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Multipartite entanglement constitutes one of the key resources in quantum information processing. We exploit
correlation tensor norms to develop a framework for its experimental detection without the need for shared
frames of reference. By bounding these norms for partially separable states and states of limited dimension,
we achieve an extensive characterization of entanglement in multipartite systems in an experimentally feasible
way. Furthermore, we show that both bi- and multipartite dimensionality of entanglement can be revealed by our
methods.
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I. INTRODUCTION

Multipartite entanglement appears to be the paradigmatic
resource behind numerous quantum algorithms [1] and the
very speed up of quantum computation itself [2,3]. While the
exact role of this ubiquitous feature in quantum computing is
still heavily debated [4,5], much effort has been put into the
characterization of entanglement in multipartite systems (see,
e.g., [6–9]) and its experimental verification [10].

It is known that the complexity of faithfully telling whether
a given quantum state is entangled is a hard problem, unlikely
to yield an efficiently computable solution [11]. Furthermore,
the number of measurements required to fully characterize
a given quantum state scales exponentially with the number
of systems. Consequently, most effort in the detection of
multipartite entanglement has been directed towards entan-
glement witnesses or similar sufficient criteria for revealing
entanglement [9,10]. While being very efficient in terms
of required measurements, these witnesses require a good
agreement on a shared frame of reference to be successful.

In this paper, we want to address these challenges by
showing that local unitary invariant norms of correlation
tensors can be used to reveal even the strongest form and
the dimensionality of entanglement in multipartite systems.
While these norms would require an exponential amount of
measurements, they can be efficiently lower bounded just by
performing a selected subset of measurements. This hybrid
approach yields efficient entanglement witnesses that do not
rely on shared reference frames. They rely only on correlation
between observables in separated parties and are built in a
sequential way, such that one can collect data until a sufficient
number is reached and entanglement is verified. Revealing
entanglement from correlation tensor norms has previously
been studied in the bipartite case [12–15], used for determining
nonfull separability in multipartite states [16–18] and shown
to be able to reveal multipartite entanglement in tri- and four-
partite systems [18]. In this paper, we present the successful
detection of multipartite entanglement for any number of
systems and the detection of (multipartite) entanglement
dimensionality using correlation tensor norms. These results
show that one can conclude genuine multipartite entanglement
directly from local unitary invariant purity distributions of the
multipartite states.

To embark on that endeavor, let us first define the relevant
concepts.

II. DEFINITIONS AND NOTATION

Pure states (i.e., projectors) are defined to be k separable if
they can be written as a k-fold tensor product, |�〉〈�|k−sep =
|φ1〉〈φ1| ⊗ |φ2〉〈φ2| ⊗ · · · ⊗ |φk〉〈φk|. Quantum states that can
be decomposed into k-separable projectors, i.e., ρk−sep =∑

i pi |�i〉〈�i |k−sep, are called k separable themselves as
they can be produced from sharing k-separable states and
performing local operations aided by classical communication
(LOCC). The strongest form of entanglement in multipartite
systems is thus given by states which are not even 2 separable,
and they are commonly referred to as genuinely multipartite
entangled (GME).

A. Correlation tensor and Bloch vector decomposition

The Bloch vector decomposition offers a convenient way
to write a density matrix in terms of expectation values and
correlations of local observables. We can express a general
n-partite qudit state as

ρ = 1

dn

d−1∑
i1,i2,...,in=0

Ti1,i2,...,in

n⊗
k=1

λik , (1)

where we have used suitably normalized generators of the
SU(d) that fulfill

Tr[λiλj ] = dδij , (2)

and λ0 = 1d . It follows that the tensor elements are simply
given by

Ti1,i2,...,in = Tr

[
ρ

n⊗
k=1

λik

]
. (3)

B. Lower order correlation tensors

The state of a subsystem ρα = Trα[ρ] containing systems
α ⊆ {1,2, . . . ,n} is completely determined by the tensor
elements where all indices that are not part of α are set
to zero. This yields a natural division of T into subsystem
correlation tensors, which encode correlations between all
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nontrivial observables within α, i.e., T = ∑
α⊆{1,2,...,n} τα . We

will focus our attention on the full-body tensors τ1,2,...,n,
henceforth denoted simply as τ . The regular 2 norm of these
tensors is given as

||τ (ρ)|| :=
√√√√ d−1∑

i1,i2,...,in=1

T 2
i1,i2,...,in

, (4)

where the summation index now starts with 1 to exclude all
elements referring to identities in any number of subsystems.
Using our convention to label the full-body correlation tensor
norms of subsystems is thus straightforward:

||τα(ρ)|| := ||τ (Trα[ρ])||. (5)

We have chosen the 2 norm of correlation tensors as it carries
the advantage that it can be efficiently lower bounded by
looking only at a subset of correlations.

