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Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment
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In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma
created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has
been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma
diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma
environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in
a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the
Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to
resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended
basis inside a finite domain is presented here. The present values of electron densities corresponding to the
disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent
agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is
extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and
argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron
ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective
ground states inside the ion spheres is also reported.
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I. INTRODUCTION

The study of confined quantum mechanical systems has
attracted immense attention from researchers around the world
due to the novel and unusual structural properties exhibited
by such systems when subject to spatial limitation [1]. A
wide variety of physical situations are manifested in nature
that relates to spatially confined systems such as atoms
or molecules trapped in zeolite sieves [2], fullerenes [3],
plasma environment [4], solvent environment [5], under high
pressure in the walls of nuclear reactors [6], quantum dot
or artificial atom [7], molecular containers, storage of fuel
cells [8,9], matter under high pressure in Jovian planets
[10], etc. Along with the experimental and technological
development, theoretical research plays a fundamental role in
designating appropriate models in order to explore and predict
the behavioral changes of a confined system. The present
study is focused on atomic systems embedded in a plasma
environment. In recent years, atoms placed in an external
plasma environment have received considerable attention from
researchers [11–19] due to their wide applications in various
disciplines of science, e.g., astrophysics, condensed matter
physics, biology, etc. While dealing with plasma that follows
classical statistics, a coupling parameter (�) defined as the ratio
of the average electrostatic energy and the average thermal
energy is introduced. � < 1 corresponds to weakly coupled
plasma (WCP) for which the effective potential experienced
by the embedded ion is expressed according to the Debye
model [20] and � � 1 denotes strongly coupled plasma
(SCP) where the potential is taken (present case) from the
ion-sphere (IS) model [21]. It should be mentioned that there
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are other models also for dealing with plasma environments
such as the “muffin-tin” model [22], “fried egg” model [23],
neutral-pseudoatom (NPA) model [24], etc. According to the
average-atom IS model, a sphere (termed as the Wigner-Seitz
sphere) surrounding a positively charged ion is considered
in such a way that the plasma electrons within the sphere
neutralize the positive ion. The size of the Wigner-Seitz sphere
will decrease when the number density of plasma electrons
(ne) increases. The temperature (T ) of the plasma does not
appear directly in this model but it is implicit as ne is different
for different temperatures for a given �. The domain of the
effective potential representing the SCP surrounding is finite in
the case of the IS model in contrast to the long-range character
of the screened Coulomb potential used in the Debye model
[20] for the WCP environment. The examples of WCP’s are the
gaseous discharge plasma (T ∼ 104 K and ne ∼ 1011/cm3),
plasma in controlled thermonuclear reaction (T ∼ 108 K and
ne ∼ 1016/cm3), solar coronal plasma (T ∼ 106−108 K and
ne ∼ 106−1010/cm3), Tokamak plasma (T ∼ 105−107 K and
ne ∼ 108−1016/cm3), etc. SCP’s (temperature varies and typ-
ical densities �1023/cm3) are observed in highly evolved stars
in high density states, the interior of Jovian planets, explosive
shock tubes, two-dimensional states of electrons trapped in
surface states of liquid helium, laser-produced plasmas, etc.
Spectral line shifts, pressure ionization, ionization potential
depression (IPD), and line merging phenomena occur in the
plasma environment, both strongly and weakly coupled, due
to the deformation of the ionic potential by the plasma fields
which may be viewed in several ways [20,21,25,26]. It is now
well established [27–30] that the dynamic shifts can be as
large as static ones. At the same time, for highly polarizable
states [31], a weak collision can ionize the system or can
produce resonance states. Such properties and knowledge
about ion-plasma interaction can effectively be utilized for
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diagnostics and the investigation of x-ray opacity of matter
under conditions prevailing in stellar interiors. In the present
work, we concentrate upon SCP only since the temperature
is low so that we can neglect dynamics, e.g., collisions. The
experimental observations using laser-produced plasmas for
C, Al, and Ar by Nantel et al. [32], Saemann et al. [33], and
Woolsey et al. [34] have explicitly demonstrated the effect of
SCP on the spectral properties of such systems. The laboratory
plasma conditions (T and ne) undergo rapid changes with
respect to where local thermodynamic equilibrium is not
maintained. Consequently, the experimental measurements
become extremely complicated leading to a loss of accuracy
and, until the end of the last century, this accuracy level was
not even mentioned in most of the experiments.

In recent years, a remarkable improvement has been made
[35–38] with the advent of Linac coherent light sources
(LCLS) towards the creation of relatively long-lived high-
density plasma at homogeneous temperature and densities.
In these experiments, an x-ray free-electron laser (FEL) was
used to create plasma with densities up to almost one order
higher than solid Al and then spectral line profiles of different
charge states of Al were used for diagnostics. The effect of
IPD on the emitted spectra as a function of ne is explored
experimentally by observing the disappearance of spectral
lines of H-like and He-like Al. During the observation of
K-shell fluorescence of highly charged Al, Ciricosta et al.
[37] found that the IPDs measured were not consistent with
the predictions of the most widely used theoretical model of
Stewart and Pyatt (SP) [39] but in good agreement with an
earlier model due to Ecker and Kröll (EK) [40]. However,
this observation was questioned in a subsequent theoretical
study by Preston et al. [41] where detailed simulations were
carried out for the spectral lines of H-like and He-like Al to
study IPD by using both SP and EK (in a modified form)
models. In experiments, the intensities and Stark-broadened
widths of He-β and Ly-β spectral lines are used for main
diagnostics. A direct measurement of ionization potential
depression is a difficult task because of its indistinguishability
from the effect of spectral line merging due to Stark broadening
[42]. Hoarty et al. [43,44] have been able to overcome this
difficulty and their measurements for Al plasma using the
Orion laser are in closer agreement with the SP model of IPD
than the EK model. This situation clearly warrants extensive
and accurate ab initio study of atomic structures; within the
dense plasma environment a few theoretical approaches are
made so far [45–47]. Son et al. [47] have adopted a two-step
Hartree-Fock-Slater approach to assess the IPD effect for Al3+
to Al7+ within plasma where a muffin-tin flat potential was
used. The IPDs calculated by Son et al. [47] lie between the
SP and modified EK models and in some cases, are close to
the SP model. But so far, no extensive theoretical calculation
on IPDs for He-like ions has been performed. It should be
noted here that both the SP model and the EK model for
estimating IPDs are derived within the framework of the IS
potential. The only theoretical work for He-like ions in the
field of SCP by using the IS potential is due to Sil et al. [48]
where both nonrelativistic and relativistic calculations were
carried out using time-dependent perturbation theory. They
have included the IS potential in the unperturbed Hamiltonian
and then applied a harmonic perturbation to probe the dipole

