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Three-body effects in Casimir-Polder repulsion
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(Received 21 February 2015; published 28 April 2015)

In this paper we study an archetypical scenario in which repulsive Casimir-Polder forces between an atom or
molecule and two macroscopic bodies can be achieved. This is an extension of previous studies of the interaction
between a polarizable atom and a wedge, in which repulsion occurs if the atom is sufficiently anisotropic and
close enough to the symmetry plane of the wedge. A similar repulsion occurs if such an atom passes a thin
cylinder or a wire. An obvious extension is to compute the interaction between such an atom and two facing
wedges, which includes as a special case the interaction of an atom with a conducting screen possessing a slit,
or between two parallel wires. To this end we further extend the electromagnetic multiple-scattering formalism
for three-body interactions. To test this machinery we reinvestigate the interaction of a polarizable atom between
two parallel conducting plates. In that case, three-body effects are shown to be small and are dominated by three-
and four-scattering terms. The atom-wedge calculation is illustrated by an analogous scalar situation, described
in the Appendix. The wedge-wedge-atom geometry is difficult to analyze because this is a scale-free problem.
However, it is not so hard to investigate the three-body corrections to the interaction between an anisotropic atom
or nanoparticle and a pair of parallel conducting cylinders and show that the three-body effects are very small and
do not affect the Casimir-Polder repulsion at large distances between the cylinders. Finally, we consider whether
such highly anisotropic atoms needed for repulsion are practically realizable. Since this appears rather difficult
to accomplish, it may be more feasible to observe such effects with highly anisotropic nanoparticles.
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I. INTRODUCTION

It is quite remarkable that after nearly seven decades, inter-
est in the so-called Casimir effect [1] remains so high. There
have been many theoretical and experimental developments
in the past few years. For a review of the status of quantum
vacuum energy phenomena in general, the reader is referred
to Ref. [2].

One of the hottest topics in the field is the subject of
repulsive Casimir effects. This could have a major impact
in nanotechnology, where at distances well below 1 μm,
Casimir forces can play a dominating role. Repulsion can
occur between electric and magnetic bodies, between electric
bodies separated by a medium with an intermediate value of
permittivity, or purely due to the geometry of the two bodies.
The geometric repulsion that was demonstrated in Ref. [3]
was based on numerical methods. A great deal of effort has
been given to understanding the underlying analytical structure
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of repulsive effects [4–6]. A brief review, with references,
is provided in Ref. [7]. For further work on repulsion see
Refs. [8–10].

In this paper we further develop the multiple-scattering
approach to include three-body effects, which was introduced
in the scalar context in Refs. [11–13], in particular in the
context of Casimir repulsion. The electromagnetic formulation
is in turn based on Green’s dyadics, which have a long history.
The Green’s dyadic approach to computing the Casimir effect
was first proposed in Refs. [14,15]. This was a tensorial gen-
eralization of the scalar Green’s-function variational approach
Schwinger had given a few years earlier [16]. All of this was
in the direct line of evolution to what is now referred to as the
multiple-scattering method.

Although it is well appreciated that Casimir forces are not
additive, most work on such interactions has concentrated on
forces between two bodies. However, the multiple-scattering
formalism is easily generalized to include three-body inter-
actions. In Sec. II of this paper we develop the three-body
formalism for the electromagnetic case. This is relevant to
computing the force between a polarizable atom and two
coplanar half planes, forming a slit, for example. As a simple
illustration of the formalism, we reexamine, in Sec. III, the
interaction between an atom and two parallel conducting
plates, first considered by Barton [17]. Naturally, the two-body
forces dominate when the atom is near either of the plates and
three-body effects become significant at the several percent
level only when the atom is roughly equidistant from the
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two plates, but then the force is quite small. In Ref. [18]
we examined the nonmonotonicity that can arise when two
polarizable atoms are near each other and close to a conducting
plate. These are reminiscent of effects seen between two
macroscopic objects and a wall [19,20]; our work generalized
that given in Ref. [21]. We broke up the three-body terms
into three- and four-scattering contributions; although both
are comparable at short distances, as expected, the former
dominate for atoms far from the plate. In order to work out the
three-body effects for an atom interacting with two half planes,
constituting a slit in a conducting plane or, more generally,
facing wedges, in Sec. IV A we work out the scattering
matrix for a single wedge and then in Sec. IV B apply that to
recalculate the two-body repulsion found in Ref. [4]. Because
of the complexity of the calculation, a scalar analog is also
considered in the Appendix. We then go on to consider three-
body effects between a polarizable atom and a pair of parallel
conducting cylinders in Sec. V. In Ref. [5] we showed that for
an anisotropic atom moving along a line perpendicular to but
not intersecting a perfectly conducting cylinder and polarizable
along that same line, a repulsive force occurs near the cylinder,
provided the distance of closest approach is sufficiently large
compared to the radius of the cylinder. (The same does not
occur for a sphere.) Here we consider the three-body effects
due to a second cylinder parallel to the first, so the pair
forms an aperture, perpendicular to which the anisotropic atom
moves. We adapt our formalism to this case, where a multipole
expansion is also possible, and show that when the distance
between the cylinders is sufficiently large, repulsion is not
affected by the three-body corrections since the latter are very
small. In Sec. VI we present a calculation that suggests that
highly anisotropic atoms, necessary to exhibit the repulsive
effects we are considering, may be beyond reach. Therefore,
as in the numerical calculations of Ref. [3], it may be more
appropriate to consider the interaction with highly anisotropic
conducting nanoparticles, such as needles, as suggested in
related work on negative Casimir-Polder entropy [22].

II. THREE-BODY CASIMIR ENERGY

The multiple-scattering formulation has proved exception-
ally useful in computing Casimir energies for complex config-
urations. It is usually presented in terms of potentials, where
the potential stands in for the deviation of the permittivity
from its vacuum value, for instance. Here, however, we
wish from the outset to consider perfect conductors, so we
give the formulation entirely in terms of scattering matrices.
In particular, we wish to analyze three-body effects. The
formalism we apply here appears in many places; recent
examples are Refs. [22,23]. We use natural units, with � =
c = 1, and Heaviside-Lorentz electromagnetic units, except
for the definition of the polarizability.

