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Microwave spectroscopy of the calcium 4sn f → 4s(n + 1)d, 4sng, 4snh, 4sni , and 4snk transitions
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We observe the microwave transitions of calcium from the 4snf states to the 4s(n + 1)d , 4sng, 4snh, 4sni,
and 4snk states for 18 � n � 23 using delayed field ionization as the state selective detection technique. The
observed intervals between the � � 5 states can be analyzed to extract the Ca+ ionic dipole (αd ) and quadrupole
(αq ) polarizabilities using two nonadiabatic core polarization models. Using these two models we determine the
ionic dipole and quadrupole polarizabilities to be 75.3a3

0 < αd < 76.9a3
0 and 206a5

0 < αq < 1590a5
0 , respectively.
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I. INTRODUCTION

In recent years, much effort has been invested in developing
a precise optical frequency standard, and a proposed candidate
is the quadrupole 4s1/2 − 3d5/2 transition of the Ca+ ion [1,2].
An additional attraction of Ca+ is that it can be cooled by
Doppler cooling to very low temperatures by using this tran-
sition in conjunction with the dipole allowed 3d5/2 − 3p3/2

transition [1]. The absolute frequency of the Ca+ 4s1/2 − 3d5/2

transition has been measured with an uncertainty of 1 Hz, a
fractional accuracy of one part in 1015, which is within a factor
of 3 of the fractional uncertainty of the present Cs clock [3].
While an optical transition provides a transition with a higher
quality factor, the transition also has a much larger blackbody
radiation (BBR) shift, and the BBR shift is one of the largest
shifts in an optical clock. In the Ca+ clock transition the BBR
shift is calculated to be 0.4 Hz at room temperature, T = 300 K
[1,2,4]. Since the BBR shift is unavoidable and scales as T 4

[5], it is essential to understand it well.
The BBR shift is proportional to the difference in the dipole

polarizabilities αd of the two ionic states of the clock transition.
While it is possible to calculate the polarizabilities, due to the
charge of the ion the polarizabilities are difficult to measure
directly, and other approaches must be used to check the
validity of the calculations. While measurements of oscillator
strengths and lifetimes are often used, an alternative approach
is one initially suggested by Mayer and Mayer, measuring
the energy intervals between higher � Rydberg states of the
neutral atom [6]. Here � is the orbital angular momentum
of the Rydberg electron. The field and gradient from the
Rydberg electron polarize the ionic core, depressing the energy
levels below the hydrogenic energy of −1/2n2, where n is the
principal quantum number of the Rydberg electron. We use
atomic units unless specified otherwise. Since an electron in a
lower � state comes closer to the ionic core, the polarization
shift increases with decreasing �. This approach is only valid if
the Rydberg electron does not penetrate the ionic core, which
is why it is limited to high � states. The inner turning point of a
Rydberg n� atom is given by r�

∼= �(� + 1)/2, and r� = 15a0

for � = 5. Since the Ca+ 4s1/2 wave function is similar in size
to the H 1s wave function, less than 0.02% of the ground-state
probability distribution is found at radial distances beyond
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r = 15a0, so it seems that Ca 4sn� states of � � 5 should be
nonpenetrating states. Here r is the distance of the Rydberg
electron from the ionic core.

Here we report measurements of the Ca 4snf − 4sng −
4snh − 4sni − 4snk intervals, made using a delayed field
ionization approach. Our data show that the adiabatic model
of Mayer and Mayer is inadequate, and we have fit our
measurements to two core polarization models which take
into account the nonadiabatic effects not considered in the
approach of Mayer and Mayer. These analyses yield values
for the dipole polarizability in reasonable agreement with
the calculated value. However, the two values we extract for
the quadrupole polarizability are much smaller and much
larger than the calculated value. We have also measured
the 4snf → 4s(n + 1)d intervals. These intervals, combined
with high-resolution optical spectroscopy could allow a better
determination of the Ca+ polarizabilities. In the sections which
follow we describe our approach, present our experimental
results, and analyze them using several variants of core
polarization analysis.

