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Minimum heat dissipation in measurement-based quantum computation
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We show that at least 2kT ln 2 of heat dissipation per qubit (in the register of a simulated circuit) occurs in
measurement-based quantum computation according to Landauer’s principle. This result is derived by using only
the fundamental fact that quantum physics respects the no-signaling principle.
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I. INTRODUCTION

The search for faster, smaller, and more economical
computers is the central research subject in today’s ever-
growing digital society. Heat generation (or, equivalently,
energy consumption) during computation is one of the huge
obstacles to the above goals, and in fact it has been a
long-standing research topic in the interdisciplinary field
between information and thermodynamics [1–16]. In 1961,
Landauer showed in his seminal paper [1] that an irreversible
process, such as an erasure of data in a memory, inevitably
causes a minimum amount of heat dissipation. More precisely,
the so-called Landauer’s principle says that an erasure of a
single bit of information in a memory causes at least k ln 2
of entropy generation (hence kT ln 2 of heat dissipation or
energy consumption), where k is the Boltzmann constant and
T is the temperature of the environment. Landauer’s principle
has been used not only to exorcise Maxwell’s demon in
thermodynamics [9], but also to establish fundamental limits
of heat generation and energy consumption in irreversible
computations.

Although heat dissipation in quantum computers has not yet
been fully studied [17], its importance will be arguably more
emphasized than that in classical computation given the intrin-
sic decoherence nature of quantum computers. For the circuit
model and the adiabatic model of quantum computation, it
is clear that no heat dissipation occurs (in principle), since
the energy is conserved (i.e., the unitary process). However,
it is not self-evident whether there exist some minimum heat
dissipation requirement for measurement-based quantum com-
putation (MBQC) [18], since projective measurements, which
are not unitary processes, are necessary in the computation.
The purpose of this paper is to study minimum heat dissipation
in MBQC. We show that at least 2kT ln 2 of heat dissipation per
qubit occurs in MBQC according to Landauer’s principle (or
an inequality due to Sagawa and Ueda [10] and the single-shot
version [11]). Interestingly, this result is independent from
any specific physical implementation of MBQC, and is in
fact derived by using only the fundamental fact that quantum
physics respects the no-signaling principle [19]. We will also
see that MBQC with the cluster state [18] already achieves this
minimum heat dissipation limit, and therefore our result is an
achievable lower bound.
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II. NO-SIGNALING PRINCIPLE

The no-signaling principle is one of the most fundamental
principles in physics, and quantum theory also respects it [19].
As is shown in Fig. 1, Alice and Bob share a physical system,
which might be classical, quantum, or even superquantum.
Alice chooses her measurement parameter x (such as the
measurement angle of a spin), and performs a measurement
on her part. She obtains the result a. Bob also chooses his
measurement parameter y, and performs a measurement on
his part. He obtains the result b. The no-signaling principle
(from Alice to Bob) is defined by

P (b|x,y) = P (b|x ′,y) (1)

for all b, x, x ′, and y, where P (α|β) is the conditional
probability distribution of α given β. Equation (1) means
that the change in Alice’s measurement parameter does not
affect the probability distribution of Bob’s measurement
result. In other words, the shared system cannot transmit any
message from Alice to Bob. The no-signaling principle is more
fundamental than quantum theory in the sense that there is
a theory which is more nonlocal than quantum theory, but
respects the no-signaling principle [19].

III. GENERAL MBQC

Measurement-based quantum computation is a new model
of quantum computation that was introduced by Raussendorf
and Briegel [18]. In this model, universal quantum compu-
tation can be done with only the preparation of a highly
entangled quantum many-body state, a so-called resource state,
and adaptive local measurements on each qubit of the resource
state. Here, adaptive means that a measurement basis depends
on the previous measurement results. Hence, in addition to the
resource state, which is a quantum system, we need a classical
computer to process the measurement results (Fig. 2).

The computational power of MBQC is equivalent to the
traditional circuit model of quantum computation, but the
clear separation between the quantum phase (preparation of
the resource state) and the classical phase (local adaptive
measurements) has inspired many new results which would
not be obtained if we stick to the circuit model. For example,
new resource states for MBQC which are closely connected
with condensed-matter physics have been proposed [20–30].
Furthermore, relations between MBQC and partition functions
of classical spin models were pointed out [31–33]. These
discoveries have established a new bridge between quantum
information and condensed-matter physics. MBQC has also
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FIG. 1. (Color online) The no-signaling principle.

offered a new framework for fault-tolerant quantum computing
which achieves a high threshold [34–39]. The quantum-
classical separation in MBQC has enabled us to clarify several
relations between the “quantumness” of a resource state and
the quantum computational power of MBQC on it [40–45].
New protocols of secure cloud quantum computing, so-called
blind quantum computing, were also developed by using
MBQC [46–60].