The quantum vacuum energy, with the bulk vacuum energy
subtracted, is in general given by

E = i

2
Tr ln ��−1

0 , (2.1)

where the Tr symbol represents a trace over tensor indices as
well as spatial coordinates. Here �0 is the free Green’s dyadic,

which for a given frequency ω can be written as

�0(r,r′) = (1ω2 + ∇∇)G0(|r − r′) (2.2)

in terms of the free Helmholtz Green’s function

G0(R) = ei|ω|R

4πR
, R = |r − r′|. (2.3)

The full Green’s dyadic � satisfies the same differential
equation as the free Green’s dyadic

�−1
0 � = 1, (2.4)

where

�−1
0 = 1

ω2
∇ × ∇ × −1 = 1

ω2
[∇∇ − (∇2 + ω2)1]. (2.5)

Here we have adopted a matrix notation for both the tensor
indices and the spatial coordinates, so

1 = 1δ(r − r′), (2.6)

where on the right 1 refers to the tensor indices only. The
conducting surfaces S appear through boundary conditions on
the Green’s dyadic

n̂ × �|S = 0, (2.7)

where n̂ is the outward normal to the surface at the point in
question. We may define the scattering matrix T by

� = �0 + �0T�0, (2.8)

so that

T = −�−1
0 + �−1

0 ��−1
0 . (2.9)

We turn to the quantum interaction of three bodies. It seems
easiest to start with the situation where the bodies may be
described by potentials Vi , i = 1, 2, 3, and then write the result
in a form in which only the T operators appear, so it applies to
the conducting boundary problem, defined by Eq. (2.7). The
total potential is V = V1 + V2 + V3 and the vacuum energy
is given by the trace-log of

��−1
0 = (1 − �0V)−1 (2.10)

or

E = − i

2
Tr ln(1 − �0V). (2.11)

It is easy to see that

1 − �0(V1 + V2 + V3)

= (1 − �0V1 − �0V2)

× [1 − (1 − �1V2)−1�1V2�1V3(1 − �1V3)−1]

× (1 − �0V1)−1(1 − �0V1 − �0V3). (2.12)

Here we have introduced the Green’s dyadic belonging to
potential i alone,

�i = (1 − �0Vi)
−1�0. (2.13)

In Eq. (2.12) the factors before and after the square brackets
refer to only one- and two-body interactions (the latter
referring to interactions between bodies 1 and 2 and between
1 and 3, respectively), so the two-body interactions between 2
and 3 and the three-body interactions are all contained in the
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quantity in square brackets. Now, in terms of the potential, the
corresponding scattering matrix is

Ti = Vi(1 − �0Vi)
−1. (2.14)

Introducing the modified scattering matrix defined by Shajesh
and Schaden [13],

T̃ = T�0, (2.15)

and using the cyclic property of the trace, we find the two- and
three-body terms

E23 = − i

2
Tr ln(1 − T̃2T̃3), (2.16)

which is sometimes called the T GT G formula, and

E123 = − i

2
Tr ln{1 − X23[X21T̃2(1 + T̃1)X31

×T̃3(1 + T̃1) − T̃2T̃3]}, (2.17)

where

Xij = (1 − T̃iT̃j )−1. (2.18)

Expression (2.17) has a rather evident geometrical interpre-
tation in terms of multiple scattering off the three objects.
This is not written in as symmetrical a form as in Ref. [13],
but is somewhat simpler, particular for the Casimir-Polder
applications that follow, where body 1 represents the atom,
and so is treated weakly.

III. POLARIZABLE ATOMS BETWEEN PARALLEL
CONDUCTING PLATES

As a simple check of the machinery developed in the
previous section, we revisit the calculation of the interaction
energy of an anisotropically polarizable atom between parallel
conducting plates, a geometry first analyzed by Barton [17].
Since we know the Green’s dyadic � for parallel plates,
it is easy to derive the interaction energy from the general
Casimir-Polder (CP) formula

ECP = −
∫ ∞

−∞
dζ Tr α · �, (3.1)

where the integration is over imaginary frequency ω → iζ .1

Here the (in general, anisotropic) polarizability of the atom
is α. In the following we assume that α is independent of
frequency, i.e., we are working in the static approximation.
The interaction energy for one conducting plate at z = 0, one
at z = a, and the atom at z = Z, 0 < Z < a, is

ECP = α11 + α22 − α33

4πa4
ζ (4)

− tr α

8πa4
[ζ (4,Z/a) + ζ (4,1 − Z/a)] (3.2)

1This replacement requires knowledge of the analytic properties
of the integrand. There can be serious subtleties involved in this
Euclidean transformation; see, for example, Ref. [24]. See also
Ref. [25].

in terms of the Hurwitz ζ function.2 Here the two-body
interactions between the atom and either plate are isolated
by extracting the parts singular as Z → 0 or Z → a:

ζ (4,Z/a) =
(

a

Z

)4

+ ζ (4,1 + Z/a),

(3.3)

ζ (4,1 − Z/a) =
(

a

a − Z

)4

+ ζ (4,2 − Z/a).

The total Casimir-Polder energy is the sum of two-body and
three-body terms

ECP = E12 + E13 + E123, (3.4)

where 1 denotes the atom, 2 the lower plate, and 3 the upper
plate. Here

E12 = − tr α

8πZ4
, E13 = − tr α

8π (a − Z)4
, (3.5a)

and

E123 = α11 + α22 − α33

4πa4
ζ (4)

− tr α

8πa4
[ζ (4,1 + Z/a) + ζ (4,2 − Z/a)]. (3.5b)

Note that the first term in E123 is independent of Z, so
it does not contribute to the Casimir-Polder force on the
atom, but is a Casimir-Polder correction to the Casimir force
between the plates. The two-body energies overwhelmingly
dominate the Casimir-Polder interaction, as shown in Fig. 1.
For isotropic atoms, the largest three-body correction is only
a 0.8% reduction at the midpoint between the plates, where
the energy is very small. For atoms only polarizable parallel
to the z direction the three-body correction is an 8% increase
at the place where the energy is the smallest, while for purely
transversely polarizable atoms, the three-body correction is a
6% reduction at the midpoint.

A. Multiple-scattering calculation

Since in more general situations we do not have an
exact solution available, we want to calculate the three-body
corrections (3.5b) using the multiple-scattering formula (2.17).
For this purpose, we need to compute the scattering operators
for the three bodies.

The scattering matrix for the atom is simply

T1(r,r′) = V1(r,r′) = 4παδ(r − R)δ(r − r′), (3.6)

where R = (0,0,Z) is the position of the atom. The free
electromagnetic Green’s dyadic can be written as

�0(r − r′) =
∫

(dk⊥)

(2π )2
eik⊥·(r−r′)⊥γ 0(z,z′), (3.7)

2The particular combinations of Hurwitz ζ functions occurring here
and in the following are striking. Such combinations occur in several
places, for instance, when considering the Casimir energy for two
parallel plates in D-dimensional space-times, where the argument
4 is replaced by D. Two of the first works in this direction are
Refs. [26,27]. See also Ref. [28]. Related structures appear for the
theory of the piecewise uniform string [29–31].
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FIG. 1. (Color online) Three-body contributions to the Casimir-
Polder interaction of an anisotropically polarizable atom between
two parallel polarizable plates. Plotted is the ratio of the three-body
contribution relative to the total energy r = E123/ECP. The three-body
contributions are generally very small. They become appreciable
only far from both plates, where the Casimir-Polder energy is very
small. Plotted is the ratio for isotropic atoms (middle curve), atoms
polarizable only in the direction perpendicular to the plates (top
curve), and atoms polarizable only parallel to the plates (bottom
curve). In the case when only αzz �= 0, the sign of the three-body
correction is the same as that of the two-body term.

where

γ 0(z,z′) = (E + H)
1

2κ
e−κ|z−z′ |, (3.8)

with the usual abbreviation κ =
√

k2 + ζ 2. Here E and H
are matrices corresponding to the transverse electric (TE) and
transverse magnetic (TM) modes

E = −ζ 2

⎛
⎜⎝

s2 −cs 0

−cs c2 0

0 0 0

⎞
⎟⎠ ,

(3.9)

H(z,z′) =

⎛
⎜⎝

c2∂z∂z′ cs∂z∂z′ ikc∂z

cs∂z∂z′ s2∂z∂z′ iks∂z

−ikc∂z′ −iks∂z′ k2

⎞
⎟⎠ .