II. EXPERIMENTAL APPROACH

We excite neutral Ca atoms in a thermal beam from the
ground state to a Rydberg state using three laser beams. The
Ca beam intersects the laser beams at a 90◦ angle between
two parallel horizontal copper plates separated by 1.2-cm-long
ceramic standoffs. The laser beams are focused to 1 mm
diameters where they intersect the Ca beam. Ground-state
4s2 atoms are excited to the 4s4p, 4s4d, and 4snf states
by 422.791 nm, 732.816 nm, and ∼850 nm laser pulses,
respectively, as shown in Fig. 1. The last laser is tunable over
the range from 847 to 857 nm to excite the 4snf states of
18 � n � 23. A 1-μs-long microwave pulse starts 50 ns after
the last laser pulse to excite the 4snf state to the 4sng and
4snh states by the one-photon and two-photon transitions,
respectively. The 4snf → 4sni and 4snf → 4snk transitions
are the three-photon and four-photon transitions. To drive
the three-photon and four-photon excitations, in addition to
a 1 μs microwave pulse, we use a continuous wave (cw) radio
frequency (rf) field of frequency between 3.5 and 5 GHz. The
rf and microwave fields are generated by a Hewlett-Packard
(HP) 8257D analog signal generator and 83620A synthesized
sweep generator, respectively. The microwave sweep generator
produces a cw output from 10 MHz to 20 GHz, which is
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FIG. 1. Laser excitation scheme of the experiment.

formed into pulses by a General Microwave DM862D switch.
The required microwave frequencies to drive the transitions
range from 23 to 75 GHz. Therefore, several frequency
multipliers, a Narda DBS 2640X220 active doubler, a Narda
DBS 4060X410 active quadrupler, and a Pacific Millimeter
V2W0 passive doubler, are used to multiply the synthesizer
frequency to the desired frequency. The power output of
the frequency multipliers ranges from 5 mW to 100 mW.
The microwaves propagate through WR28 waveguide and a
waveguide feedthrough to a WR28 horn inside the vacuum
chamber. The cw rf propagates through a coaxial cable and a
SMA feedthrough to the coaxial-to-waveguide adapter and is
launched by a WR187 horn inside the chamber.

To discriminate between the 4sn� states of � > 3 and the
4snf state, we take advantage of the � dependence of the
lifetimes of Ca Rydberg atoms. The higher angular momentum
Rydberg states live longer than the lower ones [7,8], and we use
the technique of delayed field ionization (DFI). The lifetime of
the 4s25f state has been measured to be ∼2.5(5) μs [8], and
using the n3 scaling law we find that the lifetimes of the 4snf

states of 18 � n � 23 fall in the range from 0.9 to 1.9 μs.
Therefore, if we wait long enough after the microwave pulse,
more than 5 μs, atoms in the 4snf states decay significantly
compared to atoms in the 4sn� states of � > 3. Typically,
we apply a negative high voltage pulse to the bottom plate
8 to 10 μs after the microwave pulse to field ionize the
surviving Rydberg atoms and drive the resulting electrons to
the microchannel plate (MCP) detector. The timing of the
experiment is shown in Fig. 2. Using this approach a large
increase in the number of detected atoms is observed when
the microwave field drives the transition from the 4snf state
at resonance. To detect transitions from the 4snf states to
the 4s(n + 1)d states we take advantage of the fact that the
lifetimes of the 4s(n + 1)d states are an order of magnitude
shorter than those of the 4snf states. A delay of only 2 μs

FIG. 2. Timing sequence of the experiment.

FIG. 3. One-photon 4s22f → 4s22g resonance. The linewidth
of the resonance is ∼1 MHz which is a transform limited linewidth
of a 1 μs microwave pulse.

is used, and a decrease in signal is observed at resonance.
Frequency shifts due to the stray electric field are minimized
by observing the microwave resonance with different bias
voltages on the plates and fitting the resonant frequencies to
a quadratic bias voltage dependence. We then set the bias
voltage to the minimum frequency shift. In this experiment,
the frequency shift due to the stray electric field is in all cases
less than 1 MHz. The experiment is repeated every 50 ms, and
the signals are averaged over many laser shots.

III. EXPERIMENTAL OBSERVATIONS

A. One-photon 4sn f → 4sng intervals

For the one-photon transition, 4snf → 4sng, the mi-
crowave power was attenuated until the power broadening
was eliminated. We observed one resonant peak for each
n. Since the optical excitation is to the 4snf 1F3 state we
assign the states we observe in the microwave transitions as
1G4 states. A typical resonance is shown in Fig. 3, and the
observed intervals are given in Table I. We did not attempt to
eliminate the Earth’s magnetic field. In the Earth’s magnetic
field one might expect linewidths of ∼2–3 MHz. However,
the typical linewidth of a 1F3 − 1G4 resonance is ∼1 MHz, the
transform limited linewidth of a 1 μs microwave pulse. The
narrow linewidths occur because the one-photon transitions are
between the two singlet states, which have the same Landé gj

factors. Hence all the �mj = 0 transitions occur at the same
frequency, resulting in the narrow lines [9].