III. RESULTS

Our first main result concerns the detection of non k

separability from the 2 norm of the full-body correlations
alone.

Theorem 1. For all k-separable states, the 2 norm of the
full-body correlation tensor is bounded from above by

||τ (ρk−sep)|| �
√

(d2 − 1)k
(
d� n

k
�−2

)R(
d� n

k
	−2

)k−R
, (6)

with R = n − k� n
k
	.

The proof is rather straightforward and can be summarized
in a few words (the detailed derivation is presented in the
Appendix for the readers convenience): Since the 2 norm of
the correlation tensor is convex in the space of density matrices,
it is sufficient to bound the maximal norm for a k-separable
pure state. For those, the norms are multiplicative under tensor
products, so one only needs to find the maximal 2 norm of
general states and then find the maximal product among all
possible k partitions of n.

These bounds enable reliable and robust detection of
entanglement for general n and even detection of GME for
n = 3. However, most multipartite entangled states cannot be
revealed from full-body correlations alone and indeed this
theorem fails at providing a detection criterion for verifying
Greenberger-Horne-Zeilinger (GHZ), cluster, or W-state types
of entanglement for n > 3. Hence, when using the correlation
tensor norm for the case k = 2, i.e., the detection of GME,
we need to include lower-order correlation terms as well.
For that purpose, we adopt the shorthand notation Cx(ρ) :=∑n

m=x

∑
|α|=m ||τα||2 and find the following:

Theorem 2. For states separable for a given (bi-)partition
(k1|k2) : k1 + k2 = n, the sum of all squared m-body correla-
tion tensor norms from x to n is bounded by

Cx(ρ2−sep) � (dk1 − 1)(dk2 − 1) +
∑
kj �x

(dkj − 1). (7)

The basic proof behind this theorem makes use of the
same concepts as before; however, now deciding which of
the bipartition bounds is the largest depends on the cutoff (or
inclusion) parameter x (more details can again be found in the
Appendix). In principle, simple combinatorial considerations

are sufficient to calculate the bounds for any x, so we now
focus on two particularly useful cases.

IV. APPLICATION: ENTANGLEMENT DETECTION

A. The absolutely maximally entangled (AME) state

Corollary 1. For biseparable states (i.e., k = 2), the sum of
all squared m-body correlation tensor norms from n

2 + 1 to n

is bounded by

C n
2 +1(ρ2−sep) � dn − d. (8)

Using Corollary 1, we can already state one of the main
implications of the bounds: For every number of parties n,
there exists a GME state that is detected by Eq. (A17).

As an exemplary case, we can point to the maximally
multipartite entangled state (MMES) [19], also known as
absolutely maximally entangled (AME) state [20–22]. These
are states whose marginals (i.e., reduced density matrices) are
maximally mixed for all reductions smaller or equal to n

2 .
Using that Tr(ρ2) = 1

dn (
∑n

m=0

∑
|α|=m |τα|2) = 1, this directly

implies that

C n
2 +1(ρAME) =

n∑
m= n

2 +1

∑
|α|=m

|τα|2 = dn − 1, (9)

and thus the AME states violate the biseparable bound for
every n. Despite the inclusion of numerous correlation tensors,
to violate the bound only dn − d + 1 correlations need to be
ascertained, which is still less than the square root of a state
tomography (which would require d2n − 1 correlation terms).

B. Detecting non-biseperability

Another case which turns out to be very useful is the case
of including just the (n − 1)-body correlations to the full-body
correlation tensor. Here we find the following:

Corollary 2. For biseparable states, the sum of all squared
m-body correlation tensor norms from n − 1 to n is bounded
by

Cn−1(ρ2−sep) � max[A,B] (10)

where A = dn − 2d
n
2 + 1 and B = (d − 1)(dn−1 − 1) +

dn−1 − 1 − n
n−1 (dn−3 − 1).

C. Graph states

Now that we have established bounds on correlations for
different types of separable states, we proceed by illustrating
our method for exemplary cases and discuss how one would
apply these criteria in a typical experimental scenario.