transitions to low-lying excited states from the ground state.
Although Sil et al. [48] demonstrated that the relativistic IS
model yields consistent results in predicting the spectral line
positions for the systems considered, some anomalies such as
better agreement of nonrelativistic results with experiments
than relativistic ones are observed in their data [48]. Such
strange features may arise due to improper inclusion of
electron correlation in the basis set within a finite region.
A major challenge for precise theoretical calculations is,
therefore, to develop an appropriate methodology where the
effect of electron correlations within a finite domain is aptly
included.

To the best of our knowledge, there exists no calculation of
He-like atoms embedded in SCP using the Hylleraas-type basis
set although it is well accepted that within the framework of the
Ritz variational technique, explicitly correlated wave functions
expanded in terms of the Hylleraas basis (and its variants)
can produce most accurate nonrelativistic energies of He-like
atoms. These methods have been applied extensively to free
He-like systems whereas for spatially confined two-electron
systems, such studies are limited to S states only [49–52].
According to Laughlin and Chu [51], the generalized Hylleraas
basis sets used in such calculations suffer the loss of linear
independence for large dimensions of the wave functions
and hence all the calculations [49–52] were limited to small
dimensions (at best 25). Laughlin and Chu [51] made an
effort to remove this difficulty and extended the basis size
up to 95 parameters where they have to compromise with the
flexibility of the nonlinear parameters. Recently, for 1

S
e states

of He-like systems under spherical confinement, the present
authors have calculated the energy values [53] by using the
standard Hylleraas basis set of dimension 161 and the results
have been confirmed by Montgomery and Pupyshev [54]. In
the present work, a successful effort has been made to develop a
general methodology in the Hylleraas basis for both the S and
P states of He-like systems. The finite domain two-electron
integrals with flexible parameters are evaluated where the
problem of linear dependency in larger dimensions is clearly
avoided.

We have estimated precise nonrelativistic energy values of
1sns (1

S
e) [n =1–3] and 1sn′p (1

P
o) [n′ =2–4] states of He-

like C, Al, and Ar within the SCP environment. Accuracy of the
computed energy eigenvalues have been tested systematically
over an extended range of parameters and also by increasing
the number of terms (N ) in the expanded basis sets. The plasma
densities (ne) are varied from a low value that corresponds to
almost a free system to a very high one that leads the ion
towards destabilization (i.e., the energy becomes zero). The
plasma electron densities in different experimental conditions
[32–38,43] are well covered within the density ranges studied
here. The energy eigenvalues of ns (2

S) [n = 1–2] and n′p
(2
P ) [n′ = 2–3] states of H-like C, Al, and Ar in SCP are also

estimated to determine the variation of ionization potential
(IP) with respect to ne. As ne increases, both the two-electron
excited states as well as the respective one-electron threshold
move towards destabilization, thereby reducing the IP. It is
remarkable that after a certain value of ne, the two-electron
energy levels move above the respective one-electron energy
level and become quasibound. Incidental degeneracy [55] and
subsequent level-crossing phenomenon between the excited
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states such as 1s2s (1
S

e) and 1s2p (1
P

o) under SCP have been
observed. Due to spatial restriction imposed upon the wave
function according to the IS model under the SCP environment,
the ion will feel a pressure inside the Wigner-Seitz sphere. The
variation of thermodynamic pressure with respect to plasma
density is also calculated. The paper is organized as follows:
An outline of the basic theory used and details on the evaluation
of the basis integrals are given in Sec. II, followed by a
discussion of the results in Sec. III, and finally concluding in
Sec. IV with a view towards further application of the present
methodology in related fields.

II. METHOD

The nonrelativistic Hamiltonian (in a.u.) of a two-electron
ion placed inside the SCP environment can be written as

H =
2∑

i=1

[
−1

2
∇2

i + VIS(ri)

]
+ 1

r12
. (1)

VIS(ri) is the one-electron term of the modified potential
energy as “seen” by the ith electron within the ion sphere.
It is to be noted that in this model, the electronic repulsion
part in the potential is completely unaltered. The spherically
symmetric potential VIS(ri) experienced by a positive charge
ion surrounded by a one-component plasma within the ion
sphere [21] is given by

VIS(ri) = −Z

ri

+ (Z − Ne)

2R

[
3 −

(
ri

R

)2
]

. (2)

The radius of the ion-sphere R is known as the Wigner-Seitz
radius [21]. Z is the nuclear charge and Ne (<Z) is the number
of bound electrons present in the ion. Ne = 1 and 2 for H-like
and He-like ions. The Schrodinger equation H� = E� is to
be solved to obtain the energy eigenvalues where the wave
function is subject to the normalization condition 〈�|�〉 = 1
within the sphere. The structure of the potential demands
that no electron current is taking place through the boundary
surface of the Wigner-Seitz sphere, and the orbital wave
function � satisfies the boundary condition,

�(r) = 0, at r � R. (3)

This boundary condition plays a significant role in behavioral
changes of the confined atoms. The plasma electrons within
the ion-sphere neutralize the central positive charge and the
size of the Wigner-Seitz sphere is determined by the condition
of overall charge neutrality that yields

R =
[

3(Z − Ne)

4πne

] 1
3

. (4)

The above expression for “R” is used to determine the IPD
according to the SP model [39]. However, in the EK model
[40] for determining the IPD, this radius was calculated in a
somewhat different way where both the electron density (ne)
and ion density (ni) are considered. According to the EK model
[40], the radius of the sphere would be expressed as

REK =
[

3

4π (ne + ni)

] 1
3

. (5)

From now on, R will always refer to the IS radius unless
mentioned otherwise.