TABLE I. nf − ng observed frequencies.

n Observed frequency (MHz)

18 72891.40(1)
19 62222.19(1)
20 53150.84(2)
21 46053.01(25)
22 40147.03(1)
23 35462.65(5)
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FIG. 4. Two-photon 4s18f → 4s18h resonances. The two reso-
nances are separated by the K splitting of the 4s18h state.

B. Two-photon 4sn f → 4snh intervals

For the two-photon transition, 4snf → 4snh, we observed
two resonant peaks for each n suggesting that the higher
� states, � � 5, are not singlets and triplets. The states are
described by coupling the total angular momentum of the core
�jc to the orbital angular momentum �� of the Rydberg electron
to form �K . Explicitly,

�K = �jc + ��. (1)

The splitting between the two K levels is due to the indirect
spin orbit splitting [10,11]. We ignore the spin of the Rydberg
electron. For the Ca 4sn� states, jc = 1/2; therefore, K = � ±
1/2. Hence, for each � state we observe two transitions from
the 4snf to the 4sn� states, corresponding to K = � + 1/2 and
K = � − 1/2. To correct for the small ac Stark shift due to the
microwave field, 1.8 MHz at the highest power we used, the
resonances were observed at different microwave powers, and
the resonance frequencies were extrapolated linearly to zero
microwave power to obtain unshifted 4snf − 4snh intervals.
Typical resonances for the two-photon transitions are shown
in Fig. 4, and the observed intervals are given in Table II. The
typical linewidth of the resonances is 2–3 MHz. The linewidth
is due to the Earth’s magnetic field since the 4snh states are
no longer singlets and triplets.

C. Three-photon 4sn f → 4sni intervals

For the three-photon transitions, a single microwave field
does not have enough power to drive the three-photon

TABLE II. nf − nh observed intervals and nh K splittings.

n K = 9/2 (MHz) K = 11/2 (MHz) K splitting (MHz)

18 95296.36(6) 95312.53(9) 16.17(11)
19 81300.49(6) 81314.41(3) 13.92(7)
20 69905.16(18) 69917.62(13) 12.46(22)
21 60536.07(10) 60546.51(9) 10.44(13)
22 52761.38(96) 52770.12(12) 8.74(97)
23 46261.65(18) 46269.19(5) 7.54(19)

FIG. 5. Three-photon 4s19f → 4s19i resonance at relative mi-
crowave power 0.63 and at relative rf power 1.0. The K splitting of
the 4s19i states cannot be resolved due to the Earth’s magnetic-field
broadening.

4snf → 4sni transitions. Therefore, the three-photon tran-
sitions were driven by using two microwave photons and one
rf photon. The rf frequency of 3.5–5 GHz frequency was
fixed near the 4snh − 4sni frequency, and the microwave
frequency was swept. We verified that the observed resonances
were indeed the 4snf → 4sni transitions by varying the
rf frequency within ±5 MHz and sweeping the microwave
frequency for each rf frequency. For each rf frequency,
the 4snf → 4sni interval, given by twice the microwave
frequency plus the rf frequency, was approximately constant,
with only a slight difference in frequency due to the ac Stark
shift. A typical three-photon resonance is shown in Fig. 5. In
Fig. 5, we do not see the K splitting, because the K splitting in
the 4sni states is not resolvable. Since most of the K splitting
is from the dipole term, we can estimate the K splitting in
the 4sni states using the adiabatic dipole term of Eqs. (37)
and (38a) and ignoring the quadrupole term of Eq. (38b) of
Ref. [10]. Explicitly,

Kn� = 2(2� + 1)�4p〈r−6〉n�〈4s|r|4p〉2

9(W4s − W4p)3
, (2)

where �4p is the fine-structure splitting of the Ca+ 4p state,
〈r−6〉n� is the expectation value of 1/r6 of the n� Rydberg state,
〈4s|r|4p〉 is the Ca+ radial matrix element, W4s is the energy
of the Ca+ 4s state, and W4p is the energy of the Ca+ 4p state.
Since we have measured the K splitting in the 4snh states, we
can use Eq. (2) to estimate the K splitting in the 4sni states.
The ratio between the K splitting in the 4sni and 4snh states
is the ratio 〈r−6〉ni/〈r−6〉nh = 0.2. Therefore, the K splitting
in the 4sni states varies from 4 to 2 MHz as n increases from
18 to 23, which is not resolvable in our experiment due to the
Earth’s magnetic field.