We want to start this discussion using a highly relevant state
in measurement-based quantum computation. For the sake of
simplicity, let us commence with the first nontrivial case of
four qubits and a qubit cluster state on a square lattice. First
we start by simply computing the norms of the correlation
tensors one would expect to be present when trying to
create this state in a laboratory. Indeed, for all stabilizer states,
this proves to be very easy, as the only nonzero correlation
tensor elements in m-body correlation tensors correspond to
m-body stabilizers and each have a value of 1. This facilitates
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the computation of all tensor norms and, in our case, yields
the following: ||τ1,2,3,4||2 = 5, ||τ1,2,3||2 = 2, ||τ1,2,4||2 = 2,
||τ1,3,4||2 = 2, and ||τ2,3,4||2 = 2. A quick check with Eq. (A6)
reveals that even if one managed to perfectly engineer the state,
the biseparable bound for the full-body correlation tensor is
9, such that it would not be detected. Using Eq. (10) and
including the three-body correlations, we find that the bound
now reaches 37/3. So summing up the three-body correlation
tensor norms and including the full-body correlations, we
reach a value of 13. This implies that we can detect this state
to be multipartite entangled from local unitary invariants alone
(albeit with a rather small noise robustness in this case). Instead
of measuring the full three- and four-body correlations, one
can concentrate on exactly the elements which according to
the initial calculation should be nonzero. As mentioned before,
any element ascertained yields a lower bound on the norm of
the tensor (as the full norm is the sum of the squared elements).
In case of an imperfect alignment of reference frames, there
is a chance that expected correlations are not found and one
needs to continue measuring element by element until the
lower bound exceeds the separable bound and thus proves
entanglement.

D. Noise resistance

A typical benchmark in testing entanglement criteria is
illustrating the resistance to the worst kind of possible noise.
Since the criterion relies only on correlations, it is obvious that
the noise that is most detrimental to tensor-norm-type criteria
is clearly a state without any correlation whatsoever, i.e., white
noise. In Fig. 1, we illustrate the criterion for x = 2 and ρp =
p ∗ |GHZ3〉〈GHZ3| + 1−p

27 127, where |GHZ3〉 = 1√
3
(|000〉 +

|111〉 + |222〉) is the three-dimensional generalization of the
Greenberger-Horne-Zeilinger state.
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FIG. 1. (Color online) Here we illustrate the noise resistance of
the entanglement detection criterion derived from Eq. (10). For

a value of p >

√
2
5 , the three-dimensional generalized GHZ state

mixed with white noise is detected to be entangled, and for p >

√
4
5

it is detected to be genuinely multipartite entangled. Compared to
the noise resistance of witnesses directly tailored towards detecting
exactly this state, the exhibited noise resistance is of course rather
weak (e.g., compared to p > 1

4 from Ref. [6]), which is the price to
be paid for local unitary invariance. On the other hand, the witnesses
designed to detect exactly this state would inevitably fail if the state
undergoes a local unitary rotation in just one of the subsystems.

V. APPLICATION: DIMENSIONALITY WITNESS

Beyond merely detecting whether a given quantum state is
entangled, there has been some recent interest in describing
features of entangled states relating to the necessary dimension
needed for producing the correlations of a given state.
For bipartite systems, this entanglement dimensionality is
known as the Schmidt number [23] and is still subject to
research [24]; recently, many experiments have proven the
capability to produce high dimensionally entangled state in
the laboratory [25,26].

In multipartite systems, one can collect all necessary
local ranks in a rank vector [28] and classify multipartite
entanglement according to the required rank vectors in the
decomposition [6]. A special case of this is given by the
dimensionality of multipartite entanglement [27], defined as
the minimum Schmidt rank across every bipartition, which can
also be extended via convex roof constructions.

We continue by also proving a relation between correlation
tensor norms and the dimensionality of entanglement, both
in the bipartite and multipartite case. Here the local unitary
invariance of the tensor norms facilitates the construction
of entanglement dimensionality witnesses. For multipartite
systems, we present the following theorem:

Theorem 3. For multipartite entangled states that can be
decomposed into pure states with local ranks of (k1,k2, . . . ,kn),
the correlation tensor can be bounded by

C2
(
ρ(k1,k2,...,kn)

)
� dn + n − 1 −

∑
i

d

ki

. (11)