Here k2 = k2
⊥ and c (s) is the cosine (sine) of the angle between

the direction of k⊥ and the x axis, with c = kx/k and s = ky/k.
The polarization operators are transverse, in the sense that

ik⊥ · H + ∂zẑ · H = 0, (3.10)

and similarly for E. Thus the modified scattering matrix for
the atom is

T̃1(r,r′) = 4παδ(z − Z)δ(r⊥)
∫

(dk⊥)

(2π )2
eik⊥·(r−r′)⊥

× (E + H)(z,z′)
1

2κ
e−κ|z−z′ |. (3.11)

The following composition properties of the E and H operators
are easily checked:

EH = 0, (3.12a)

EE = −ζ 2E, (3.12b)

H(z,z′)H(z′′,z′′′) = (k2 + ∂z′∂z′′ )H(z,z′′′). (3.12c)

For a single plate, say, a conducting plate 2 at z = 0, we
have the reduced Green’s dyadic in the form

γ = EgE + HgH , (3.13)

where

gE,H (z,z′) = g0(z,z′) ∓ 1

2κ
e−κ(|z|+|z′ |) ×

{
1
sgn(z)sgn(z′),

g0(z,z′) = 1

2κ
e−κ|z−z′ |. (3.14)

Then the reduced modified scattering matrix is

t̃2(z,z′) = γ −1
0 (γ − γ 0)(z,z′). (3.15)

This is evaluated by using the transverse property of E and H
[hence, the vector Helmholtz operator reduces to −∇2 + ζ 2;
see Eq. (2.5)] and(

− d2

dz2
+ κ2

)
e−κ|z| = 2κδ(z), (3.16a)

(
− d2

dz2
+ κ2

)
sgn(z)e−κ|z| = 2δ′(z)e−κ|z|. (3.16b)

Thus the modified scattering matrix for a conducting plate
at z = 0 is

t̃2(z,z′) = 1

ζ 2

[
E(z,z′)δ(z)e−κ|z′|

+ H(z,z′)
1

κ
δ′(z)e−κ|z|sgn(z′)e−κ|z′|

]
. (3.17)

However, because δ′(z) is an instruction to integrate by parts
and evaluate at z = 0, which action is on the exponential
propagators occurring in every case, we can use, as in Ref. [22],

t̃2(z,z′) = 1

ζ 2
(E − H)(z,z′)δ(z)e−κ|z′|. (3.18)

Then it is easy to see that the two-body interaction energy
between the atom and the plate is as expected:

E12 = i

2
Tr T̃1T̃2 = − tr α

8πZ4
. (3.19)

B. Casimir-Polder interaction between an atom and two
parallel conducting plates

The three-body interaction is worked out by simplifying
the multiple-scattering formula (2.17) for the case when there
is only one interaction with the atom, since that coupling is
always weak:

E123 = i

2
Tr X23(T̃2T̃1T̃2T̃3 + T̃2T̃3T̃1T̃3

+ T̃2T̃1T̃3 + T̃2T̃3T̃1), (3.20)

where the T̃ operators are given in Sec. III A. Let us look at
the E and H parts separately. For the TE part,

X23E = E
1

1 − e−2κa
δ(z), (3.21)
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so

ETE
123 = 1

4π2

∫
dζ (dk⊥) tr α

(
− E

ζ 2

)
e−2κa

1 − e−2κa

(
− ζ 2

2κ

)

× [
e−2κZ + e−2κ(a−Z) − 2

]
, (3.22)

where integrating over the directions of k⊥ gives for the trace

tr α

(
− E

ζ 2

)
→ 1

2
(α11 + α22). (3.23)

Thus the TE contribution is

ETE
123 = −α11 + α22

12π

∫ ∞

0
dκ κ3 1

e2κa − 1

× [ − 2 + e−2κZ + e−2κ(a−Z)
]

= −α11 + α22

32πa4
[−2ζ (4) + ζ (4,1 + Z/a)

+ ζ (4,2 − Z/a)]. (3.24)

The TM contribution is similarly worked out, with the result

ETM
123 = − 1

2π

∫ ∞

0

dκ κ3

e2κa − 1

×
{

α11 + α22

2

[
e−2κZ + e2κ(a−Z) − 2

]

+ 2

3
α33

[
e−2κZ + e−2κ(a−Z) + 2

]}

= −3(α11 + α22)

32πa4

× [−2ζ (4) + ζ (4,1 + Z/a) + ζ (4,2 − Z/a)]

− α33

8πa4
[2ζ (4) + ζ (4,1 + Z/a) + ζ (4,2 − Z/a)].

(3.25)

Adding this to the TE contribution (3.24) gives the three-body
energy (3.5b).

FIG. 2. (Color online) Three-body contribution to the Casimir-
Polder interaction of an isotropically polarizable atom between two
parallel polarizable plates. The interaction energy is given in units of
α/a4. The upper dotted horizontal line is the three-scattering approx-
imation, the lower dashed curve is the four-scattering approximation,
and the upper solid (red) curve is the sum of these two contributions,
which is only slightly above the the full three-body energy (solid blue
curve).

The three-body corrections are dominated by the three- and
four-scattering contributions, given by the explicit scattering
terms in Eq. (3.20), with the multiple-reflection quantity X23

set equal to 1. That translates into replacing the ζ functions in
Eq. (3.5b) by their leading terms ζ (4) → 1 and ζ (4,x) →
1/x4. Figure 2 compares the exact three-body corrections
to the leading three- and four-scattering approximations. (It
is geometrically obvious why the odd-scattering terms give
contributions that are independent of the position of the atom,
because the path length is then an integer multiple of the plate
separation.)