In the three-photon transitions there are both rf and
microwave power shifts. To eliminate the ac Stark shift from
both fields, we observed the resonances at different rf and
microwave powers. For a given microwave power, we observed
resonances at different rf powers. We extrapolated the observed
frequencies linearly to obtain the resonance frequency at zero
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FIG. 6. Extrapolation of the three-photon 4s19f → 4s19i transition to zero rf and microwave powers. (a) At relative microwave power
0.63, resonances were observed at different rf powers to obtain the resonance frequency at zero rf power. (b) Several zero rf power resonances
were obtained at different microwave powers and extrapolated to zero rf and microwave powers.

rf power for a given microwave power. We repeated the
same procedure for several microwave powers. The resonance
frequencies at zero rf power of several microwave powers
were extrapolated to obtain the resonance frequencies at zero
rf and microwave powers. A typical resonance is shown in
Fig. 6, typical power extrapolations are shown in Fig. 5, and
the unshifted intervals are given in Table III.

D. Four-photon 4sn f → 4snk intervals

The 4snf → 4snk four-photon transitions were excited
using two microwave photons and two rf photons. The
rf frequency was fixed near the 4snh → 4snk resonance,
while the microwave frequency was swept in the vicinity
of the 4snf → 4snh resonance. Similar to the three-photon
excitation, we verified that the observed resonances were the
4snf → 4snk transitions by varying the rf frequency within
±5 MHz and sweeping the microwave frequency for each rf
frequency. For each rf frequency, the 4snf → 4snk interval
was given by twice the microwave frequency plus twice the rf
frequency and was approximately constant. We eliminated the
ac Stark shifts using the process discussed for the three-photon
transitions. Typical signals for four-photon transitions are
shown in Fig. 7, and the unshifted intervals are given in
Table IV. Using Eq. (2), we estimate the K splitting in the
4snk states to be on the order of 1 MHz for 18 � n � 20,
which cannot be resolved in this experiment.

TABLE III. nf − ni observed intervals.

n Observed frequency (MHz)

18 102558.95(54)
19 87488.41(40)
20 75223.05(15)
21 65141.32(78)
22 56766.61(69)
23 49771.37(26)

E. One-photon 4sn f → 4s(n + 1)d intervals

We have observed the 4snf → 4s(n + 1)d transitions for
n = 19, 20, and 21. In this region the 4snd 1D2 Rydberg states
are perturbed by their interaction with the 3d2 1D2 state [12].
The perturbation results in shorter lifetimes and rapidly
changing quantum defects. For 19 � n � 21 the 4snd 1D2

states lie close enough in energy to the 4snf 1F3 states that
the 4snf → 4s(n + 1)d frequencies are within the microwave
frequency range that we can generate. A typical resonance is
shown in Fig. 8, and the observed intervals are presented in
Table V.

IV. DATA ANALYSIS

We analyze the measured �� intervals using several
variants of the core polarization model. First, we use the
core polarization model as originally introduced by Mayer
and Mayer [6]. In the high angular momentum 4sn� Rydberg
states of � > 4, the Rydberg n� electron is assumed to be in
a hydrogenic n� state which does not penetrate the Ca+ core.