This theorem is a consequence of the fact that any pure
state with a bounded local Schmidt rank has nonzero local
tensor norms, ||τi ||2 � d

ki
− 1. This theorem can be readily

generalized to also include marginals of more than one
system (required to ascertain genuine multipartite entangle-
ment dimensionality of systems beyond n = 3) and enables
the detection of the dimensionality structure of multipartite
entanglement. As an application, let us consider the question
of whether a given tripartite state |ψ〉 can be decomposed
into multipartite entangled states with a Schmidt (or dimen-
sionality) vector of (2,2,3). The canonical overlap witness
construction from Ref. [10] would yield a witness for this set
given by

W(2,2,3) := α1 − |ψ〉〈ψ |, (12)

with α := max|φ〉∈(2,2,3) |〈φ|ψ〉|2. There is no known method
to calculate such α, as the problem is a generalization of
calculating a variant of the geometric measure of entangle-
ment [29]. One way to detect such states through a different
approach was presented in Refs. [6,30], requiring exact
knowledge of the local observables. With our criterion, we can
immediately detect that the state |ψ1〉 := 1√

6
(|000〉 + |111〉 +

|012〉 + |102〉 + |120〉 + |021〉), which belongs to (2,3,3), is
not in (2,2,3), as C2[|ψ1〉〈ψ1|] = 25.5 and from Eq. (11) we
know that the bound for (2,2,3) states is 25.

VI. EXPERIMENTAL REALIZATION

Before concluding, let us briefly discuss how an experimen-
tal estimation of the correlation tensor norms would look in
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practice. First one would measure in one basis with d outcomes
locally. These measurement results can be used to define the
diagonal part of the generators of the SU(d) and record all
corresponding correlation elements with just one local setting.
This can potentially already reveal some information about
the achieved alignment, but instead of continuing to align one
would proceed to measure dichotomic observables that are
made up from superpositions of two eigenstates of the first
local basis. With each measured correlation, the norm can
be updated (as the sum over all squared elements can easily
be lower bounded by a partial sum) until the corresponding
separability bound is violated and entanglement is certified. A
natural candidate for such a procedure is, e.g., photonic orbital
angular momentum entangled states (as, e.g., in [26]). Here one
could first locally measure Laguerre-Gauss (LG) [31] modes
with a mode sorter [32] and then proceed to use spatial light
modulators (SLM) for the two-dimensional subspace measure-
ments that provide all necessary values for the symmetric and
antisymmetric λi .

VII. CONCLUSION

The analysis of our bounds on correlation tensor norms for
different sets of states have shown that these experimentally
readily accessible norms can be used to characterize many
important features of multipartite quantum states. They can
reveal whether a given state in an experimental setup can be
produced via k-separable states from LOCC, reveal genuine
multipartite entanglement, and even completely characterize
entanglement dimensionality in multipartite systems, where
the canonical approaches fail. Because some of the bounds
obtained are rather crude and surely leave room for improve-
ment we hope that this paper sparks renewed efforts into
characterizing correlation tensors under different separability
and dimension constraints.

The experimental advantages of such approaches is mani-
fest when a perfect alignment of reference frames is not possi-
ble, which, especially for many parties at distant locations,
can provide a substantial advantage. To be experimentally
feasible, however, the correlations should still be concentrated
in as few elements as possible. If the correlations were
spread thinly such that one would require almost a full
state tomography, one could just use different criteria that
make use of the full density matrix, without sacrificing
noise resistance for local unitary invariance. Here one could
study the performance of randomly chosen measurements and
compare the results to the probabilistically reference frame
alignment free approaches to nonlocality from Refs. [33–35].
To perform even better, one should exploit that there are
simple rules one could follow in order to exclude further
measurements once significant correlation values are found.
This sequential measurement scheme allows for process
optimization. For example, once it is ascertained that the
correlation between 〈λi ⊗ λj 〉 ≈ d − 1, one can already ex-
clude all measurements of 〈λi ⊗ λ′

j 〉 and 〈λ′
i ⊗ λj 〉. An open

challenge is the development of more sophisticated techniques
that improve the efficiency of sequential correlation tensor
acquisition.
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APPENDIX

1. Bounding the norm of a single full-body
correlation tensor: Derivation

Our first approach is focusing on the full-body correlation
tensor τ . We aim to find an upper bound of this tensor for the 2
norm and for partially separable states. In particular, we want
to solve

max
σ∈k−SEP

||τ (σ )||, (A1)

where k − SEP denotes the set of k-separable states. Due
to the convexity of the norm, it is sufficient to look at the
extremal elements of the set, i.e., pure states. Furthermore,
due to the multiplicativity of the norms of product states, the
above optimization boils down to

max
σ∈k−SEP

||τ (σ )|| = max
{ταi

}|(⋃̇iαi )={1,2,...,n}

∣∣∣∣τα1

∣∣∣∣ × ∣∣∣∣τα2

∣∣∣∣
× · · · × ∣∣∣∣ταk

∣∣∣∣. (A2)

We are interested in the achievable unconstrained maximum of
the full-body correlation tensors for any number of particles.
Before deriving any bounds, we want to make a simple yet
important observation.