In the most general framework of MBQC, we first prepare
the resource state σ of N = nm qubits, as is shown in Fig. 3.
Qubits are allocated on sites of the n × m two-dimensional
square lattice, and MBQC simulates a quantum circuit with
a register size n and gate depth m − 1. (More generally, we
can consider a more general graph structure and qudits, but
the generalization is straightforward. For simplicity, we here
consider a two-dimensional square qubit system.) Be careful
that σ is not necessarily the cluster state [18]. We do not assume
any specific resource state as σ . Measurements on all qubits in
the j th layer of σ implement the n-qubit unitary gate Uj . The
initial state of the computation is the n-qubit state ρin, and it is
encoded in the first layer of σ . Let Cr be the set of all qubits
in the first r layers of σ (Fig. 3). We also define Or , which is
the set of all qubits in the last m − r layers of σ (Fig. 3).

According to the standard theory of quantum measure-
ment [61], a measurement process on Cr is described as fol-
lows. First, a correlation between the measurement apparatus
and the system σ to be measured is created:

c∑

j=1

pj
r |j 〉〈j | ⊗ Ej

r (σ ),

where Ej
r is a completely positive trace-preserving (CPTP)

map, and p
j
r is a probability. (Off-diagonal terms are omit-

ted here for simplicity.) Next, the projection measurement
{|j 〉〈j |}cj=1 is performed on the apparatus, which leads to the

postmeasurement state Ej
r (σ ) with the probability p

j
r .

Classical computer

CPU
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Resource state
(Quantum system)

FIG. 2. (Color online) Measurement results on the resource state
are processed on a classical computer.
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FIG. 3. (Color online) The resource state σ for MBQC.

We require that

ρ
j
out,r ≡ TrCr

[
Ej

r (σ )
]

= Bj
r

[
(Ur · · · U1ρinU

†
1 · · · U †

r ) ⊗ ηj
r

]
Bj†

r , (2)

where TrCr
is the partial trace over Cr , Bj

r is an (m − r)n-qubit
unitary operator, and η

j
r is a state of (m − r)n − n qubits. The

reason why we require the form of ρ
j
out,r in that way can be eas-

ily understood if we remember that ρj
out,r must contain the com-

plete information about Ur · · ·U1ρinU
†
1 · · ·U †

r . (If not, we
cannot proceed MBQC with Or ). More precisely, it was shown
in Ref. [62] that any invertible CPTP map can be written as
an application of a unitary operator on the system plus ancilla.
Therefore, the invertible CPTP map,

Hn � Ur · · · U1ρinU
†
1 · · · U †

r �→ ρ
j
out,r ∈ H(m−r)n,

has to be in the form of Eq. (2), where Hd is the d-qubit Hilbert
space. For example, if σ is the cluster state, ηj

r is the n × (m −
r − 1) cluster state, and B

j
r is the operation which applies CZ

gates on the border between Cr and Or , and random Pauli
operators on the (r + 1)th layer.

In particular, after measuring all qubits except for those in
the last layer, the state of the last layer becomes

ρ
j

out,m−1 = B
j

m−1UρinUB
j†
m−1,

with probability p
j

m−1, where U ≡ Um−1Um−2 · · · U2U1. The

operator B
j

m−1 is an unwanted operator, the so-called by-
product operator, but we can correct it if we know j . In such
an MBQC, we say that our desired unitary U is implemented
on ρin up to the by-product B

j

m−1.

IV. MINIMUM HEAT DISSIPATION IN GENERAL MBQC

Now let us show our main result, that at least 2kT ln 2 of heat
dissipation per qubit is necessary in the above general MBQC.
In order to see it, let us consider MBQC between two parties,
Alice and Bob, as is shown in Fig. 4. The resource state σ is
shared between Alice and Bob. Alice possesses the subsystem
Cr and Bob does Or . Alice performs MBQC on her part.
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FIG. 4. (Color online) Two-party general MBQC between Alice
and Bob.

The state immediately before Alice performing the mea-
surement on her apparatus is

c∑

j=1

pj
r |j 〉〈j | ⊗ Ej

r (σ ). (3)

If we trace out Alice’s system, we obtain Bob’s system,

ρBob
out,r ≡

c∑

j=1

pj
r ρ

j
out,r .

