Therefore, very
large values of o could blur the revivals or even prevent them
from being observed. On the other hand, taking derivatives
over the level index k can be meaningless for a too low o.
The precise values of o for which the phenomenon is best
seen depend, of course, on the particular nature of the system.
In Fig. 3 we display the weights of the energy levels used
in the construction of the wave packets for both first- and
second-order phase transitions. Notice that only positive-parity
energy levels are included.

For the sake of illustration, Fig. 4 shows the time evolution
of the squared modulus of the autocorrelation function A(t) =
(¥ (0)|yr(¢)), which is the overlap between the initial and the
time-evolving wave packets. This particular case corresponds
to the choice y, = 0,y, =1, j = 100, and o = 2. The figure
reflects that the wave packet evolves periodically in time in
that | A(¢)|? decreases to rather low values (the collapsed state)
and returns to its initial value of unity. At early times (see the
top panel of Fig. 4), the periodicity corresponds to the classical
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FIG. 4. (Color online) Squared modulus of the autocorrelation
function for the early time evolution (top panel) of an initial Gaussian
wave packet centered around the ground state. The bottom panel
displays the long-time evolution of the same initial wave packet. The
vertical, dashed blue lines stand for the classical and revival times as
computed through their analytical expressions. (Atomic units.)

one, and in the long run to quantum revivals (the bottom panel
of Fig. 4). For consistency, we have verified that both the
classical and the revival times obtained from the numerical
evolution match those of the analytical expressions 7 =
2 /|Epl &~ 1.11 and Ty, = 4m/|Ej| & 499, the derivatives
being simply computed through their numerical approxima-
tions Ej = E| — Ey and Ej = Eg —2E; + E,. These are
denoted in the figure by vertical, dashed blue lines. The whole
picture is better appreciated in Fig. 5, which shows plots of
the autocorrelation function for time evolution along a range
of trajectories, y, = —y, — 4 in the top panel and y, = —y,
in the bottom one. Vertical cuts at constant values of y,
display a sequence of color-coded collapses (dark regions)
and revivals (light regions). Special attention must be paid to
the transition points y, = —2 (top panel) and y, = %1 (bottom
panel), corresponding respectively to first- and second-order
phase transitions, where interestingly the time interval between
consecutive revivals increases significantly. The revival times,
and the classical times too, actually diverge at the transition
points. In the following, we clarify how and why this happens.

First, we focus on the classical time T, which coincides
to a very good approximation with the inverse of the gap.
We find that in either case, whether first or second order, as
yx approaches the transition points 7 grows monotonically
up to a finite maximum and that true divergences occur only
when j — oo. Within the numerical precision, the maximum
is located right at y, = —2 for the first-order case (see the
left panel of Fig. 6). In contrast, the locus of the transition
points varies with j for the second-order case but approaches
the theoretical values y, = £1 as j — oo (the right panel of
Fig. 6). Away from the transition points, 7;; does not scale
with the system size. However, as shown in Fig. 7, right at the
transition points the maxima of T, scale with j, the precise
value of the scaling exponents depending on the nature of
the transition, namely, Ti; ~ j in the first-order case while
T, ~ j%33 in the second.

The classical times also exhibit scaling behavior upon
approaching the transition points at fixed j. This is illustrated
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FIG. 5. (Color online) Plots of the autocorrelation function for
the time evolution of a Gaussian wave packet centered around
the ground state. Dark and light regions correspond, respectively,
to collapses and regenerations. The top (bottom) panel is for the
first-order (second-order) phase transition. (Atomic units.)
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FIG. 6. (Color online) Classical time vs. y,. Left panel: Within
the numerical precision, the maximum is located right at y, = —2 for
the first-order phase transition. Notice the logarithmic scale on the
vertical axis. Right panel: The maxima are located near the predicted
points £1 for second order phase transitions. In either case, first-
or second-order, classical times do not scale with j except at the
transition points. This is exemplified here for j = 400 and j = 800.
(Atomic units.)
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FIG. 7. (Color online) The maxima of T scale with j at the
transition points, with scaling exponents depending on the type of
phase transition: T, ~ j for the first-order transition (left panel) and
T, ~ j3® for the second (right panel). The red solid lines are
straight-line fits to the data. (Atomic units.)

in Fig. 8, where the left panel corresponds to the first-order
phase transition in which case Ty ~ |y, — v.|%°'", whereas
the right panel is for the second-order phase transition and
T ~ |yx — ¥e|*°D. This latter case corresponds to W = 0
in Eq. (3) for which a sizable number of analytic results
exists. For instance, from the theoretical prediction for the
gap around E; , AE = 27+/A2 —1/InN if L > Oand AE ~
N~'3 if » =1 [26]. Since the relation between A and y;
isA=2j/2j — Dy, =y« + O(j~") and recalling that N =
2j, Ta ~ |yx — ye|~"/% and Ty ~ j'/3 follow, which are in
perfect agreement with our results.

We now turn our attention to the behavior of the revival
times. In contrast to T, Trey scales linearly with the system
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FIG. 8. (Color online) At fixed j, T scales with the distance to
the transition point as |y, — y.|~'/? for both first- and second-order
transitions alike. (Atomic units.)