IV. CASIMIR-POLDER INTERACTION BETWEEN
AN ATOM AND A WEDGE

Our goal had been to compute the three-body corrections
for an atom near an aperture created by two facing wedges,
as shown in Fig. 3. Here we have two parallel conducting
wedges, with opening angles β, whose apexes are separated
by a distance 2X. As both interior wedge angles go to
zero, the situation reduces to two conducting half planes,
lying in the same plane, with a gap between them. The
Casimir-Polder interaction between the two wedges and an
anisotropically polarizable molecule, located at coordinates ρ

and φ relative to the apex of one wedge, is to be computed. In
particular, we wish to study the three-body interaction, which
involves scattering off all three objects, as a correction to
the more elementary calculation of the interaction between
the atom and a single wedge, which is given in Ref. [4].
For the latter, repulsion can be achieved for the angle φ

sufficiently close to π , provided β is smaller than 108◦ =
1.88 rad.

A. Scattering matrix for a perfectly conducting wedge

In Ref. [4] we gave the Green’s dyadic for a single perfectly
conducting wedge, in terms of polar coordinates based at a
point on the apex of the wedge. We write this most conveniently
in terms of the quantity κ =

√
k2 + ζ 2, where ζ = −iω is the

imaginary frequency and the wave number in the longitudinal
direction or z direction, the direction perpendicular to the plane
of the figure, is k. With θ defined as the angle from the top
surface of the wedge, that Green’s dyadic is (the prime on the
summation sign is an instruction to count the m = 0 term with

X

•

ρ

β

θ

φ

FIG. 3. Two facing conducting wedges, with an anisotropically
polarizable atom passing along a line perpendicular to the symmetry
plane of the wedges.
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half weight)

�(r,r′) = 2p

π

∞∑
m=0

′
∫ ∞

−∞

dk

2π

× [E(r,r′) cos mpθ cos mpθ ′

+ H(r,r′) sin mpθ sin mpθ ′]eik(z−z′)

× Imp(κρ<)Kmp(κρ>)

−κ2
. (4.1)

Here ρ> (ρ<) is the greater (lesser) of ρ and ρ ′ and p =
π/(2π − β). The electric and magnetic polarization dyadic
operators are

E(r,r′) = −
(

ρ̂
1

ρ
∂θ − θ̂∂ρ

) (
ρ̂ ′ 1

ρ ′ ∂θ ′ − θ̂ ′∂ρ ′

)
(∇2

⊥ − k2)

= −ζ 2(ẑ × ∇⊥)(ẑ × ∇′
⊥)

= −∇2(ẑ × ∇⊥)(ẑ × ∇′
⊥), (4.2a)

H(r,r′) =
[
ik

(
ρ̂∂ρ + θ̂

1

ρ
∂θ

)
− ẑ∇2

⊥

]

×
[
−ik

(
ρ̂ ′∂ρ ′ + θ̂ ′ 1

ρ ′ ∂θ ′

)
− ẑ∇′2

⊥

]

= (ik∇⊥ − ẑκ2)(−ik∇′
⊥ − ẑκ2)

= [∇ × (∇ × ẑ)][∇′ × (∇′ × ẑ)]. (4.2b)

[Here the polarization operators differ from those given
previously in Eq. (3.9) by the replacements E → −∇2

⊥E and
H → −∇2

⊥H. For a further discussion of the properties of the
polarization operators, see Ref. [23].] In the second forms in
Eq. (4.2) we have used the modified Bessel equation, that is,
for either modified Bessel function

(−∇2
⊥ + κ2)eiν(θ−θ ′) ×

{
Iν(κρ)
Kν(κρ) = 0. (4.3)

In the following we need the composition properties of these
operators, analogous to those in Eq. (3.12):

E(r,r′)H(r′′,r′′′) = H(r,r′)E(r′′,r′′′) = 0, (4.4a)

E(r,r′)E(r′′,r′′′) = E(r,r′′′)∇′2
⊥ (∇′′2

⊥ − k2)

→ κ2ζ 2E(r,r′′′), (4.4b)

H(r,r′)H(r′′,r′′′) = H(r,r′′′)∇′2
⊥ (∇′′2

⊥ − k2)

→ κ2ζ 2H(r,r′′′), (4.4c)

where we understand that after differentiation, the intermediate
coordinates r′ and r′′ are set equal and integrated over; that is,
a spatial matrix multiplication is understood.

To construct the modified scattering matrices, we need the
free Green’s dyadic, which we can write as Eq. (2.2), where
a representation for the scalar Helmholtz Green’s function in
cylindrical coordinates is

G0(r − r′) =
∫ ∞

−∞

dk

2π
eik(z−z′) 1

2π

∞∑
m=−∞

eim(θ−θ ′)

× Im(κρ<)Km(κρ>). (4.5)

It is easy to verify that in terms of the mode operators,

�0(r,r′) = − 1

∇2
⊥

(E + H)(r,r′)G0(r − r′). (4.6)

Using the above, we find the modified scattering matrix for the
atom to be

T̃atom(r,r′) = 4παδ(r − R)(E + H)(r,r′)
∫

dk

2π
eik(z−z′)

× 1

2π

∞∑
m=−∞

eim(θ−θ ′) Im(κρ<)Km(κρ>)

−κ2
.

(4.7)

To work out the T̃ matrix for the wedge, we start from Eq. (2.9),

T̃ = �−1
0 (� − �0). (4.8)

The inverse free Green’s function is the differential operator
given in Eq. (2.5). It is easy to check that

�−1
0 E = E

κ2 − ∇2
⊥

ω2
, (4.9a)

�−1
0 H = H

κ2 − ∇2
⊥

ω2
. (4.9b)

The Helmholtz operator appearing as the last factor here would
annihilate the scalar Green’s functions appearing in Eq. (4.1),
except on the boundaries, where the normal derivatives give
contributions to the scattering matrix that exist entirely on
the surface of the wedge. This is precisely the same as what
occurred for the planes in Sec. III A [see Eq. (3.16)]. Here,
because we are considering the region exterior to the wedge,
we interpret the angular mode functions as (θ ∈ [0,�])

cos mpθ → cos(mpθ )η(θ )η(� − θ ), (4.10a)

sin mpθ → sin(mpθ )η(θ )η(� − θ ), (4.10b)

where � = 2π − β is the exterior wedge angle, and the step
function is defined by

η(x) =
{

1, x > 0
0, x < 0.

(4.11)

Then we see that[
∂2
θ + (mp)2

]
cos mpθ = δ′(θ ) − (−1)mδ′(θ − �),

(4.12)[
∂2
θ + (mp)2

]
sin mpθ = mp[δ(θ ) − (−1)mδ(θ − �)].

From this we can immediately read off the modified scattering
matrix for the wedge:

T̃wedge(r,r′) = −2p

π

∞∑
m=0

′
∫ ∞

−∞

dk

2π

1

ζ 2

×{E(r,r′)[δ′(φ − β/2) − (−1)mδ′(φ + β/2)]

× cos mp(φ′ − β/2)

+mpH(r,r′)
[
δ(φ − β/2) − (−1)mδ(φ + β/2)

]
× sin mp(φ′ − β/2)}eik(z−z′)

× 1

κ2ρ2
Imp(κρ<)Kmp(κρ>), (4.13)
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where we have shifted to the angular variable φ measured
from the symmetry plane of the wedge, as shown in Fig. 3, φ,
φ′ ∈ [β/2,2π − β/2], and the δ functions are understood to
be periodically extended, with period 2π .