Now we point out that ρBob
out,r must be completely in-

dependent from Ur · · · U1ρinU
†
1 · · · U †

r , since otherwise Bob
can gain some information about Ur · · ·U1ρinU

†
1 · · ·U †

r by
measuring ρBob

out,r . If Bob gains some information about

Ur · · ·U1ρinU
†
1 · · ·U †

r , it contradicts the no-singling principle,
because Alice can send some message to Bob by encoding her
message into Ur · · · U1ρinU

†
1 · · · U †

r . In Refs. [62–64], it was
shown that the entropy H (p1

r , . . . ,p
c
r ) of {pj

r }cj=1 must satisfy

H
(
p1

r , . . . ,p
c
r

) ≡ −
c∑

j=1

pj
r log pj

r � 2n (4)

if the map

Hn � ξ �→
c∑

j=1

pj
r B

j
r

(
ξ ⊗ ηj

r

)
Bj†

r ∈ H(m−r)n

works as the completely secure quantum one-time pad en-
cryption for any n-qubit state ξ . Here, the completely secure
quantum one-time pad encryption means that the state ξ after
the map is the completely mixed state from the viewpoint of
the person who does not know the key.

Therefore, Alice has to gain at least 2n bit (or 2n ln 2
nit in the natural base) of information when she measures
her apparatus in Eq. (3). The acquisition of information is
accompanied by the erasure of it. According to Landauer’s
principle, this means that at least 2nkT ln 2 of heat is dissipated
when the data in the memory are erased. Therefore, we
conclude that at least 2kT ln 2 of heat dissipation per qubit
occurs in MBQC.

Landauer’s principle is not a mathematical theorem, but an
“observation” derived from physically reasonable arguments.
In order to obtain a more precise statement, we have to specify
the model. For example, if the erasure model is described by
the thermalization of the memory interacting with a heat bath,
Landauer’s principle can be derived [8]. Recently, Sagawa
and Ueda [10] introduced an inequality which generalizes
Landauer’s principle by assuming the following memory
model: The state of the memory storing the j th result is given
by the canonical state

ρM
j,can = exp

(−HM
j

/
kT

)
/ZM

j ,

where HM
j is the Hamiltonian of the memory if it stores the

j th result and

ZM
j ≡ Tr

[
exp

(−HM
j

/
kT

)]
.

The state of the memory before erasure is given by∑
j pjρ

M
j,can. In order to erase data in the memory, we couple

the memory with the heat bath,

ρB
can ≡ exp[−HB/kT ]/ZB,

where HB is the Hamiltonian of the bath, and

ZB ≡ Tr[exp(−HB/kT )].

The memory plus bath unitary time evolve to the final state
ρMB . Under these assumptions, they derived Weras + �FM �
kT H , where

Weras ≡ Tr
[
ρMB

(
HM

0 + HB
)] −

∑

j

pj Tr
(
ρM

j,canH
M
j

)

− Tr
(
ρB

canH
B
)

is the work required for the erasure of data in the memory, and

�FM ≡ kT ln ZM
0 −

∑

j

pj kT ln ZM
j

is the change of the free energy of the memory due to the
erasure. According to Eq. (4), we obtain Weras + �FM �
2nkT ln 2. In particular, if we consider the case when the
memory’s Hamiltonian does not depend on the stored data,
i.e., HM

j = HM
0 for all j , we conclude that Weras � 2nkT ln 2,

which means that at least 2kT ln 2 of work per qubit is
necessary in MBQC.

If we consider the case when the bath is of finite Hilbert
space dimension, the improved version of Landauer’s princi-
ple [14], where the heat generation can be larger than that of
the standard Landauer’s principle, can also be used.

The operational meaning of the von Neumann entropy
assumes the independent and identically distributed (i.i.d.) and
the asymptotic limit of the information source [11]. Recently,
several results have been obtained to study the single-shot
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work extraction in thermodynamics [11–13]. If we consider a
single-shot data compression of ρ without those assumptions,
the required space to store the information of ρ is quantified by
the max entropy Hmax(ρ) ≡ log[rank(ρ)]. In this case the work
required for the erasure is given by W � kT Hmax(ρ). Since
Hmax(ρ) � HvN(ρ), where HvN is the von Neumann entropy,
we obtain the same result, that 2kT ln 2 of work is necessary
per qubit in MBQC.