Due to the translational symmetry of the Hamiltonian, the
degrees of freedom of a two-electron ion reduce from nine
to six by separating the motion of the center of mass. These
six coordinates can be taken as the sides of the triangle r1,
r2, r12 formed by the three particles, i.e., two electrons and
the fixed nucleus and the Eulerian angles (θ,φ,ψ) defining
the orientation of this triangle in space. The wave function
obeying symmetry properties under the particle exchange may
be written as [56]

�
(−→
r1 ,

−→
r2

) =
∑

κ

[
f κ+

L (r1,r2,θ12) Dκ+
L (θ,φ,ψ)

+ f κ−
L (r1,r2,θ12) Dκ−

L (θ,φ,ψ)
]
. (6)

θ12 is the angle between −→
r1 and −→

r2 . The summation in Eq. (6)
goes over every alternate value of κ , where κ = |k|. k is the
angular momentum quantum number about the body fixed axis
of rotation whose value satisfies k � L, L being the total angu-
lar momentum quantum number. The symmetric top functions
Dκ+

L and Dκ−
L are the eigenfunctions of the angular momentum

operator L2 of the two electrons. The rotational invariance of
the Hamiltonian makes it possible to express the variational
equation of two electrons in the field of a fixed nucleus in
terms of three independent variables r1,r2, and r12 (or θ12). The
reduction of the Eulerian angles from the variational equation
is an immediate consequence of the spherical symmetry of
the field. The variational equations (derived from the general
equation given in Ref. [57]) for 1sns (1

S
e) states and 1snp

(1
P

o) are taken from Ref. [53] and Ref. [58], respectively. The
correlated functions are of the form,

f (r1,r2,r12) = (R − r1)(R − r2)g(r1,r2,r12), (7)

where

g(r1,r2,r12) = e−σ1r1−σ2r2
∑

l

∑
m

∑
n

Clmnr
l
1r

m
2 rn

12. (8)

This correlated function ensures that the wave function
vanishes at the boundary of the Wigner-Seitz sphere. This
is due to the fact that, according to the IS model, the
local thermodynamic equilibrium is maintained within the
Wigner-Seitz sphere where the charge neutrality condition
is locally satisfied. The effect of the radial correlation is
introduced in the wave function through the nonlinear
parameters σ1 and σ2 whereas the angular correlation effect
is incorporated through different powers of r12. C’s are the
linear variational parameters. The total number of parameters
(N) in the basis set is defined as the total number of different
(l,m,n) sets [Eq. (8)] taken in the expansion of f (r1,r2,r12).
The optimized values of nonlinear parameters in Eq. (7) are
obtained by using the Nelder-Mead algorithm [59]. The linear
variational parameters along with the energy eigenvalues are
obtained by solving the generalized eigenvalue equation,

HC = ESC, (9)

where H is the Hamiltonian matrix, S is the overlap matrix,
C is the column matrix consisting of linear variational
parameters, and E is the corresponding energy eigenvalue.
The wave function is normalized for each confining radius R
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to account for the reorientation of charge distribution within
the Wigner-Seitz sphere. All computations are carried out in
quadruple precision.

The radial function χ (r) for one-electron ions is given by

χ (r) = (R − r)rk
∑

i

Cie
−ρi r , (10)

where k = 0 and 1 for the 2
S and 2

P states, respectively. In this
calculation, we have taken 21 different nonlinear parameters
(ρi’s) in a geometrical sequence ρi = ρi−1γ , γ being the
geometrical ratio [13,60]. Such choice of nonlinear parameters
enables us to cover the full region of space in a flexible manner
by adjusting γ . The energy values and linear coefficients are
determined by using Eq. (9).

The pressure experienced by an ion embedded in plasma
may be realized from the IS model that demands a truncation
of the wave function at a finite distance [Eq. (3)]. We have
calculated the pressure felt by all the H-like and He-like
ions in their respective ground states using the first law of
thermodynamics. However, for excited states having a finite
lifetime, this approach is not valid as the equilibrium criteria
is not maintained. Under an adiabatic approximation, the
pressure on the ions in the ground state can be expressed as
[53]

P = − 1

4πR2

dE

dR
. (11)

Evaluation of two-electron integrals

The correlated two-electron basis integrals arising in the
present calculations are of the form,

A(a,b,c; α,β; R)

=
∫ R

0
ra

1 e−αr1

∫ R

0
rb

2 e−βr2

∫ r1+r2

|r1−r2|
rc

12dr1dr2dr12

=
∫ R

0
ra

1 e−αr1

∫ r1

0
rb

2 e−βr2

∫ r1+r2

r1−r2

rc
12dr1dr2dr12

+
∫ R

0
rb

2 e−βr2

∫ r2

0
ra

1 e−αr1

∫ r1+r2

r2−r1

rc
12dr1dr2dr12. (12)

For S states, a � 0,b � 0,c � 0 while for higher angular
momentum states (P, D, etc.), integrals with a = −1 also arise.
After integration, the r12 part of Eq. (12) can be expanded as

1

n + 1
[(r1 + r2)n+1 − (r1 − r2)n+1]

=
n
2∑

i=0

2.n!

(2i + 1)!(n − 2i)!
rn−2i

1 r2i+1
2 [n even]. (13)

For odd ‘n’, the upper limit of the sum in the right-hand side
would be replaced by n−1

2 . The integrals from Eq. (12) then
reduce to the form,∫ y

0
xke−λxdx =

∫ ∞

0
xke−λxdx −

∫ ∞

y

xke−λxdx

= k!

λk+1

⎡
⎣1 − e−λy

k∑
j=0

yjλj

j !

⎤
⎦ . (14)

λ is a positive real number and k is a non-negative integer and
we have used the standard integral,∫ ∞

0
xke−λxdx = k!

λk+1
. (15)

The integral A(a,b,c; α,β; R) is now evaluated for two
different cases.