FIG. 7. Four-photon 4s19f → 4s19k resonance at 0.178 relative
microwave power and 0.794 relative rf power. The K splitting of the
4s19k states is on the order of 1 MHz and cannot be resolved.
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TABLE IV. nf − nk observed intervals.

n Observed frequency (MHz)

18 105362.90(52)
19 89879.91(7)
20 77278.61(15)

Furthermore, the Rydberg electron is assumed to move slowly
compared to the electrons in the ionic core. Thus we term this
model the adiabatic core polarization model. The presence of
the Rydberg electron leads to a quasistatic electric field and
gradient at the Ca+ core, and, due to the dipole and quadrupole
polarizabilities of the core, the energy levels of the Ca 4sn�

states are depressed below the hydrogenic energy, −1/2n2.
The polarization energy shift is given by [6]

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2αq〈r−6〉n�, (3)

where αd and αq are the dipole and quadrupole polarizabilities
of the Ca+ 4s core, and 〈r−4〉n� and 〈r−6〉n� are the expectation
values of the squares of the n� Rydberg electron’s field
and field gradient at the core. Since the Rydberg electron is
assumed to be in a hydrogenic state, analytic expressions exist
for these expectation values. We can write Eq. (3) in Edlen’s
experimentally convenient form as [13]

Wpol,n� =−αdPn� − αqPQn�, (4)

where

Pn� = RCa〈r−4〉n� (5)

and

Qn� = 〈r−6〉n�

〈r−4〉n�

. (6)

Here RCa is the Rydberg constant for Ca, RCa =
109 735.81 cm−1. Since we measure the intervals between the
4sn� and 4sn(� + 1), � > 3, states of the same n, we express
the difference between the core polarization energies of 4sn�

and 4sn(� + 1) states of the same n as follows:

�Wpol,n�′�

�Pn��′
= αd + αq

�PQn��′

�Pn��′
, (7)

FIG. 8. One-photon 4s19f → 4s20d resonance.

TABLE V. nf − (n + 1)d observed intervals.

n Observed frequency (MHz)

19 84377.04(4)
20 49143.13(12)
21 24542.36(4)

where �Wpol,n�′� = Wpol,n�′ − Wpol,n�, �Pn��′ = Pn� − Pn�′ ,
and �PQn��′ = Pn�Qn� − Pn�′Qn�′ . �Pn��′ and �PQn��′ are
easily calculated, and �Wpol,n�′� is the measured 4sn� − 4sn�′

interval. Figure 9 shows the graph of
�Wpol,n�′�

�Pn��′
versus �PQn��′

�Pn��′
using the measured nh − ni (�) and ni − nk (�) intervals.
For the 4snh states in which the K = 9/2 and 11/2 states
are resolved, we use the centers of gravity in our calculation.
As suggested by Eq. (7), by plotting

�Wpol,n�′�
�Pn��′

versus �PQn��′
�Pn��′

,
the values of dipole and quadrupole polarizabilities can be
extracted from the y intercept and slope of a line through the
data points, as shown in Fig. 9. The resulting Ca+ 4s dipole
and quadrupole polarizabilities are αd = 75.32(4)a3

0 and
αq = −257(8)a5

0 , respectively. In this, its simplest form, the
adiabatic core polarization model yields a negative quadrupole
polarizability, which is impossible.

van Vleck and Whitelaw pointed out that the polarization
energy shift of Eq. (3) is a limiting case of a second-order shift
due to the higher multipole terms in the Coulomb interaction
between the Rydberg n� electron and the ion core [14].
For example, the dipole polarization energy of a Ca 4sn�

state comes from the dipole coupling to Npn′(� ± 1) and
Npε(� ± 1) bound and continuum states, as shown in Fig. 10.
By considering only the two valence electrons we are implicitly
ignoring inner-shell excited states of Ca, which amounts to
ignoring the contribution of the Ca++ polarizability to the Ca+

polarizability. The shift due to the higher lying Npn′(� ± 1)
and Npε(� ± 1) states is readily calculated in second-order
perturbation theory by summing over N and n′, and integrating

FIG. 9. Adiabatic plot of the measured nh − ni (�) and ni − nk

(�) intervals using Eq. (7). There are three data points for the ni − nk

(�) intervals, 18 � n � 20, and six data points for the nh − ni (�)
intervals, 18 � n � 23. A fit to the straight line yields the y intercept
and slope, which are αd and αq , respectively. The resulting fit values
are αd = 75.32(4)a3

0 and αq = −257(8)a5
0 .
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FIG. 10. Energy levels of the Rydberg states converging to the
Ca+ 4s and Np states and the continua associated with the latter. A
4sn� Rydberg state is dipole coupled to Npn′(� ± 1) states which
span an energy range �. If � 	 W4s−Np the adiabatic approximation
is valid.

over ε. The sum over n′ and the integral over ε span an energy
range �, as shown by Fig. 10. If

� 	 W4s−Np, (8)

for all N , the result of Mayer and Mayer is recovered. For
example, the dipole polarization energy shift is given by the
dipole term of Eq. (3). Equation (8) is a more precise statement
of the adiabatic condition. For alkali-metal atoms, in which the
excited states of the ion are all at high energies, the requirement
of Eq. (8) is easily met, and the adiabatic approximation works
well. For alkaline-earth atoms this requirement is not met, and
the adiabatic approximation fails, as is evident in Fig. 9.