V. DISCUSSION

A. Minimum heat dissipation in the cluster state MBQC

So far, we have given the general arguments. As an example,
let us consider the minimum heat dissipation limit in the cluster
state MBQC [18]. In the cluster state MBQC, it is well known
that measurement results for two previous layers must be kept
in order to correct the by-product operators [18]. Therefore,
two bits of classical memory per register qubit are always
required at any measurement step of the cluster state MBQC.
This means that 2kT ln 2 of heat dissipation occurs at every
step of the cluster state MBQC. In this way, the cluster state
MBQC already achieves the minimum heat dissipation limit.
Hence we also conclude that our general limit, 2kT ln 2, is an
achievable limit (i.e., a not too underestimating limit).

For the cluster state MBQC, it is somehow straightforward
to derive the 2kT ln 2 limit. However, we want to emphasize
here that our limit 2kT ln 2 for general MBQCs given in
the previous section does not make any assumption on the
resource state, the measurement method, and the method of
classical processing. We have derived a general limit by using
only the no-signaling principle. In the future someone might
find a very complicated and drastically new MBQC far from
the cluster state MBQC. (For example, nonlocal many-body
measurements might be allowed.) However, our minimum heat
dissipation limit 2kT ln 2 still holds for such a new MBQC as
long as it satisfies the no-signaling principle.

B. Implication for blind quantum computation

Blind quantum computation is a new secure cloud quantum
computing protocol where a client (Alice), who does not
have enough quantum technology, can delegate her quantum
computation to a server (Bob), who has a full-fledged quantum
computer, without leaking any information [46–60]. In blind
quantum computing, the no-signaling requirement of the
present result is replaced with the security requirement that
the server’s state must be one-time padded. As pointed out
in Ref. [46], the client requires only a classical computer if
she interacts with two servers. In this case, we only have to
minimize the client’s classical technological requirement. Our
result suggests that the client cannot be completely free from
any technology; she has to possess at least two bits of classical
memory per qubit in blind quantum computing.

C. Implication for classical technology requirement in MBQC

The requirement for classical technology in MBQC is
a research subject which has not been fully studied. Al-
though classical computation is cheap compared to quantum
operations, a detailed understanding of the classical part

is important, because, for example, the latency of classical
computation could contribute to the entire decoherence time
of MBQC. The requirement for the power of the classical CPU
was studied in Ref. [65]: A classical XOR gate is sufficient
for universal MBQC with cluster states, whereas a classical
universal gate set is necessary if we use certain resource states
(quantum computational tensor-network states [21]) instead
of the cluster state. Our result clarifies the minimum classical
memory requirement, namely, two bits per qubit, for MBQC.

D. Heat generation from other degrees of freedom

As was already pointed out by Landauer himself [1], heat
generation from Landauer’s principle is not a practical limit,
but a fundamental one: It is absurd to use Landauer’s principle
to estimate the overall heat generation in an iPhone, since
there are many other factors which contribute to the entire
heat generation, and these contributions are many orders of
magnitude larger than those from Landauer’s principle. This
is also the case for our result. For example, the measuring
process could cause heat dissipation. If a qubit is encoded
in a polarization of a single photon, or a two-level of an
atom, a photon detection is necessary for the measurement.
Usually, photon detection generates a dissipative electric
current, which generates heat that is many magnitudes larger
than the Landauer limit. However, these contributions are
implementation specific, and therefore beyond the scope of the
present paper. (For example, the specific measurement model
which uses photons by Brillouin [6] needs some energy for
the demon.) The purpose of the present paper is to derive
a fundamental limit that is independent from any specific
implementation, such as the original motivation of Landauer’s
paper [1].

E. Maxwell’s demon in MBQC

Our result also exorcises Maxwell’s demon in MBQC.
Since MBQC uses adaptive measurements, it is a kind of a
feedback-controlled system with a demon. However, no result
was obtained in the study of MBQC from the viewpoint
of feedback control. The output of MBQC is a (classical
or quantum) element extracted from many possibilities, and
therefore MBQC is an entropy decreasing process. However,
the entire system (i.e., the resource state of MBQC, the
measuring apparatus, the classical computer necessary for
the feed-forwarding, and the environment) is a closed system,
and therefore the entropy decrease must be compensated by
an entropy increase of another degree of freedom so that
the second law of thermodynamics is not violated. Such a
Maxwell’s demon problem in MBQC is solved by our result:
An entropy increase necessarily occurs in MBQC (because of
the classical memory requirement for the demon, as we have
shown in previous sections), and it compensates the entropy
decrease caused by the demon’s computation.
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