Case I: a � 0, b � 0, c � 0

An exact analytical expression for A(a,b,c; α,β; R) cor-
responding to a � 0,b � 0,c � 0 has been derived in a
straightforward way using Eq. (14) and the numerical values
are displayed in Table I. In the first column of Table I, different
powers of r1, r2, and r12, i.e., a, b, and c are given. For each set
of (a,b,c), the nonlinear parameters (α,β) given in the second
column of Table I are varied from very low to high values as
obtained from the optimized values corresponding to different
cases in the present work. R varies in a wide range for each
set of (a,b,c,α,β). The values of integrals are given in the
last column of Table I. The results match exactly with those
obtained from standard mathematical software (e.g., MAPLE),
which ensure the numerical accuracy of the expression for
A(a,b,c; α,β; R) over the complete range of R.

Case II: a = −1, b � 0, c � 0

After full expansion of the integral A(−1,b,c; α,β; R) over
r12 and r2 by using Eqs. (13) and (14), an integral I (α,β; R)
arises which takes the form,

I (α,β; R) =
∫ R

0

e−αr1 − e−(α+β)r1

r1
dr1. (16)

The above integral I (α,β; R) is actually a converging infinite
series with oscillatory terms. We have tested the evaluation of
the term I (α,β; R) in two different approaches.

(i) We can expand the exponential functions to evaluate the
integral as∫ R

0

e−αr1 − e−(α+β)r1

r1
dr1

=
∞∑

q=0

∫ R

0

1

r1

[
(−1)q

q!
{αq − (α + β)q}rq

1

]
dr1

=
∞∑

q=1

(−1)qRq

q q!
[αq − (α + β)q]. (17)

The expression (17) gives an accurate value of integrals where
the upper limit R is small, but fails to produce results when R

is sufficiently high.
(ii) Alternatively, the integral I (α,β; R) may be written as∫ R

0

e−αr1 − e−(α+β)r1

r1
dr1

=
∫ R

0

e−αr1

r1
(1 − e−βr1 )dr1

=
∞∑

q=1

(−1)q−1βq

q!

∫ R

0
r

q−1
1 e−αr1dr1. (18)
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TABLE I. Values of integral A(a,b,c; α,β; R) with a � 0,b � 0,c � 0. The notation x[y] indicates x × 10y .

(a,b,c) α β R A(a,b,c; α,β; R)

(0,0,0) 0.62 450 527 0.41 287 135 100.0 0.7 477 263 489 878 847 [+01]
2.0 0.1 578 745 363 918 980 [+01]
0.2 0.4 688 300 923 274 260 [−02]

8.92 934 001 5.97 270 373 100.0 0.2 516 482 004 376 827 [−02]
2.0 0.2 516 454 642 411 431 [−02]
0.2 0.9 770 367 665 657 275 [−03]

17.42 010 556 10.32 300 145 100.0 0.4 008 834 505 965 748 [−03]
2.0 0.4 008 834 499 068 468 [−03]
0.2 0.3 006 046 149 224 955 [−03]

(2,3,1) 0.62 450 527 0.41 287 135 100.0 0.1 578 244 631 585 587 [+06]
2.0 0.9 755 441 256 974 906 [+01]
0.2 0.4 326 241 505 739 082 [−07]

8.92 934 001 5.97 270 373 100.0 0.5 960 191 090 886 659 [−05]
2.0 0.5 913 015 230 723 085 [−05]
0.2 0.4 824 781 046 773 954 [−08]

17.42 010 556 10.32 300 145 100.0 0.2 667 837 768 848 479 [−07]
2.0 0.2 667 811 045 194 153 [−07]
0.2 0.7 198 650 559 020 197 [−09]

(3,4,6) 0.62 450 527 0.41 287 135 100.0 0.5 959 047 433 004 562 [+14]
2.0 0.3 133 286 105 045 369 [+04]
0.2 0.1 612 293 542 969 925 [−11]

8.92 934 001 5.97 270 373 100.0 0.1 741 465 133 115 703 [−04]
2.0 0.1 311 556 348 743 337 [−04]
0.2 0.1 427 263 707 660 009 [−12]

17.42 010 556 10.32 300 145 100.0 0.1 312 396 696 573 856 [−08]
2.0 0.1 305 938 614 015 103 [−08]
0.2 0.1 601 541 647 520 373 [−13]

The r1 integral in the right-hand side of Eq. (18) is then
evaluated using Eq. (14).

The integral I (α,β; R) is calculated by using both the
expressions given in Eqs. (17) and (18). All the results
corresponding to different sets of (α,β; R) are given in Table II

which shows excellent agreement among the results except
for some high values of R used in Eq. (17). On the other
hand, Eq. (18) yields excellent results over the complete range
of R. In Eq. (17), a term Rq appears in the numerator that
increases with increase in q. For low values of R, this term is

TABLE II. Values of integral I (α,β; R). Results obtained by using Eqs. (17) and (18) are given in consecutive rows, respectively. The
notation x[y] indicates x × 10y .

α β R I (α,β; R)

0.62 450 527 0.41 287 135 100.0 0.2 910 109 651 677 626 [+9]
0.5 074 905 562 702 974

2.0 0.4 049 645 534 617 721
0.4 049 645 534 617 721

0.2 0.0 760 845 585 264 357
0.0 760 845 585 264 357

8.92 934 001 5.97 270 373 100.0 0.2 617 916 518 793 351 [+602]
0.5 121 558 822 014 390

2.0 0.5 121 558 812 688 812
0.5 121 558 812 688 812

0.2 0.4 595 083 872 393 843
0.4 595 083 872 393 843

17.42 010 556 10.32 300 145 100.0 0.9 419 309 325 371 151 [+872]
0.4 653 623 821 935 131

2.0 0.4 653 623 821 935 052
0.4 653 623 821 935 131

0.2 0.4 588 587 688 120 597
0.4 588 587 688 120 597
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TABLE III. Convergence of the integral I (α,β; R) with respect to the number of terms (q) in the infinite series using Eqs. (17) and (18).
The notation x[y] indicates x × 10y .