Observation 1. We express ρ in the basis of generalized
Pauli operators obtaining

Tr(ρ2) = 1

dn
(1 + ||T ||2) = 1

dn

(
1 +

∑
α

||τα||2
)

. (A3)

This observation yields a direct connection between the
trace of the squared density matrix and the correlation tensor
norm, which will prove to be very useful. A simple upper
bound on the 2 norm can be found via our observation and the
fact that the tensor norms are again maximized by pure states,
implying Tr[ρ2] = 1 and, in turn,

1

dn

(∑
α

||τα||2 + 1

)
= 1, (A4)

and thus ||τ || �
√

(dn − 1). The fact that this is already useful
can be seen, e.g., for three qubits, where the bound for
biseparable states is

√
3 and the GHZ state has a norm of

2 and is thus detected to be genuinely multipartite entangled.

a. Bound for equipartitions

We establish a lemma that will be used constantly through
the text. In essence, it describes, for any k partition of a set,
which partition maximizes the norm, depending only on a few
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basic properties of the upper bounds on the individual norms.
Generically, such multiplicative bounds favor equipartitions:

Lemma 1. If we have an upper bound f (|β|) on ||τβ ||
depending on the cardinality |β| of the multi-index β,
y ∈ N that satisfies f (|β|)2 � f (|β| + y)f (|β| − y) and a
k-separable state, we can bound norms of the k-partitions
correlation tensor βi by∣∣∣∣τβ1

∣∣∣∣ × ∣∣∣∣τβ2

∣∣∣∣ × · · · × ∣∣∣∣τβk

∣∣∣∣
�

√[
f

(
�n

k
�
)]R[

f

(
�n

k
	
)]k−R

, (A5)

with R = n − k� n
k
	.

Proof. Let |β| = x, |β ′| = x + y, |β ′′| = x − y, and γ

arbitrary large for x,y ∈ N.
Then, for any function of a tensor norm with f (x)2 �

f (x + y)f (x − y), we trivially get

||τβ ′ || × ||τβ ′′ || × ||τγ ||
||τβ || × ||τβ || × ||τγ || � f (x + y)f (x − y)||τγ ||

f (x)2||τγ || � 1.

Therefore, k partitions of equal size yield the maximal value.
However, if n/k is not a natural number, we may not be able

to choose all partitions to be equal. Note that the above case
includes all partitions where the difference in size between
two partitions ||β ′| − |β ′′|| = 2y is larger than one and we can
apply the observation above.

However, we have yet to discuss the special case of the
partition sizes differing by one. All partitions of the largest
partitioning have to be either of size � n

k
	 or � n

k
�, otherwise

we could apply the above argument. R = n − k� n
k
	 is the

remainder of the division of n by k. In order to make sure
all partitions sum up to n exactly, R can be larger by one
element than the remaining ones, proving our claim. �

The purity bound is by no means the only possible function
that we can insert above for f . We will provide several different
sensible choices later in the text, but we start by using (A4) as
the simplest choice, obtaining the following corollary.

Corollary 3. If we have a k-separable state, we can bound
norms of the k-partitions correlation tensor βi by (A4),
obtaining ∣∣∣∣τβ1

∣∣∣∣ × ∣∣∣∣τβ2

∣∣∣∣ × · · · × ∣∣∣∣τβk

∣∣∣∣
�

√(
d� n

k
� − 1

)R(
d� n

k
	 − 1

)k−R
, (A6)

with R = n − k� n
k
	.