043409-4



TIME SCALES AT QUANTUM PHASE TRANSITIONS IN ...

PHYSICAL REVIEW A 91, 043409 (2015)

4 T T T T T First order Second order
10 j=1280 j=1280 S
— j=640 — j=640 T PP
[ — i 6 — i i 10°F I I 1 ‘5 I l
r =2 1107 \ | .-0.67(1)| o
- N o ,YX . ] 10 E Q y ~J h
i L Y~ . C \ ]
5 S 10'F {1 [ & |=
2 9] F . \ i
i N ] 5 =
= i 1A
L ] % S
3 \ =
10°F 3107k 9 =
: 1 F %]
103 . L . . ! . L _ - AN
-2.5 -2 -1.5 -?2.5 -2 -1.5 ) | s [ | ! i
X h 100 100 100 10" 100 100 10
FIG. 9. (Color online) T, as a function of y, for the first-order J J

phase transition. In the right panel, except at the transition point, the
data collapse onto a single curve after normalization by the associated
system size j. From top to bottom, the lines correspond to j = 1280,
640, and 320. (Atomic units.)

size away from the transition points for both the first-order
(Fig. 9) and the second-order (Fig. 10) cases. The divergence
at y, = 0 in this latter case stems from the equidistant pattern
of the energy spectrum for this precise parameter value and is
not related to the phase transitions.

Interestingly, but not surprisingly, at the transition points
Ty behaves differently in the first- and second-order cases: At
the first-order phase transition, 7i., shows a finite maximum
at y, = —2 for any j. These maxima grow linearly with the
system size and there are no signatures of scaling behavior
of Ty as a function of y, at fixed j. On the contrary, at
the second-order phase transition, for any j there always
exists a y,, closer to y. = =1 for larger j, such that T,
diverges; this will be called y,(j). The value of y, at which
T.ey diverges scales with the system size as |y.(j) — y.(c0)| ~
j %3 (Fig. 11). Likewise, at fixed j and on approaching the
transition points, Trey ~ |yx — ¥e| ™!, as depicted in Fig. 12.
This peculiar behavior of Tr diverging at finite system size is

- j=400

r
10

rev

-1

FIG. 10. (Color online) T, as a function of y, for the second-
order phase transition. Except at the transition points, the data collapse
onto a single curve after normalization by the associated system size
J (see inset). The divergences related to the phase transition approach
+1 as j — oo. (Atomic units.)

FIG. 11. (Color online) Left panel: Finite maxima of T, at y, =
—2 as functions of j for the first-order phase transition. Right panel:
Finite-size corrections to the location of the transition points for the
second-order phase transition. (Atomic units.)

not new as it has been reported previously in the Dicke model
of super-radiance and a model for the bending of molecules
[5]. Nonanalyticities can be present in finite systems at zero
temperature. In this regard, quantum phase transitions without
thermodynamic limits have been investigated in [27]. See [28]
in the context of Bose gases.

To try to rationalize these findings, consider a wave packet
of width AH = /(H?) — (H)2. Then AH At > h, where Af
is the shortest possible time scale for a significant evolution
of the wave packet [29]. Hence, clearly Ty > At 2 1/AH,
and consequently it transpires that any characteristic time is
ultimately constrained by the statistical uncertainty in the
energy. Within this model, and due to the compression of
levels at the transition points (i.e., the fact that Ey—FE vanishes

Second order

o j=10000
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FIG. 12. (Color online) For the second-order phase transition Ty
scales with the distance to the value of y, at which it diverges. (Atomic
units.)
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FIG. 13. (Color online) The wave packet; the standard deviation
of the energy drops to almost zero as the transition points are
approached. (Atomic units.)

upon approaching the transition point or, equivalently, the
number of levels within a given energy interval increases),
AH — 0,whereby Ty, T — 00, whichisinaccordance with
the findings reported here and with previous results [5]. This
fact is a reflection of the well-known occurrence of slowing
down of the dynamics near critical points.

We have analyzed the behavior of A H as a function of y, for
a state constructed as a linear combination of eigenstates with
Gaussian weights exp[—(k — ko)?/2071, and centered around
the ground state. We take o = 1. At the theoretical (first-order)
transition point y, = —2, the variance drops down to almost
zero (see the left panel of Fig. 13). There are no finite-size
corrections to the location of the critical point nor to the
absolute minimum value, which is of order 10~*. Interestingly,
A H exhibits scaling behavior as y, = —2 is approached, with
an exponent value very close to 1/2 (see Fig. 14), which is to

1OO§ QEERELL T T 3
- o j=8000 (first-order) ]
I O :
w'p 2
3 107k
10°F
-4 | TR ETIT | R RTIT L s
10 - - -
10° 10 107 10"
v -y

FIG. 14. (Color online) For the first-order phase transition, A H
decays as a power law with the distance to the transition point y, = —2
with an exponent 1/2. (Atomic units.)
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FIG. 15. (Color online) Left panel: Minimum of AH as a func-
tion of j for the second-order phase transition. Right panel: Finite-size
correction to the location of the minimum of A H as a function of ;.
(Atomic units.)