I (α,β; R)

α β R q Eq. (17) Eq. (18)

0.62 450 527 0.41 287 135 100 10 −0.3 568 526 587 566 828 [+13] 0.5 068 930 031 430 272
20 −0.3 554 037 122 215 343 [+21] 0.5 074 856 438 054 664
50 −0.2 755 048 215 770 421 [+35] 0.5 074 905 562 626 217

100 −0.2 124 755 543 448 736 [+42] 0.5 074 905 562 702 974
1000 0.2 910 109 651 677 626 [+09] 0.5 074 905 562 702 974

0.2 10 0.0 760 845 585 264 356 0.0 760 845 585 264 357
20 0.0 760 845 585 264 357 0.0 760 845 585 264 357
50 0.0 760 845 585 264 357 0.0 760 845 585 264 357

100 0.0 760 845 585 264 357 0.0 760 845 585 264 357
1000 0.0 760 845 585 264 357 0.0 760 845 585 264 357

17.42 010 556 10.32 300 145 100 10 −0.7 343 514 275 041 944 [+27] 0.4 651 757 934 474 452
20 −0.1 488 071 327 579 564 [+50] 0.4 653 618 680 730 945
50 −0.9 285 235 939 919 110 [+106] 0.4 653 623 821 934 812

100 −0.2 137 812 095 536 411 [+185] 0.4 653 623 821 935 131
1000 −0.2 609 904 279 835 017 [+873] 0.4 653 623 821 935 131

0.2 10 0.2 166 573 622 291 603 0.4 588 585 238 460 869
20 0.4 588 555 852 277 264 0.4 588 587 688 120 596
50 0.4 588 587 688 120 597 0.4 588 587 688 120 597

100 0.4 588 587 688 120 597 0.4 588 587 688 120 597
1000 0.4 588 587 688 120 597 0.4 588 587 688 120 597

balanced by q! in the denominator but for high R, a numerical
instability appears because within the first few terms, Rq

bounces more rapidly than q!. In contrast, a term Rj

j ! e−αR

appears in Eq. (18) [after expanding the r1 integral according to
Eq. (14)] which falls rapidly as q increases due to the presence
of the exponential term. To have a better understanding of the
integrals, we have also checked the convergence of I (α,β; R)
evaluated using Eqs. (17) and (18) by increasing the number
of terms in the infinite series and displayed the convergence
behavior in Table III for R = 100.0 and 0.2 a.u. and two sets
of (α,β). It appears from Table III that for R = 100.0 a.u.
the values derived from Eq. (17) are clearly not acceptable
but for low R, the final results match exactly although the
convergence is slow for Eq. (17). We have finally used Eq. (18)
to calculate the energy eigenvalues in the present work and
taken 1000 terms in the corresponding infinite series to ensure
the desired level of accuracy. In Table IV we have given
the values of integral A(−1,b,c; α,β; R) corresponding to
different sets of parameters. We have further observed that
the integrals [Eq. (18)] corresponding to R = 100 a.u. yield
the same result as obtained by using Eq. (15) for R = ∞. This
is to mention further that all the integrals are checked with
standard mathematical software.

III. RESULTS AND DISCUSSIONS

The energy eigenvalues of He-like C, Al, and Ar in
1sns( 1

S
e) [n =1–3] and 1sn′p( 1

P
o) [n′ =2–4] states have

been calculated within the SCP environment using the IS
potential. We have studied the convergence of the energy
values with respect to the number of terms (N) in the wave

function. Table V shows the convergence behavior of C4+ in
the 1s2( 1

S
e) state for some selected values of R. We have

obtained a similar convergence pattern for all the other ions
and also for the excited states under consideration. The size of
the basis has been extended systematically to N = 161 and 149
for the 1

S
e and 1

P
o states, respectively, with l + m + n = 10

[Eq. (8)]. The convergence of the energy values are obtained at
least up to the sixth significant digits. In fact, for some cases,
e.g., the 1s2( 1

S
e) state of C4+ with R = 0.47 a.u., we have

obtained convergence of energy values up to the eighth decimal
place, as is evident from Table V. The above observation
ensures that the present method can deal with extended basis
sets to yield sufficiently accurate energy values within a finite
limit.

The energy values of He-like C, Al, and Ar in
1sns( 1

S
e) [n = 1–3] and 1sn′p( 1

P
o)[n′ = 2–4] states within

the ion sphere of different radii (R) are displayed in
Tables VI–VIII, respectively. We have also listed the energies
of respective H-like ions in ns (2

S) [n = 1–2] and n′p (2
P )

[n′ = 2–3] states. It is worthwhile to mention that under
one-component plasma approximation, the IS radius for a
two-electron ion would differ from that for a one-electron
ion corresponding to the same plasma electron density. We see
that as ne increases, the energy levels move towards continuum
which is a clear manifestation of the positive nature of the IS
potential. To check the overall behavior of the results, we
have plotted the energy values (−E) of bound 1sns (1

S
e)

[n = 1–3] and 1sn′p (1
P

o) [n′ = 2–4] states of C4+ with
respect to the IS radius (R) in Figs. 1(a) and 1(c), respectively.
It is evident from Figs. 1(a) and 1(c) that the energy values
remain almost unaltered for large enough R while for small

042515-6
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TABLE IV. Values of integral A(a,b,c; α,β; R) with a = −1,b � 0,c � 0. The notation x[y] indicates x × 10y .