To correct for the nonadiabatic effects and extract the core
polarizabilities from the �� intervals there are two approaches
we can take. One is the adiabatic expansion method, which
can be viewed as an expansion in powers of �/W4s−Np. The
attraction of this approach is that we are only calculating the
corrections to the analytic shifts obtained using hydrogenic
expectation values. The potential problem is convergence of
the expansion. The alternative approach is the direct numerical
calculation of the hydrogenic matrix elements for the dipole
and quadrupole interactions, as exemplified in Fig. 10. This
approach is in principle exact, but since the entire energy shift
is calculated numerically, small errors are important.

In the adiabatic expansion approach the higher-order terms
in the expansion appear as expectation values of higher inverse
powers of r . If the expansion is to converge, these terms should
become smaller with increasing order. While this condition is
met for the high � states, it is not for the 4snh states. In
the nonadiabatic correction to the dipole polarization energy
the 〈r−8〉n� term is larger than the 〈r−6〉n� term. In short, the
expansion is nonconvergent, and we cannot use this method
to analyze our data. However, using the leading correction
term for the dipole polarization energy provides a bound for
the polarizabilities. The leading term in the correction to the
dipole polarization energy has a 〈r−6〉n� dependence and is thus
indistinguishable from the quadrupole polarization energy.
With the inclusion of this term, Eq. (7) becomes

�Wpol,n��′

�Pn��′
= αd + (αq − 6β1)

�PQn��′

�Pn��′
, (9)

where β1
∼= 0.95αd/(2W4p−4s) [15]. The numerical factor of

0.95 comes from the fact that 5% of αd comes from higher-

TABLE VI. kd calculated values.

n � = 5 � = 6 � = 7

18 0.956528 0.972293 0.982680
19 0.956518 0.972178 0.982543
20 0.956500 0.972111 0.982437
21 0.956437 0.972033
22 0.956453 0.971906
23 0.956423 0.971892

lying np states of Ca+ and Ca++ [16]. We calculate 6β1 to
be 1850(40)a5

0 . Including the leading term in the adiabatic
expansion simply raises the value of αq by 6β1, yielding αq =
1590(40)a5

0 . The value of αd is unchanged. Since the 6β1

correction term in Eq. (9) overcorrects for the nonadiabatic
effect, these values are lower and upper bounds to αd and αq ,
respectively.

The alternative approach is the direct calculation of the
multipole interactions, as shown in Fig. 10 for the dipole
interaction. As an approximation we assume that all the dipole
and quadrupole polarization energies of the Ca 4sn� states
come from the couplings to the Ca 4pn′�′ and 3dn′�′ states.
For both the dipole and quadrupole shifts, we find the ratio of
the explicitly calculated shift to that predicted by the adiabatic
model. These ratios, the nonadiabatic factors kd and kq , are
then used to correct the adiabatic model. Explicitly, we rewrite
Eq. (3) as

Wpol,n� = − 1
2kdαd〈r−4〉n� − 1

2kqαq〈r−6〉n�. (10)

The nonadiabatic factors kd and kq are defined in Eqs. (17.25)
and (17.26) of Ref. [17]. Both are calculated numerically using
a Numerov algorithm to calculate hydrogenic wave functions.
The calculated values of kd and kq are given in Tables VI
and VII, respectively. There are sum rules for the sums of
the squares of the matrix elements [14], and using them we
estimate the percentage uncertainties in kd and kq to be 0.3%
for both values. As shown in Table VI, to three significant
digits, there is no n dependence in kd . As shown in Table VII,
to four significant digits, there is n dependence in kq for � = 5
and � = 6 but not for � = 7. We can express Eq. (10) in Edlen’s
form as follows:

Wpol,n� = −αdP
′
n� − αqP

′Q′
n�, (11)

where

P ′
n� = kdP (12)

TABLE VII. kq calculated values.

n � = 5 � = 6 � = 7

18 0.9780 0.9273 0.9376
19 0.9797 0.9277 0.9376
20 0.9812 0.9284 0.9376
21 0.9824 0.9284
22 0.9835 0.9287
23 0.9845 0.9292
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FIG. 11. Nonadiabatic plot of the measured nh − ni (�) and ni −
nk (�) intervals using Eq. (14). There are three data points for the
ni − nk (�) intervals, 18 � n � 20, and six data points for the nh −
ni (�) intervals, 18 � n � 23. A linear fit (solid line) gives values for
the y intercept and slope of 76.99(7)a3

0 and 228(12)a5
0 , respectively.