B. Two-body calculation

We now use this multiple-scattering formalism, particularly
Eq. (2.16), to reproduce the results found in Ref. [4]. Putting
together the scattering matrix for the atom (4.7) and that for the
wedge (4.13), we obtain the expression for the Casimir-Polder
energy

Eaw = −i
p

4π3
tr α

∫
dζdk

κ2

∫ ∞

0

dρ ′

ρ ′

∞∑
m=−∞

∞∑
m′=−∞

× [mE(r,r′′) − m′pH(r,r′′)]eim′p(φ′′−β/2)

× eimφ[e−imβ/2 − (−1)m
′
eimβ/2]

× Im(κρ<)Km(κρ>)I|m′|p(κρ̃<)K|m′|p(κρ̃>). (4.14)

Here ρ< (ρ>) is the lesser (greater) of ρ and ρ ′ and ρ̃< (ρ̃>)
is the lesser (greater) of ρ ′′ and ρ ′. After the differentiations
contained in E and H are performed, the coordinates ρ ′′ and
φ′′ are set equal to ρ and φ, respectively.

Although we can carry out the m summation, or the ρ ′
integration, it seems difficult to bring Eq. (4.14) into the closed
form given in Ref. [4]. So we initially content ourselves with
a special case β = π or p = 1, that is, the interaction of an
atom with an infinite conducting plane. In that case, we may as
well ultimately set φ = φ′′ = π . Then only Bessel functions
of integer order occur and both the m and m′ sums can be
carried out, using the addition theorem

K0(κP ) =
∞∑

m=−∞
eim(φ−φ′)Im(κρ<)Km(κρ>), (4.15)

where

P =
√

ρ2 + ρ ′2 − 2ρρ ′ cos(φ − φ′). (4.16)

Then the energy can be written as

Eap = − i

2π2

∫ ∞

0

dκ

κ

∫ ∞

0

dρ ′

ρ ′ tr α(E − H)(r,r′′)

×
[
K0(κ

√
ρ2 + ρ ′2 − 2ρρ ′ sin φ)

× 1

i

∂

∂φ′′ K0(κ
√

ρ ′′2 + ρ ′2 − 2ρ ′′ρ ′ sin φ′′)

− (sin φ → − sin φ)

]∣∣∣∣
ρ ′′→ρ, φ′′→φ=π

= 1

2π2

∫ ∞

0
dκ

∫ ∞

0
dρ tr α(E − H)(r,r′′)

×
[

ρ ′′ cos φ′′√
ρ ′2 + ρ ′′2 − 2ρ ′ρ ′′ sin φ′′

×K ′
0(κ

√
ρ ′2 + ρ ′′2 − 2ρ ′ρ ′′ sin φ′′)

×K0(κ
√

ρ2 + ρ ′2 − 2ρρ ′ sin φ)

+ (sin φ → − sin φ)

]∣∣∣∣
ρ ′′→ρ,φ′′→φ=π

. (4.17)

α

y

h

R

a

R

a

FIG. 4. (Color online) An anisotropically polarizable atom, de-
noted by α, is symmetrically located relative to two identical parallel
perfectly conducting cylinders (with axes coming out of the page).
The centers of the cylinders are separated by a distance h and each
has radius a. The atom is on the line bisecting the line connecting the
centers of the two cylinders, but a distance y above it. The atom is a
distance R from the center of either cylinder. The angle θ is defined
by cos θ = y/R.

The simplest situation occurs when the atom is only
polarizable along the axis of the wedge α = ẑẑαzz. Then
tr αE = 0, tr αH = κ4αzz, and we have

Eap = −αzz

π2

∫ ∞

0
dρ ′ ρ√

ρ2 + ρ ′2

∫ ∞

0
dκ κ4

×K0(κ
√

ρ2 + ρ ′2)K1(κ
√

ρ2 + ρ ′2)

= − αzz

8πρ4
, (4.18)

which is the expected Casimir-Polder energy. With only a bit
more effort, we find the familiar result for arbitrary polarization

ECP = − tr α

8πρ4
. (4.19)

Given the difficulty of even analytically reproducing the
two-body correction given in Ref. [4], it is not surprising that
we did not get very far with the three-body calculation. In
the Appendix we consider the scalar analog for the two-body
effect and although we get a bit further, we have been
unable to reproduce the analytic result obtained by the direct
calculation.3 So we turn instead to another problem, the
interaction between an atom and a pair of cylinders.

V. CASIMIR-POLDER INTERACTION OF AN ATOM
WITH TWO PARALLEL CYLINDERS

The difficulties in extracting usable expressions for three-
body effects for the atom-wedge-wedge problem has to do with
the lack of a scale, so multipole expansions, for example, are
not applicable. Therefore, we turn to another example, that of
an atom interacting with a pair of parallel cylinders, illustrated
in Fig. 4. Here it is assumed the two cylinders are identical,

3However, it is possible to recast the T̃1T̃2 expression into the form of
the direct CP energy ECP = Tr

∫
dζα(G − G0) (see the Appendix).
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with radius a, and their centers are separated by a distance h.
The atom is located on the line bisecting the line connecting
the centers of the cylinders, a distance R from the center of
each, and a height y above the centerline. We consider the case
when the atom is only polarizable along the bisecting line.

A. Scattering matrix for the cylinder

We first need to compute the scattering matrix for the
cylinder. The Green’s dyadic, given in Ref. [32], part of which
appears in Ref. [5], can be written, with slight notational
changes, as4

�cyl(r,r′) = −
∞∑

m=−∞

∫
dk

(2π )2
eim(φ−φ′)eik(z−z′)

× [EFm(ρ,ρ ′) + HGm(ρ,ρ ′)], (5.1)

where the TE and TM Green’s functions are, outside the
cylinder,

Fm(ρ,ρ ′) = 1

κ2

[
Im(κρ<)Km(κρ>)

− I ′
m(κa)

K ′
m(κa)

Km(κρ)Km(κρ ′)
]
, (5.2a)

Gm(ρ,ρ ′) = 1

κ2

[
Im(κρ<)Km(κρ>)

− Im(κa)

Km(κa)
Km(κρ)Km(κρ ′)

]
(5.2b)

and the polarization operators are the same as given in
Eqs. (4.2). The modified scattering matrix is given by Eq. (4.8),
where, because of the transversality of the polarization
operators, the inverse free Green’s operator may be replaced
by �−1

0 → 1
ζ 2 (∇2 − ζ 2) [cf. Eq. (4.9)], which vanishes every-

where but on the surface of the cylinder. Because we have a
perfectly conducting body, Fm(ρ,ρ ′) = 0 if ρ ′ > a > ρ and
so for the TE function with ρ ′ > a

(
Fm − F 0

m

)
(ρ,ρ ′) = − 1

κ2
Km(κρ ′)

[
I ′
m(κa)

K ′
m(κa)

×Km(κρ)η(ρ − a) + Im(κρ)η(a − ρ)

]
.