(a,b,c) α β R A(−1,b,c; α,β; R)

(−1,0,0) 0.62 450 527 0.41 287 135 100.0 0.5 954 269 203 657 702 [+01]
2.0 0.2 328 753 595 641 012 [+01]
0.2 0.5 410 340 957 954 025 [−01]

8.92 934 001 5.97 270 373 100.0 0.2 871 376 988 672 015 [−01]
2.0 0.2 871 352 649 435 828 [−01]
0.2 0.1 630 927 123 879 263 [−01]

17.42 010 556 10.32 300 145 100.0 0.8 733 921 675 818 471 [−02]
2.0 0.8 733 921 663 803 946 [−02]
0.2 0.7 244 151 319 038 541 [−02]

(−1,3,0) 0.62 450 527 0.41 287 135 100.0 0.6 567 231 700 864 201 [+03]
2.0 0.4 615 410 090 669 881 [+01]
0.2 0.1 352 981 404 883 989 [−03]

8.92 934 001 5.97 270 373 100.0 0.1 048 527 794 880 441 [−02]
2.0 0.1 046 003 446 557 635 [−02]
0.2 0.2 845 303 344 710 229 [−04]

17.42 010 556 10.32 300 145 100.0 0.6 034 893 880 611 726 [−04]
2.0 0.6 034 882 729 963 596 [−04]
0.2 0.8 940 252 471 318 926 [−05]

(−1,6,4) 0.62 450 527 0.41 287 135 100.0 0.1 994 011 581 591 710 [+12]
2.0 0.3 251 278 249 022 441 [+03]
0.2 0.1 201 445 408 496 434 [−08]

8.92 934 001 5.97 270 373 100.0 0.2 402 841 809 704 088 [−02]
2.0 0.1 563 929 754 689 225 [−02]
0.2 0.1 788 104 352 520 599 [−09]

17.42 010 556 10.32 300 145 100.0 0.2 982 994 019 928 102 [−05]
2.0 0.2 960 593 408 759 482 [−05]
0.2 0.4 140 724 390 264 580 [−10]

R they rapidly approach the destabilization limit. Hence the
variation produces a “knee” around some particular value of
R. For higher excited states, this “knee” appears at a higher
value of R. Enlarged views of the destabilization regions for
1sns (1

S
e) [n = 1–3] and 1sn′p (1

P
o) [n′ = 2–4] states of the

C4+ ion are given in Figs. 1(b) and 1(d), respectively. All
other ions also show the same features. Similar behavior of
energy values of He-like ions inside a spherical impenetrable
box (referred to as the “Coulombic sphere” hereinafter) was
reported in a recent publication [53] where the potential
inside the box was purely Coulombic. The comparison
between an IS and a Coulombic sphere having same radius
is interesting as, within an ion sphere, there is a uniform

plasma electron density while in the Coulombic sphere, there
is no plasma. Hence differences between the “pure” (or free)
atomic model and the Coulombic sphere are due to the cutoff,
while differences between the Coulombic sphere and the
IS model are due entirely to the plasma. Therefore, within
the ion sphere, the energy value of the positively charged
ion is modified, as compared to a “pure” ion, due to two
factors:

(1) The environment envisaged by the IS potential which
is governed by plasma electron density and

(2) The truncation of wave function at a finite distance that
generates a pressure on the system.

TABLE V. Convergence of energy values (−E a.u.) of the 1s2( 1
S

e) state of C4+ with respect to number of terms (N) in wave function
within the ion-sphere radius R a.u.

−E for two-electron ions

State N R = 20.0 0.7 0.5 0.47 0.4692

1s2( 1
S

e) 13 31.80 607 622 14.87 985 637 3.40 916 161 0.10 351 773 0.00 534 000
22 31.80 626 559 14.88 059 032 3.40 925 286 0.10 370 540 0.00 553 914
34 31.80 629 082 14.88 061 939 3.40 926 383 0.10 371 810 0.00 555 223
50 31.80 629 351 14.88 062 562 3.40 926 610 0.10 371 980 0.00 555 423
70 31.80 629 412 14.88 062 707 3.40 926 664 0.10 372 017 0.00 555 462
95 31.80 629 431 14.88 062 746 3.40 926 678 0.10 372 026 0.00 555 471

125 31.80 629 439 14.88 062 759 3.40 926 682 0.10 372 029 0.00 555 474
161 31.80 629 443 14.88 062 763 3.40 926 683 0.10 372 029 0.00 555 475
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FIG. 1. (Color online) (a) Variation of eigenenergies (−E) of
bound 1sns(1

S
e) [n = 1–3] states of C4+ with respect to the IS radius

(R). (b) Enlarged view for 1sns(1
S

e) states near destabilization region.
(c) Energies of 1sn′p(1

P
o) [n′ = 2–4] states. (d) Enlarged view for

1sns(1
S

e) states near destabilization region.

In order to assess the effect of each factor on the energy
eigenvalues, we have also studied separately the modification
of energy values of two-electron ions due to the truncation of
the wave function at different radii of the Coulombic sphere.
The ground-state energy of a “free” C4+ ion where the wave
function is infinitely extended is −32.406 247 a.u. whereas
within a Coulombic sphere and ion sphere both having a
radius of 20.0 a.u, the energy values are −32.406 247 and
−31.806 294 a.u., respectively. It shows that for a large box
radius, almost 100% of the shift in the energy is due to
the effect of plasma. The truncation of the wave function
becomes significant when the size of the sphere is reduced.
The effect of the truncation of the wave function on the total
change in energy value can be calculated from �EC

�EIS
× 100%

where �EC = EC − Ef , �EIS = EIS − Ef , Ef = energy of
a “free” ion, EC = energy of the ion inside a Coulombic sphere,
and EIS = energy of the ion within an ion sphere of the same
radius. At a radius of 0.7 a.u., the ground-state energy values
of the C4+ ion within the Coulombic sphere and ion sphere
are −31.192 275 and −14.880 628 a.u., respectively, which
shows almost 7% of the total change of energy comes from
the truncation of the wave function. This effect increases to
22.4% and 26.2% for the truncation radii of 0.5 and 0.4692 a.u.,
respectively.
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FIG. 2. (Color online) Variation of IP and IPD for 1s2(1
S

e) and
1s3p(1

P
o) states of Al11+ with respect to plasma electron density.

A closer look at the results quoted in Tables VI–VIII leads
us further to the following observations.

Decrease in number of excited states

For two-electron ions C4+, Al11+, and Ar16+ we see that
as ne increases, the ions become less bound and also the
number of excited states decreases. For example, C4+ exists
in the ground state up to R = 0.4692 a.u. but the 1s2s( 1

S
e)

state ceases to exist below R = 0.9017 a.u. and 1s3s( 1
S

e)
destabilizes below R = 1.3761 a.u. A similar feature is
observed for all the ions and also for 1

P
o states. For H-like

ions of C, Al, and Ar, the 2s state destabilizes much before 1s

with decrease of R.