be compared with —0.51(1) and —0.50(1) corresponding to,
respectively, T;; and Ty (see Fig. 8). (Notice the trivial change
of sign.) A similar behavior is found for the second-order
case, the path y, = —y,, with minima of AH vanishing as
yx — =1 (the right panel of Fig. 13). However, in contrast to
the first-order case, finite-size effects are evident in Fig. 15 as
now A Hpin ~ j %352 [to be compared with 0.35(3); see Fig. 7]
and, denoting by y, () the value of y, at the minimum A H for
a given j, yx.c(j) = vx.c(j = 00) ~ j70'66(1) [to be compared
with —0.67(1); see Fig. 11].

Since A H decreases in the thermodynamic limit, a classical
analysis may cast light on this issue. The energy surface is
the expectation value of the Hamiltonian with respect to the
spin-coherent state. It can be interpreted as a Hamiltonian
function dependent on variables (6,¢) or, equivalently, the
canonically conjugated variables (cos6f,¢) and parameters
(¥x,¥y)- The phase diagram shown in Fig. 1, can be obtained
by analyzing the system’s fixed points, that is, the points where
the the Hamilton equations equal zero. From the classical
point of view, this implies that at the transition points of
Fig. 1 the system does not move and hence remains stationary.
Additionally, it takes an infinite time to reach the transition
points, because the closer the system is to them, the more
slowly it evolves. This is perhaps the reason that quantum
mechanically the mean square standard deviation of the energy
for the wave packet tends to zero in both cases when j is large
enough. Moreover, the density of levels at those points grows
as a function of the size of the system, as can be immediately
seen by plotting the energy spectra for any value of j.

Finally, we have compared the several critical exponents
obtained for the LMG model in this work and the critical
exponents studied in [5] for the second-order quantum phase
transition (QPT) in the vibron U(3) and the Dicke models. The
results are gathered in Table I where the third column shows
values for the vibron model. Superscript asterisks indicate
that the same exponent value holds for the Dicke model as
well. It transpires that the second-order phase transitions of
the LMG and vibron models belong to the same universality
class, and arguably those of the Dicke model too. On the
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TABLE I. Summary of the several critical exponents discussed
in the text and those obtained in [5,30] for the second-order quantum
phase transition in the vibron model. A superscript asterisk denotes
that the same value is obtained for the Dicke model.

First-order Second-order  Second-order

Critical exponents Lipkin Lipkin models in [5,30]
Ta ~ j“ 1 1/3 1/3*
Tc1~|)/x—)/c|'3 _1/2 _1/2 —1/2
Tl’CVN I]/«\’_yclts —1 —1*
[ve(j) — ye(00)| ~ j" -2/3 -2/3

contrary, the first-order phase transition appears to be in a
different universality class, although the differences affect only
finite-size-related exponents.

IV. SUMMARY

We have studied quantum revivals of wave packets centered
around the fundamental state in the LMG model. The focus
was on the the implications of traversing quantum phase
transitions and on how the varied nature of these could affect
revival behavior. Far from the transition points our results
are qualitatively similar to those of the vibron and the Dicke
models, namely, the classical period and the revival time
exhibit a smooth nonsingular behavior, and revival times are
proportional to the system size. Upon approaching a quantum
critical point, however, qualitative differences are observed
in the behavior of Ti., between first- and second-order phase
transitions. 7;; diverges as a power law with characteristic
scaling exponents in any case. The classical period is found
to behave as the inverse of the gap almost perfectly, which
shows that our simple, finite approximation to the derivative,

PHYSICAL REVIEW A 91, 043409 (2015)

E| ~ E| — Ey, leads to correct results. This accuracy is
beyond what could be expected, given that our wave packets
are not centered around a large quantum number, nor do they
comprise a large number of states, which are the assumptions
that justify the Taylor expansion performed in Eq. (1). The
same is true for E/ ~ Eo — 2E| + E; as shown in the bottom
panel of Fig. 4.

At the first-order phase transition, T;., shows finite maxima
at y, = —2 that grow linearly with the system size, and no
signatures of scaling behavior as a function of the distance
¥x — V.. At the second-order phase transition, some traits of
the usual scaling behavior are observed while others are not.
For instance, as in the vibron and Dicke models, T, diverges
on approaching the transition point even at finite j, in contrast
to the usual scenario where divergences develop only as the
thermodynamic limit is reached. On the other hand, the loci of
these divergences approach their predicted asymptotic limits
+1 as j increases. This divergent behavior is in accordance
with the critical slowing down expected at criticality, and it
also agrees with an energy-time, variance-based analysis that
can be justified on classical grounds. Finally, as far as only the
second-order phase transitions are concerned, a quick glance
at Table I reveals that the similarities between the LMG and the
vibron models go beyond a comparable qualitative behavior.
It can be safely stated that both models belong to the same
universality class. However, the finite-size-related exponents
are different for each type of QPT (first and second order). It
will be interesting to study these properties in other quantum
systems to see to what extent these results are universal.
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