(5.3a)

Similarly, the TM functions are

(
Gm − G0

m

)
(ρ,ρ ′) = − 1

κ2
Km(κρ ′)

[
Im(κa)

Km(κa)

×Km(κρ)η(ρ − a) + Im(κρ)η(a − ρ)

]
.

(5.3b)

4As noted in Ref. [33], only the terms in the Green’s functions
involving modified Bessel functions, and not powers of the radial
coordinates, contribute to the electric and magnetic fields.

Then a simple calculation leads to the scattering matrix

T̃cyl =
∞∑

m=−∞

∫
dk

(2π )2
eik(z−z′)eim(φ−φ′) 1

κ2ζ 2a

×
[

E
1

κ

1

ρ

∂

∂ρ
ρδ(ρ − a)

Km(κρ ′)
K ′

m(κa)

− Hδ(ρ − a)
Km(κρ ′)
Km(κa)

]
. (5.4)

To check its validity, we reproduce the two-body interaction
between one cylinder and the anisotropic atom, for which we
obtain

E12 = −1

2

∫ ∞

−∞

dζ

2π
Tr T̃atomT̃cyl

= −
∫

dζdk

(2π )2

∞∑
m=−∞

tr
α

κ2

[
I ′
m(κa)

K ′
m(κa)

E(r,r′)

+ Im(κa)

Km(κa)
H(r,r′)

]

×Km(κρ)Km(κρ ′)
∣∣∣∣
r=r′=R

. (5.5)

This is the general result, which may be derived by simpler
means. In particular, for the situation envisaged in Fig. 4,
where R = h/2 sin θ and the atom is only polarizable along
the y direction, we obtain the formulas given in Ref. [5]5 in
terms of the distance of closest approach R0 = h/2,

ETM
CP = − α

4π

sin4 θ

R4
0

∞∑
m=−∞

∫ ∞

0
dx x

Im(κa sin θ/R0)

Km(κa sin θ/R0)

× [
m2K2

m(x) sin2 θ + x2K ′2
m (x) cos2 θ

]
, (5.6a)

ETE
CP = α

4π

sin4 θ

R4
0

∞∑
m=−∞

∫ ∞

0
dx x

I ′
m(κa sin θ/R0)

K ′
m(κa sin θ/R0)

× [
m2K2

m(x) cos2 θ + x2K ′2
m (x) sin2 θ

]
. (5.6b)

These formulas show that repulsion indeed occurs along the
bisector y direction provided the distance of closest approach
R0 is larger than about 7 times the radius of the cylinder; in
this case the m = 0 term dominates and the TM contribution
is much larger than the always attractive TE contribution, as
we will see below.

B. Three-body correction

We now want to see if the above repulsive effect survives
when the effect of both bodies are included. By virtue of
the symmetry shown in Fig. 4, the two-body forces in the y

direction are doubled. That is, if the atom is called body 1 and
the cylinders are 2 and 3, respectively, the two-body terms are

5The signs of the energies given there, and in Fig. 3 of that reference,
should be reversed. All physical conclusions in that paper, however,
are correct.
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just

E2-body = E12 + E13. (5.7)

The three-body terms are computed from Eq. (3.20). In view of
the remarks above, because we are considering large distances
between the cylinders, it should suffice to consider the three-
and four-scattering terms, the higher terms being suppressed,

E3-body ≈ E123 + E132 + E1232 + E1323,

E123 = − 1
2 Tr T̃1T̃2T̃3, E1232 = − 1

2 Tr T̃1T̃2T̃3T̃2. (5.8)

Further, we expect dominance by the m = 0 TM mode.
However, we can effect considerable simplification before we
make that last approximation. Indeed, the formula for the TM
mode three-scattering energy simplifies to

ETM
123 =

∫
dζ dk

(2π )2

1

κ2
tr αH(r,r̃)

×
∑
mm′

∫ 2π

0

dφ̃′

2π
ei(mφ−m′φ̃)ei(m′φ̃′−mφ′)

× Im(κa)

Km(κa)

Km(κρ ′)
Km′(κa)

Km(κρ)Km′(κρ̃)

∣∣∣∣
ρ=ρ̃=R

(5.9)

and the corresponding TE three-scattering energy is

ETE
123 =

∫
dζ dk

(2π )2

1

κ2
tr αE(r,r̃)

×
∑
mm′

∫ 2π

0

dφ̃′

2π
ei(mφ−m′φ̃)ei(m′φ̃′−mφ′)

× I ′
m(κa)

K ′
m(κa)

K ′
m(κρ ′)

K ′
m′ (κa)

dρ ′

da
Km(κρ)Km′(κρ̃)

∣∣∣∣
ρ=ρ̃=R

,

(5.10)

where a and φ̃′ are the cylindrical coordinates of a point on
the surface of the second cylinder relative to the central axis
of that cylinder, the same point being located at cylindrical
coordinates ρ ′ and φ′ relative to the central axis of the first
cylinder. These coordinates are related by

ρ ′2 = h2 + a2 − 2ah cos φ̃′, tan φ′ = a sin φ̃′

a cos φ̃′ − h
.

(5.11)
The atom is located in the two coordinate systems at

R = (R,φ,0) = (R,φ̃,0), (5.12)

where

φ = π

2
+ θ, φ̃ = π

2
− θ. (5.13)

It would now be straightforward to work out the multipole
expansion of Eqs. (5.9) and (5.10), that is, a power-series
expansion in powers of a/h. We will content ourselves with
the lowest term, which means we can set m = 0, because only
for small values of a/h do we have two-body repulsion. Higher
terms are suppressed by powers of a/h. In this limit, the TE
energy is completely negligible, because of the appearance of
derivatives of Bessel functions. The behavior of the Bessel

functions for small argument makes this point clear:

I0(z) ∼ 1 + 1

4
z2, K0(z) ∼ −γ − ln

z

2
, (5.14a)

I ′
0(z) ∼ 1

2
z, K ′

0(z) ∼ −1

z
, z → 0. (5.14b)

Then we get a very simple explicit formula, again for an
atom polarizable only in the bisector y direction,

ETM
123 ∼ αyy

4πR4
0

cos2 θ sin4 θ

×
∫ ∞

0
dx x3 K0(2x sin θ )I0(xa sin θ/R0)

K2
0 (xa sin θ/R0)

K ′2
0 (x).