When we take into account the overcorrection of kd , we obtain the
data points (•) and the lower fit line (broken line), which leads to our
final values of αd = 76.91(5)a3

0 and αq = 206(9)a5
0 .

and

Q′
n� = kq

kd

Qn�. (13)

Hence the difference between the core polarization energy of
4sn� and 4sn�′ of the same n is
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where �Wpol,n�′� is defined in Eq. (7), �P ′
n��′ = P ′

n� − P ′
n�′ ,
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′
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′
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We plot
�Wpol,n�′�

�P ′
n��′

versus
�P ′Q′

n��′
�P ′

n��′
in Fig. 11 using the nh −

ni (�) and ni − nk (�) measured intervals. From Fig. 11,
the intercept and slope of the graph yield fit values of αd =
76.99(7)a3

0 and αq = 228(12)a5
0 , respectively, shown by the

solid line.
At this point it is useful to compare Figs. 9 and 11, in

particular the points on the solid line in Fig. 11. There is almost
no difference in the horizontal positions of the data points but
a large difference in their vertical positions, leading to very
different values for αq . The difference in the vertical positions
comes from substituting �P ′ for �P , i.e., introducing kd ,
the nonadiabatic correction to the dipole polarization energy.
The small difference in the horizontal positions of the points
in the two graphs indicates that the introduction of kq ,
the nonadiabatic correction for the quadrupole polarization
energy, has a negligible effect for these �� intervals. The
uncertainties in the fit in Fig. 11 do not reflect the uncertainty
in the calculation of kd . When it is taken into account the values
we obtain are αd = 77.0(3)a3

0 and αq = 228(12)a5
0 .

We now return to our assumption that the polarization shifts
are due entirely to the couplings to the 4pn′�′ and 3dn′�′
states. This assumption is equivalent to assuming the Ca+

polarizabilities arise entirely from the Ca+ 4p and 3d states.
The calculations of Safronova and Safronova indicate that 95%
of αd is due to the 4p state, and 58% of αq is due to the 3d

TABLE VIII. Ca+ 4s dipole polarizability (αd ) obtained from this
work and other theoretical and experimental results.

αd (a3
0 )

This workae 75.32(4)
This workdc 76.9(3)
Expt. [8] 87(2)
Expt. [18] 75.3(4)
Expt. [19] 70.89(15)
Theory [16] 76.1(5)
Theory [21] 73.0(1.5)
Theory [20] 75.49

state [16]. Thus in kd and kq we have overcorrected. Inspecting
Figs. 9 and 11 we can see that the overcorrection due to kq is
insignificant, but that due to kd is important. Accordingly, we
have reduced the correction due to kd by 5%, resulting in the
broken line in Fig. 11. This modification leads to the values
αd = 76.91(5)a3

0 and αq = 206(9)a5
0 . When the uncertainty in

the calculation of kd is taken into account the values we obtain
are αd = 76.9(3)a3

0 and αq = 206(9)a5
0 . As we shall discuss

shortly, we believe these values to be upper and lower bounds
to αd and αq .

V. DISCUSSION

Tables VIII and IX show values of αd and αq from this work
and other experimental and theoretical work. The uncertainties
for our values represent the uncertainties from the fits of the
data to the two models. The values labeled ae are from the
adiabatic expansion method, Eq. (9), and the values labeled
dc are from the direct calculation method, Eq. (14). There are
three experimental results for αd to which we can compare
ours. The value of Ref. [8] is based on the measurement of
the 4snf → 4sng intervals. The analysis of these data relied
heavily on a more complex theoretical model, which was
probably inadequate to represent the 4sng states. The value of
αd given in Ref. [18] was obtained by assuming that the 4snh

quantum defects arise solely from the dipole polarizability
and applying the adiabatic core polarization model. Since the
quadrupole polarizability is small and the nonadiabatic effect
on the dipole polarization cancels its effect to some extent, this
approach yields a value for αd close to the value we obtained
from Fig. 9. In Ref. [19] lifetime measurements of the Ca+ 4pj

states were used to obtain the oscillator strengths of the
4s − 4pj transitions, taking into account the small branching
ratios for decay to the 3dj states. The oscillator strengths of
the 4s − 4pj transitions were then used to calculate the value

TABLE IX. Ca+ 4s quadrupole polarizability (αq ) obtained from
this work and other theoretical results.