Proof. The corollary follows from (A6) by using the purity
bound (A4), f (x) = dx − 1. We calculate f (x)2 = d2x −
dx + 1 � d2x − dx+y − dx−y + 1 = f (x + y)f (x − y), thus
checking that our condition on f is fulfilled. �

The upper bound above is derived using only the assumption
of purity and k separability. We emphasize that the norms
above are convex and the maximum is therefore taken at the
boundary of the set of states, i.e., the pure states. Any mixed
state lies in the interior of the set of states and could only
achieve smaller values. This means that if a state’s full-body
correlation tensor violates the above inequality, this state
cannot be k separable.

b. Improving the purity bound

The bound given is not tight, as this would require pure
states with all correlations concentrated in the full-body
correlation tensor. The fact that this is not possible is a simple
consequence of the fact that the entropy of different partitions
of pure states need to be equal and thus the higher-order
correlations below n can generically not all be zero. Building
upon this simple argument, we try to improve our bound in
this section by modifying (A4),

||τ ||2 = dn − 1 −
∑

|β|<|α|
||τβ ||2. (A7)

Any lower-order correlation tensor element that has nonzero
norm will allow us to subtract something from dn − 1. At least
for the (n − 1)-body correlation tensor, we can say something
nontrivial by using the Schmidt decomposition.

We establish a first improved bound out of the purity
condition.

Theorem 4. For the full-body correlation tensor τ of a state
ρ,

||τ ||2 � dn−2(d2 − 1). (A8)

Proof. As a consequence of the Schmidt decomposition,
any two bipartitions of a pure state have the same entropy,
regardless of the entropy we use. In our case, it proves to be
helpful to consider the special case of linear entropy, yielding

2
[
1 + Tr

(
ρ2

α/j

)] = SL(ρα/j ) = SL(ρj ) = 2
[
1 + Tr

(
ρ2

j

)]
.

(A9)

The choice of the linear entropy is motivated by the fact that a
correlation tensor can be expressed in terms of Tr(ρ2) = 1

d
(1 +

||T ||2) due to (A3), allowing us to write out the condition that
ρ is a pure state,

1

d
� Tr

(
ρ2

j

) = Tr
(
ρ2

α/j

) = 1

dn−1

⎛
⎝ ∑

β⊆{1,...,n}/j
||τβ ||2 + 1

⎞
⎠ ,

(A10)

or rewriting the above to bound the lower-order correlation
tensor elements, ∑

β⊆{1,...,n}/j
||τβ ||2 � dn−2 − 1. (A11)

We insert this in (A7), obtaining ||τ ||2 � dn−2(d2 − 1). �
This stronger bound can be inserted in the proof of the

equipartition bound (A5) to obtain a stronger result.
Corollary 4. If we have a k-separable state, we can

bound norms of the k-partition correlation tensor βi by (A4),
obtaining∣∣∣∣τβ1

∣∣∣∣ × ∣∣∣∣τβ2

∣∣∣∣ × · · · × ∣∣∣∣τβk

∣∣∣∣
�

√
(d2 − 1)k

(
d� n

k
�−2 − 1

)R(
d� n

k
	−2 − 1

)k−R
, (A12)

with R = n − k� n
k
	.

Proof. The corollary follows from (A6) by using (A8). We
calculate f (n)2 = d2n−4(d2 + 1)2 = d2n+y−y−4(d2 + 1)2 =
f (n + y)f (n − y), thus checking that our condition on f is
fulfilled. �

042339-5
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By using some basic combinatorial argument, it is possible
to further improve the bound:

Theorem 5. For all non-full-body correlation tensors τ of
states ρ,

||τ ||2 � dn − n(dn−2 − 1)

(n − 1)
. (A13)

Proof. By applying (A11), we get

n∑
j=1

∑
β⊆{1,...,n}/j

||τβ ||2 � n(dn−2 − 1). (A14)

We turn the above into an improvement by observing∑
j

∑
β⊆{1,2,...,n}/j

||τβ ||2 =
∑

|β|=n−1

||τβ ||2 +
∑

|β|=n−2

2||τβ ||2+ · · ·

+
∑
|β|=1

(n − 1)||τβ ||2. (A15)

The fact that the equality above holds can be seen by
a short combinatorial argument. Some of the terms in∑

β⊆{1,2,...,n}/j ||τβ ||2 will occur multiple times while sum-
ming over j . Let us consider the ith coefficient τβi

with
|βi | = k; this index will occur once in each of the inner
sums

∑
β⊆{1,2,...,n}/j ||τβ ||2 with βi ⊆ β. To count the β

containing βi , we fix the k components equal to βi out
of |{1,2, . . . ,n}/j | = n − 1, leaving us to pick n − 1 − k

elements. The components of β can take n different values, but
they may not repeat themselves; by fixing k of them, we are
left to choose from n − k elements. Clearly, this means that an

index of cardinality k will occur (
n − k

n − k − 1) = n − k times,

proving our observation.
The combination of (A14) and (A15) shows

n(dn−2 − 1)

(n − 1)
�

∑
|β|=n−1

1

(n − 1)
||τβ ||2 +

∑
|β|=n−2

2

(n − 1)
||τβ ||2

+ · · · +
∑
|β|=1

||τβ ||2 �
∑

|β|<|α|
||τβ ||2, (A16)

which, by inserting this in (A7), proves our theorem. �
This is, of course, only an improvement for small n.