(5.15)

Here h = 2R0 is the separation distance between the axes of
the cylinders. In the same approximation, the four-scattering
contribution is also given simply:

ETM
1232 ∼ − αyy

4πR4
0

cos2 θ sin4 θ

×
∫ ∞

0
dx x3 K2

0 (2x sin θ )I0(xa sin θ/R0)

K3
0 (xa sin θ/R0)

K ′2
0 (x).

(5.16)

These TM corrections are plotted in Fig. 5 as a function of
φ̃ = π/2 − θ (so φ̃ = 0 at the position of the atom closest to
the cylinders), and compared to the two body contributions.
(All the TE corrections are completely negligible.) The figure
shows the two-body CP energy, entirely dominated by the
m = 0 TM contribution, and the m = 0 three-body correction,

FIG. 5. (Color online) Casimir-Polder energy of an anisotropic
atom or nanoparticle passing on the symmetry line perpendicular to a
pair of identical perfectly conducting parallel cylinders. The energy,
apart from a factor of α/4πR4

0 , is plotted versus φ̃ = π/2 − θ , that
is, the angle between the line connecting the axes of the cylinders
and the line connecting the atom with the center of either cylinder.
The bottom (red solid) curve is the two-body energy, the top (blue
dotted) curve is the three-scattering correction, the second from the
top (red dashed) curve is the four-scattering term, and the second
(blue solid) curve from the bottom is the total Casimir-Polder energy.
The energies are plotted for a/R0 = 0.01. Because a/R0 � 1 it is
sufficient to include only m = 0 for the three-body corrections. Also,
the TE contributions are completely negligible. It can be seen that
the three-body effects, in fact, are very small and do not significantly
alter the repulsion between the atom and the pair of cylinders and the
four-scattering terms are quite negligible.
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dominated by the three-scattering terms, in the limit of large
distance between the cylinders. The TE contributions were
computed, but were found, as expected, to be completely
insignificant in the large-distance regime. The TM three-body
correction is not quite negligible, but does not affect the
Casimir-Polder repulsion discovered in Ref. [5].

VI. DIFFICULTY OF ACHIEVING HIGH
ATOMIC ANISOTROPY

In order for Casimir-Polder repulsion to be possible,
the atom interacting with a body must have a sufficiently
anisotropic polarizability tensor. Defining an anisotropy factor
γ according to

α = αzzẑẑ + γαzzx̂x̂ + γαzzŷŷ, (6.1)

implying

γ = Tr(α) − αzz

2αzz

, (6.2)

we found in Ref. [4] that for an anisotropic atom interacting
with a half plane, the critical value of γ was 1/4. Values
γ < 1/4 give repulsion in certain circumstances, whereas for
γ > 1/4 no repulsion is possible. The nonretarded interaction
of an atom and a circular aperture was considered in Ref. [34]
and the critical value of γ was found to be 1/4 also in this
case [4].

In this section we investigate what minimal value of the
anisotropy parameter can be achieved by preparing an atom
in an excited eigenstate |nlm〉. Here n denotes the principal
quantum number, l = 0, . . . ,n − 1 is the quantum number for
the orbital angular momentum, and m = −l, . . . ,l that for its z

component. The question is of great interest especially in light
of recent advances in experimental techniques using Rydberg
atoms, atoms excited to high principal quantum numbers, near
boundaries [35,36], and noting that Rydberg atoms can take
highly anisotropic shapes.

Because of the close spacing of energy levels for highly
excited states and the fact that transitions to the states
nearest in energy to |nlm〉 dominate the CP energy [36],
the Casimir-Polder interaction of a Rydberg molecule is
essentially nonretarded even at atomically large separations, up
to hundreds of micrometers. It was shown that in such cases the
interaction energy is proportional to the atomic dipole moment
tensor [37,38]

Enlm = −〈dd〉 : ∇∇G|ω=0 = −〈dd〉 : �ω=0, (6.3)

according to Eq. (2.2). For convenience we work with the ratio

q = 〈
d2

zz

〉/〈d2〉. (6.4)

Defining γ similarly as before

γ = 〈d2〉 − 〈
d2

zz

〉
2
〈
d2

zz

〉 = 1

2

(
1

q
− 1

)
, (6.5)

we consider energy eigenstates |nlm〉 such that anisotropy
becomes maximal, i.e., γ becomes minimal and q maximal.

To evaluate the anisotropy parameter, we insert the com-
pleteness relation

∑
n′l′m′ |n′l′m′〉〈n′l′m′| = I ,

q =
∑

n′l′m′ 〈nlm|dz|n′l′m′〉〈n′l′m′|dz|nlm〉∑
n′l′m′ 〈nlm|d|n′l′m′〉 · 〈n′l′m′|d|nlm〉 . (6.6)

The dipole-matrix elements can conveniently be calculated by
means of the Wigner-Eckart theorem [39,40]

〈n′l′m′|ds |nlm〉 = (−1)l
′−m′

(
l′ 1 l

−m′ s m

)
〈n′l′||d||nl〉,

(6.7)

where 〈n′l′||d||nl〉 denotes the reduced matrix element and the
Wigner 3-j symbol can be given in terms of Clebsch-Gordan
coefficients as [41](

j1 j2 j

m1 m2 m

)
= (−1)j1−j2−m

√
2j + 1

〈j1m1j2m2|j −m〉. (6.8)

Substituting these relations into Eq. (6.6) and using the
orthonormality relation [41]
√

2j + 1
∑
m1m2

(
j1 j2 j

m1 m2 m

)(
j1 j2 j ′
m1 m2 m′

)
= δjj ′δmm′ ,

(6.9)
we find

q → qlm =
∑

l′
|〈lm10|l′m〉|2. (6.10)

As expected from the symmetry of the problem, the anisotropy
parameter depends neither on the reduced matrix element nor
on the principal quantum numbers.

The Clebsch-Gordan coefficients in Eq. (6.10) can be
evaluated explicitly, leading to [41]

qlm = l2 − m2

(2l − 1)(2l + 1)
+ (l + 1)2 − m2

(2l + 1)(2l + 3)
. (6.11)

For a given l, the anisotropy parameter obviously takes its
maximum value for m = 0,

ql0 = l2

(2l − 1)(2l + 1)
+ (l + 1)2

(2l + 1)(2l + 3)
= 2l(l + 1) − 1

4l(l + 1) − 3
.

(6.12)

The latter expression is equal to 1/3 for l = 0, approaches 1/2
for l → ∞, and takes it maximum value

q10 = 3
5 =⇒ γ = 1

3 (6.13)

for l = 1. The maximally anisotropic eigenstate of orbital
angular momentum is thus a p state.

Since qlm is positive for any given choice of quantum
numbers, it immediately follows that the anisotropy parameter
γ is bounded below by 1/3 for any incoherent superposition
of energy eigenstates. It is possible that stronger anisotropies
could be realizable with a coherent superposition of states.
However, the more likely venue for discovering such repulsive
effects would be with anisotropic particles, such as elongated
needles.