αq (a5
0 )

This workae 1590(40)
This workdc 206(9)
Theory [16] 871(4)
Theory [20] 875.1
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of αd . The resulting value of αd is too small due to the neglect
of higher-lying Ca+ Np states and the dipole polarizability of
Ca++, but when this omission is taken into account it is
consistent with our value for αd . The theoretical values for αd

from Refs. [16] and [20] fall within our experimental bounds
given in Eq. (15), while the theoretical value of Ref. [21] is
clearly outside the bounds.

As shown in Table IX, our value for αq obtained by the
adiabatic expansion method is twice the theoretical value,
and the value obtained by the direct calculation method is
a factor of 4 smaller than the theoretical value. Since a large
fraction, two-thirds, of the quadrupole polarizability is due
to the Ca+ 3d states, an alternative check of the calculated
quadrupole polarizability is the lifetime of the Ca+ 3d state,
which decays by quadrupole radiation. The measured lifetime
is in good agreement with the calculated lifetime, supporting
the validity of the calculation of αq . It is worth noting that
if the value of kd for the 4snh states is reduced to 98.35%
of the current kd value we would obtain αd = 75.3(1)a3

0
and αq = 878(15)a5

0 , in excellent agreement with the recent
theoretical values. In view of the sensitivity of the direct
calculation approach to the numerical calculations of kd and the
large discrepancy between our value of αq and the theoretical
values, we view the direct calculation values of Tables VIII
and IX as upper and lower bounds for αd and αq , respectively.
As a consequence, we report bounds for αd and αq . Explicitly,

75.3a3
0 < αd < 76.9a3

0 (15)

and

206a5
0 < αq < 1590a5

0 . (16)

Our ability to specify αd and αq is limited by our confidence
in the core polarization models. Two experimental avenues can
be explored to minimize this problem. The first is measuring
higher � intervals in which the nonadiabatic corrections are
not as large, as done by Lundeen et al. for other atoms [22].
The second is high-resolution laser spectroscopy of the Ca
4snd 1D2 states. Absolute measurements of their energies,
good to 10 MHz, would locate the 4snd levels relative
to the hydrogenic n� levels. The microwave measurements
reported here could then be used to locate the Ca 4sn� levels
relative to the H n� levels, and the present data could then

be analyzed in terms of the displacements of the energies
from the hydrogenic levels, instead of the differences in the
displacements. The 4snh states could be dropped from the
analysis, substantially reducing the uncertainty due to the non-
adiabatic corrections.

Making measurements involving higher � states should
minimize the nonadiabatic effects, allowing a better deter-
mination of the polarizabilities. However, it is not obvious
that the discrepancy between the theoretical and experimental
values will disappear. Intervals between the high � Ba 6sn�

levels have been measured, but the value of αq extracted by
the direct calculation method is a factor of 2 smaller than the
theoretical value, a similar discrepancy to that reported here
for Ca [23]. Determining the source of these discrepancies is
a worthy theoretical challenge.

VI. CONCLUSION

We have measured �� intervals of Ca 4snf → 4sn�,
18 � n � 23, and 4 � � � 7 using a microwave and rf
resonance approach. We have used these measurements to
place bounds on the Ca+ dipole and quadrupole polariz-
abilities. The Ca+ 4s dipole and quadrupole polarizabilities
are 75.3a3

0 < αd < 76.9a3
0 and 206a5

0 < αq < 1590a5
0 . The

Ca+ 4s dipole polarizability agrees well with recent theoretical
values. However, we are not able to place tight bounds on the
Ca+ 4s quadrupole polarizability due to uncertainties in the
core polarization analyses. We hope this work will motivate
theoretical work to reexamine the problem of core polarization
analysis and, more generally, the source of the discrepancy
between the experimental and theoretical values of αq .
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