Asymptotically, it scales equal to the above bound in Eq. (A8).
In any case, we have found two stronger bounds [(A8)

and (A14)] than our initial purity bound (A4). We can apply
these instead of the weaker bound in (A6).

2. Bounding the norm of sums of correlation tensors: Derivation

In the first part of the appendix, we have derived bounds for
the full-body correlation tensor. This serves for developing wit-
nesses of states that have concentrated full-body correlations.
However, concentrating all correlations in only the full-body
tensor is a very extreme case of concentrated correlations
and not achievable beyond n = 3. This motivates our second
approach, where we derive bounds for states exhibiting most
correlations in the “higher” tensors, but not only in a single
one (for an example of such a state, refer to the case of the
AME state, which we discuss at the very end).

Theorem 6. For 0 � x < n, the cutoff x ∈ N, τα is the
correlation tensor of ρ, α is a multi-index denoting an n partite
biseparable (under the partition {β,β}) qudit system, |β| = k1

and |β| = k2 with k1 + k2 = n, and the inequality

Cx(ρ) : =
n∑

m=x

∑
|α|=m

|τα|2 = (dk1 − 1)(dk2 − 1) +
∑
kj �x

(dkj − 1)

(A17)

holds.
Proof. We split the sum of all correlation tensors into those

containing at least an element of β and β and those only
containing elements from their respective partition,

n∑
m=x

∑
|α|=m

|τα|2 =
n∑

m=x

⎛
⎝ ∑

|α|=m∧α⊆β

|τα|2 +
∑

|α|=m∧α⊆β

|τα|2

+
∑

|α|=m∧α�β∧α�β

|τα|2
⎞
⎠ . (A18)

We use the multiplicativity of the tensor norm, the purity (A4),
and the biseparability bounding

n∑
m=x

∑
|α|=m∧α�β∧α�β

|τα|2 � (dk1 − 1)(dk2 − 1). (A19)

However, for the terms not containing an index of β and β,
we cannot make use of the separability. We can still apply the
purity bound. Take note that (A4) can be used for sums of
tensors, therefore bounding the sum of a multi-index and all
other terms contained in the multi-index by a single application
of the purity bound. In each bipartition, there is one maximal
remainder term of cardinality n − ki containing all other terms.
Therefore, for each bipartition, we get a bound

n∑
m=x

∑
|α|=m∧α⊆β

|τα|2 �
{

(dk1 − 1) for k1 � x

0 for k1 < x,
(A20)

n∑
m=x

∑
|α|=m∧α⊆β

|τα|2 �
{

(dk2 − 1) for k2 � x

0 for k2 < x.
(A21)

�
If we use the trivial cutoff x = 0, this results in
n∑

m=0

∑
|α|

|τα|2 � (dk1 − 1)(dk2 − 1) + (dk1 − 1) + (dk2 − 1)

= dn − 1,

which is unfortunately a trivial result for all pure states.
To avoid the trivial bound above, we have considered the
possibility of disregarding some of the lower-order cor-
relation tensors. First we note that by (A4) we get, for
example, ||τAB ||2 � (d2 − 1) as well as, surprisingly, for
||τAB ||2 + ||τA||2 + ||τB ||2 � (d2 − 1). The purity condition
bounds a complete sum of correlation tensors, including all
multi-indices up to a chosen order; therefore the erasure of
lower-order correlation terms does not affect the purity bound.
Surprisingly, it is important to omit all terms containing a given
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index of the remainder term in order to achieve a reduction
after application of the purity bound. For ki smaller than xi ,
we simply omit the corresponding positive term (dki − 1),
obtaining our statement.

We proceed with a quick discussion of the role of the cutoff
parameter x and its relation to the size of the two partitions
k1,k2. We assume a bipartite state, and therefore we only have
to consider the following three cases:

(i) x < k1,k2. Since x is smaller than any partition size and
the the purity bound is invariant to the omission of lower-order
correlation tensor elements, we only arrive at the trivial purity
bound dn − 1.