Reduction of ionization potential

Ionization potential for a two-electron ion is defined as the
amount of energy required to ionize one electron from the
ground state (1s2). It is observed from Tables VI–VIII for all
the ions that with increase in plasma density, IP decreases
and beyond certain density, the two-electron energy levels
move above the one-electron threshold. We have studied
the variation of IPD of two-electron ions with respect to
ne from the difference of IP within and without (i.e., free
case) the surrounding plasma environment. In Fig. 2, we
have plotted the IP and IPD for Al11+ as a function of
plasma electron density. The energy required to ionize the
outer electron from the 1s3p( 1

P
o) state, i.e., IP for the

1s3p( 1
P

o) state of Al11+ and the corresponding IPD with

respect to ne are also included in Fig. 2. The effect of
surrounding plasma on different two-electron energy levels
should be different and consequently, IPDs should differ from
one configuration to another. It is evident from Fig. 2 that the
present observation corroborates this fact. The two-electron
1
P

o states would give rise to spectral lines via dipole transition
until they merge into the one-electron continuum. For example,
Table VII shows that the 1s3p( 1

P
o) state of Al11+ can

survive up to the density of 8.11 × 1025/cm3 whereas it
crosses the corresponding 1s threshold after the density of
2.21 × 1024/cm3 and consequently, the Heβ line originating
from 1s3p( 1

P
o) → 1s2( 1

S
e) emission is not expected to be

observed after this density. In Table IX, we have listed the
critical electron densities after which different spectral lines of
H-like and He-like Al disappear. The densities are calculated
from the IS radius according to both the SP model and the
EK model of determining IPDs following Eqs. (4) and (5),
respectively. For the Lyβ line of Al12+ and the Heβ line of
Al11+, the present electron densities calculated by using the SP
model are in good agreement with experimental observation
[43]. For disappearance of the Heγ line, the only theoretical
calculation of plasma density is due to Preston et al. [41] where
a possible range of densities is given. No experimental result is
available for comparison in this context. Our results obtained
by using the SP model of IPD indicate that the Heγ line of Al11+

would disappear after a plasma density of 5.0 × 1023/cm3, as
is given in Table IX. We mention that the disappearance of both
Lyβ and Heβ lines are experimentally observed at the density
of 2.21 × 1024/cm3 whereas the Lyβ line should survive more
than the Heβ line. Present results along with Ref. [47] as
depicted in Table IX establish the fact explicitly. A more
accurate experimental measurement is therefore necessary for
proper plasma diagnostics.

In an earlier experiment, Nantel et al. [32] observed
the Heα,Heβ , and Heγ lines of C4+ at plasma density 1.5 ×
1021/cm3. In this experiment the densities corresponding to the
disappearance of such He-like lines are not explored. However,
Table IX shows that the He-like lines of C4+ vanish well
above the density of 1.5 × 1021/cm3. Hence, the existence
of such He-like lines of C4+ at the density 1.5 × 1021/cm3

as observed by Nantel et al. [32] are consistent with present
calculations. Similar comparisons have been done with other
earlier experiments of Saemann et al. [33] and Woolsey et al.
[34] for the spectral lines of Al11+ and Ar16+, respectively,
and the present results are in agreement with the experiments.
Accurate measurement like the Orion laser experiment [43] is
necessary to confirm the present theoretical predictions for the
disappearance of the spectral lines of C4+ and Ar16+.

Quasibound states of two-electron ions

Quasibound states or continuum bound states may be found
in continuous parts of the spectra for electronic confinement
under different potentials [61] and have also been observed ex-
perimentally [62]. These states have great structural similarity
with the discrete energy levels. For a two-electron ion, the
ground state and all singly excited energy levels, in general,
lie below the first ionization threshold. Tables VI–VIII show
that for high values “R” (i.e., almost free case), this feature is
maintained for all the ions but as R decreases, all singly excited
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TABLE IX. Critical plasma electron densities after which spectral lines of hydrogenlike and heliumlike Al disappear. Densities are obtained
from IS radii according to both the SP model [Eq. (4)] and the EK model [Eq. (5)] for IPDs. The notation x[y] indicates x × 10y .

Critical plasma electron density (per cm3)

Spectral
Present results Other results

Z line SP modela EK modelb Experiment Theory

6 Lyα 1.85[24] 1.19[24]
Lyβ 8.32[22] 2.77[22]
Heα 8.05[23] 1.61[23]
Heβ 5.15[22] 1.03[22]
Heγ 1.88[22] 3.76[21]

13 Lyα 3.52[25] 2.71[24]
Lyβ 3.31[24] 2.55[23] 2.2[24]c 2.93[24]d

2.64[24]–3.3[24]e

Heα 2.43[25] 2.53[24]
Heβ 2.21[24] 1.84[23] 2.2[24]c 2.44[24]d

1.98[24]–2.64[24]e

Heγ 5.00[23] 4.16[22] 6.60[22]–1.32[23]e

18 Lyα 1.24[26] 6.90[25]
Lyβ 1.22[25] 6.78[23]
Heα 7.51[25] 4.42[25]
Heβ 7.64[24] 4.49[23]
Heγ 2.11[24] 1.25[23]

aReference [39].
bReference [40].
cReference [43].
dReference [47].
eReference [41].

states of two-electron ions become less bound more rapidly
than the respective one-electron ion. For example, at R = 20.0
a.u. the energy values of C4+ as reported in Table VI lie below
the 1s threshold of C5+. At R = 5.0 a.u. the 1s4p( 1

P
o) state

moves above the 1s threshold but lies below the 2s threshold.
Similarly, at R = 2.0 a.u. the 1s3s( 1

S
e) and 1s3p(1P o) states

lie above the 1s threshold and below the 2s threshold. At
R < 1.7 a.u. the 2s level of C5+ destabilizes and we observe a
well-converged (up to 7th significant digits) energy level of the
1s4p( 1

P
o) state of C4+ embedded in one-electron continuum.

A similar feature is obtained for other ions also and is being
reported in SCP.