VII. CONCLUSION

One of the principal features of Casimir or quantum
vacuum forces is that they are not additive. Unlike classical
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electrodynamics, one cannot simply sum pairwise forces.
Such approximations clearly are invalid even for the simplest
situations of parallel plates. This of course makes calculations
more challenging.

In this paper we have explored some aspects of three-body
interactions in the context of Casimir-Polder forces between
an anisotropically polarizable atom or nanoparticle and two
conducting surfaces. First we examined the role of such forces
involving an atom between two perfectly conducting plates, a
well-known problem [17], but one in which we can test our
formalism and isolate explicitly the three-body terms. Then
we turned to the interaction of such an atom with a pair of
wedges; we reproduced the repulsive effects seen for an atom
interacting with a single wedge [4], but a closed form for the
three-body correction remains elusive. So we then examined
the interaction of an anisotropic atom with a pair of parallel
cylinders. The two-body repulsive effect found earlier [5] was
reproduced and the three-body correction was computed in the
limit of large separation between the cylinders, which is the
regime where repulsion is expected. The three-body correction
is non-negligible in this limit and is completely captured by the
TM three-scattering approximation, but is too small to affect
the earlier-found repulsion.
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APPENDIX: SCALAR ANALOG FOR
THE ATOM-WEDGE PROBLEM

In this appendix we will consider a scalar analog of
the atom-wedge problem. Let the atom be described by the
potential

Vatom = 4παδ(r − R), (A1)

where R = (R,φ,0) is the position of the atom. The modified
scattering matrix for the (Dirichlet) wedge is [note that the
sign is reversed compared to Eq. (4.8)]

T̃wedge = 1 − G−1
0 Gw, (A2)

where

Gw(r,r′) = 2p

π

∫ ∞

−∞

dk

2π
eik(z−z′)

∞∑
m=1

sin mp(φ − β/2)

× sin mp(φ′ − β/2)Imp(κρ<)Kmp(κρ>).

(A3)

Applying G−1
0 = −∇2 + ζ 2, we obtain the scattering matrix

on the wedge

T̃w = 2p

π

∫ ∞

−∞

dk

2π

∞∑
m=1

eik(z−z′) mp

ρ2
[δ(φ − β/2)

− (−1)mδ(φ + β/2)] sin mp(φ′ − β/2)

× Imp(κρ<)Kmp(κρ>). (A4)

The two-body energy is given by

E12 = i

2

∫
dω

2π
Tr T̃1T̃2 = −1

2

∫ ∞

−∞

dζ

2π
Tr V1G0T̃2. (A5)

If we use the two-dimensional representation for the free
propagator

G0(r) =
∫ ∞

−∞

dkz

2π
eikzz

1

2π
K0(κ|r⊥|), (A6)

the two-body energy can be written as

E12 = − α

π2
p2

∫ ∞

0
dκ κ

∫ ∞

0

dρ ′

ρ ′

∞∑
m=1

m sin mp(φ − β/2)

× Imp(κρ<)Kmp(κρ>)

× [K0(κP+) − (−1)mK0(κP−)], (A7)

where P± is the distance between the atom and a point on the
upper (lower) wedge boundary

P± =
√

R2 + ρ ′2 − 2Rρ ′ cos(φ ∓ β/2). (A8)

Now the integral of the three Bessel functions can be
performed:∫ ∞

0
dt t Iν(ξ t)Kν(t)K0(P±t/ρ>)

= 1

2ξ sin(φ − β/2)

∞∑
n=0

ξν+n+1 sin(n + 1)(φ − β/2)

ν + n + 1
,

(A9)

where ξ = ρ</ρ>. The radial integrals are then easy and we
are immediately led to

E12 = − αp2

π2R2

∞∑
m=1

m sin mp(φ − β/2)

×
∞∑

n=0

1

(n + mp)(n + mp + 2)

×
[

sin(n + 1)(φ − β/2)

sin(φ − β/2)

− (−1)m
sin(n + 1)(φ + β/2)

sin(φ + β/2)

]
. (A10)

We replace the sum over m by an integral
∞∑

m=1

1

mp + N
eimpθ =

∞∑
m=1

∫ ∞

0
dt e−t(mp+N)eimpθ

=
∫ ∞

0
dt e−tN 1

ep(t−iθ) − 1
. (A11)
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Then the n sum can be carried out as a geometric series and
the result is a single integral

E12 = − αp2

4π2R2

∫ ∞

0
dt sinh t sinh pt sin(φ − β/2)

×
{

1

[cosh pt−cos p(φ−β/2)]2

1

cosh t−cos(φ−β/2)

+ 1

[cosh pt+cos p(φ−β/2)]2

1

cosh t−cos(φ+β/2)

}
.

(A12)

Alternatively, we can directly calculate the two-body energy
from

E12 = 1

2

∫ ∞

−∞

dζ

2π
V1(G − G0), (A13)

which may be directly evaluated in closed form

E12 = − α

8πR2

[
p2

sin2 p(φ − β/2)
+ 1

3
(1 − p2)

]
. (A14)

The form (A12) may be evaluated straightforwardly in an
analytic form for the two special cases p = 1 (β = π , that
is, a plane) and p = 1/2 (β = 0, that is, a half plane), in
agreement with Eq. (A14),

E12(p = 1) = − α

8πR2

1

sin2 θ
, (A15a)

E12(p = 1/2) = − α

32πR2

(
1

sin2 θ/2
+ 1

)
. (A15b)

For other values of p the analytic evaluation of Eq. (A12)
seems nontrivial; however, the integral is rapidly convergent
and the numerical coincidence with the closed form (A14) is
easily verified.

Not surprisingly, it is possible to show that the explicit form
of Eq. (A13) follows from the multiple-scattering form of the
two-body energy (A7), written in terms of a sum over four
Bessel functions and a sum over m and m′ as in Eq. (4.14).
This involves using the integral [notation as in Eq. (4.14), with
ν = m′p]
∫

dρ ′

ρ ′ Im(κρ<)Km(κρ>)Iν(κρ̃<)Kν(κρ̃>)

= 1

m2 − ν2
[Kν(κR)Iν(κR) − Im(κR)Km(κR)], (A16)

where the resulting two terms in the energy are summed over
m and m′, respectively, using

∞∑
m=−∞

eimθ

m2 − ν2
= −π

ν

cos ν(θ − π )

sin πν
, (A17a)

∞∑
m′=1

m′p sin m′pθ

m2 − (m′p)2
= − π

2p
sin

m

p
(π − pθ ) csc

mπ

p
,

(A17b)

∞∑
m′=1

(−1)m
′ m′p sin m′pθ

m2 − (m′p)2
= − π

2p
sin mθ csc

mπ

p
. (A17c)
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