(ii) k1 � x < k2. In this case, (A17) reads dn − dk1 . The
maximal value of this bound is achieved in the case of k1 = 1
and k2 = n − 1, yielding dn − d.

(iii) k1,k2 � x. (A17) reads dn − dk1 − dk2 + 1; this value
is maximized whenever |k1 − k2| is minimal, dn − d� n

2 	 −
d� n

2 � + 1.

3. Bounds for entanglement dimensionality detection

In this paragraph, we take a different viewpoint on (A17)
in order to use it as an entanglement dimensionality witness.

Theorem 7. For n-partite multipartite entangled states that
can be decomposed into pure states with local one-party
ranks [28] of (k1,k2, . . . ,kn),

C2
(
ρ(k1,k2,...,kn)

)
� dn + n − 1 −

∑
i

(
d

ki

)
. (A22)

Proof. We write out C,

C2
(
ρ(k1,k2,...,kn)

) =
n∑

m=2

∑
|α|=m

|τα|2 +
∑

i

|τi |2

︸ ︷︷ ︸
dn−1

−
∑

i

|τi |2︸︷︷︸
� d

ki
−1

= dn + n − 1 −
∑

i

(
d

ki

)
,

(A23)

where we made use of the purity and the fact that any operator
of dimension k with positive eigenvalues and trace equal to
one can only have a squared trace as low as 1

k
. �

4. The AME state

a. Definition

Definition 1. An absolutely maximally entangled (AME)
state is defined as a pure n-party state, with reduced density
matrices equal to the maximally mixed state for every partition
that is smaller than or equal to n

2 .

b. Detectability of the AME due to our bound

We know that for |α| � n
2 , the correlation tensor elements

fulfill ||τα|| = || Tr(λ1 ⊗ · · · ⊗ λn
1
d
1)|| = 0 by definition of

the AME. The AME is pure, thus,

1 = Tr
(
ρ2

AME

)
= 1

dn

⎛
⎝1 +

∑
m> n

2

∑
|α|=m

∣∣∣∣τAME
α

∣∣∣∣2 +
∑
m� n

2

∑
|α|=m

∣∣∣∣τAME
α

∣∣∣∣2
⎞
⎠

= 1

dn

⎛
⎝1 +

∑
m> n

2

∑
|α|=m

∣∣∣∣τAME
α

∣∣∣∣2 + 0

⎞
⎠ (A24)

shows that all nonzero correlations are the correlation tensor
elements of size bigger than n

2 and
∑

m> n
2

∑
|α|=m ||τAME

α ||2 =
dn − 1. This illustrates why our cutoff theorem (A17) is
sensible, setting x = 0 results as well in the trivial bound dn −
1 in (A17); since this coincides with the above, we surprisingly
cannot detect entanglement without an appropriately chosen x.
However if x is large enough, (A17) provides a smaller bound
than (A24), surprisingly allowing us to detect the AME. x

is large enough whenever it is chosen larger than the size of
the smallest partition. By choosing x = n

2 , we can ensure that
there exists a partition smaller than or equal to x.

In the discussion following (A17), we state the possible
values that this bound can achieve, depending on the size of
x,k1,k2. For x = n

2 , the first case is excluded and the maximal
remaining value that can be achieved is dn − d in the case
k1 = 1 < x < kn−1. Comparing the correlation tensor norm
of the AME state dn − 1 to the maximal correlation tensor
norm achievable by a bipartite state dn − d, we get a total
separation of d − 1, allowing for detection of the AME state.

c. Full-body correlation tensor of an AME

We conclude with a short remark on the full-body corre-
lation tensor of the AME, thereby motivating what led us to
derive the above (A17). The first bounds (A8) and (A14) that
we derived are suited for detection of states, whose correlation
is concentrated in the full-body part. Contrary to our initial
hope, the AME is not, in general, such a state since by the
Schmidt decomposition we have

1

d
= Tr

[(
ρAME

j

)2] = Tr
[(

ρAME
α/j

)2]

= 1

dn−1

⎛
⎝1 +

∑
α/j

∣∣∣∣τ 2
α

∣∣∣∣
⎞
⎠ , (A25)

illustrating
∑

α/j ||τ 2
α || = dn−2 − 1. Due to this, we know that

many of the lower-order correlation elements are nonzero. This
makes it plausible that AME states are not, in general, detected
by our bounds containing just the full-body correlation tensor
[(A8) and (A14)], but only by bounds on sums of correlation
tensor elements.
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