Incidental degeneracy and level crossing

For a free two-electron ion, the energy value of the
1s2s( 1

S
e) state is more negative than the 1s2p( 1

P
o) state.

Tables VI–VIII establish this fact for high values of R

corresponding to all the two-electron ions. For example, the
1s2s( 1

S
e) level of C4+ lies below the 1s2p( 1

P
o) level for the

TABLE X. Thermodynamic pressure on the ground state of one- and two-electron ions within the ion sphere. The conversion factor is as
follows: 1 a.u. of pressure = 2.9421912(13) Pa. The notation x[y] indicates x × 10y .

Plasma
Pressure (Pa)

Plasma
Pressure (Pa)

Plasma
Pressure (Pa)

density C4+ C5+ density Al11+ Al12+ density Ar16+ Ar17+

8.05(20) 0.1755[09] 0.8778[09] 2.21(21) 0.4829[09] 0.2414[10] 3.22(21) 0.7024[09] 0.3512[10]
6.44(21) 0.2807[10] 0.7019[10] 1.77(22) 0.7725[10] 0.1931[11] 2.58(22) 0.1123[11] 0.2809[11]
5.15(22) 0.4478[11] 0.5603[11] 5.17(22) 0.3217[11] 0.5630[11] 2.06(23) 0.1797[12] 0.2247[12]
2.39(23) 0.3432[12] 0.2581[12] 2.21(24) 0.4806[13] 0.2406[13] 3.22(24) 0.7007[13] 0.3504[13]
1.57(24) 0.4130[13] 0.1666[13] 1.77(25) 0.7580[14] 0.1899[14] 2.58(25) 0.1113[15] 0.2785[14]
6.44(24) 0.2779[14] 0.6681[13] 5.17(25) 0.3095[15] 0.5438[14] 2.06(26) 0.1729[16] 0.2818[15]
1.88(25) 0.1540[15] 0.1794[14] 1.41(26) 0.1178[16] 0.8791[14] 3.22(27) 0.9657[17] 0.3184[16]
5.15(25) 0.9278[15] 0.1772[14] 6.56(26) 0.1228[17] 0.1022[16] 4.42(27) 0.1667[18] 0.4212[16]
6.21(25) 0.1297[16] 0.9241[14] 1.28(27) 0.3912[17] 0.1489[16] 5.15(27) 0.2180[18] 0.8701[16]
6.23(25) 0.1304[16] 0.1123[15] 1.419(27) 0.4678[17] 0.2453[16] 5.24(27) 0.2241[18] 0.8897[16]
6.24(25) 0.1309[16] 0.1164[15] 1.424(27) 0.4710[17] 0.2466[16] 5.25(27) 0.2248[18] 0.8916[16]
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IS radius down to R = 2.0 a.u. At R = 1.5 a.u., the 1s2s( 1
S

e)
state moves above the 1s2p( 1

P
o) level. These results show

that an “incidental degeneracy” [55] has taken place for the
1s2s( 1

S
e) and 1s2p( 1

P
o) states of C4+ at some value of R

between 1.5 and 2.0. a.u. and then a “level crossing” occurs
between two states having different symmetry properties.
The phenomenon of incidental degeneracy was reported in
the case of the shell-confined hydrogen atom by Sen [55]
where two initially nondegenerate states are brought to the
same energy level by adjusting external parameters. For a
two-electron ion, we report incidental degeneracy within an
SCP environment. After the level crossing, the 1s2s( 1

S
e)

state of C4+ destabilizes (at R = 0.9017 a.u.) much before
the 1s2p( 1

P
o) state (at R = 0.797 a.u.). Similarly, for the

1s3s( 1
S

e) and 1s3p( 1
P

o) states of C4+, incidental degeneracy
and subsequent level crossing are observed at a value of R

lying somewhere between 5.0 and 3.0 a.u. We observe similar
phenomena for other ions also. For the 2s and 2p states of
H-like ions embedded in SCP, “incidental degeneracy” and
“level crossing” phenomena are evident from Tables VI–VIII
and are being reported here.

The thermodynamic pressure experienced by H-like and
He-like C, Al, and Ar in their respective ground states have
been calculated for different values of the IS radius R using
Eq. (11) and the results are given in Table X. It is clear from
Table X that as ne increases, the pressure upon the ion increases
and the ion moves towards destabilization. We observe that
for a low value of ne, the pressure upon the one-electron
ion is higher than the respective two-electron ion and after
a certain increase of ne, the pressure on the two-electron
ion exceeds the pressure experienced by the corresponding
one-electron ion. With a view to studying the variation of
thermodynamic pressure (P ) with respect to the IS volume (V )
under an adiabatic expansion, we have tried to fit the results for
the two-electron ions obtained from the present calculations
according to the ideal gas relation,

PV γ = constant or lnP + γ lnV = constant, (19)

where γ is the ratio of two specific heats. From a least square
fit of the lnP vs lnV plot, the value of γ comes out to be

close to 1.4 for all the two-electron ions. To be precise, for
C4+, Al11+, and Ar16+, the values of γ are 1.41, 1.37, and
1.37, respectively.

IV. CONCLUSION

Accurate analytical evaluation of the two-electron corre-
lated integrals in Hyllerass coordinates within a finite limit
has been performed. The intricacies of such calculations have
been discussed in detail and the general applicability of these
integrals has been established for arbitrary values of physically
acceptable parameters. This methodology has potential to
be useful for evaluation of the energy values and other
spectral properties for three-body ionic and exotic systems
placed within different external confinements such as strongly
and moderately coupled plasma, fullerene cages, barrier
potential, potential well, etc. With the recent advancement
in experimental technique, the present methodology becomes
relevant for calculating accurate plasma electron density from
the spectral analysis of hydrogen and heliumlike ions. We
conclude that, within an average atom approach, the ion-sphere
potential where the electron density is calculated by using the
SP model of IPDs provides a realistic picture of ions embedded
in the SCP environment. The present nonrelativistic results
reported here can be useful for plasma diagnostics and the
nonrelativistic energy values can serve as a benchmark for
future calculations to estimate relativistic and QED effects on
two-electron ions within the finite domain.
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