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Implementing a quantum cloning machine in separate cavities via
the optical coherent pulse as a quantum communication bus
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An efficient scheme is proposed to implement a quantum cloning machine in separate cavities based on a hybrid
interaction between electron-spin systems placed in the cavities and an optical coherent pulse. The coefficient
of the output state for the present cloning machine is just the direct product of two trigonometric functions,
which ensures that different types of quantum cloning machine can be achieved readily in the same framework
by appropriately adjusting the rotated angles. The present scheme can implement optimal one-to-two symmetric
(asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, optimal
symmetric (asymmetric) real-state cloning, optimal one-to-three symmetric economical real-state cloning, and
optimal symmetric cloning of qubits given by an arbitrary axisymmetric distribution. In addition, photon loss of
the qubus beams during the transmission and decoherence effects caused by such a photon loss are investigated.
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I. INTRODUCTION

Quantum key distribution (QKD) is one of the well-
known topics of quantum information [1] due to the practical
application in quantum communication. The basic principles
of quantum mechanics protect the quantum information from
exposure to unauthorized persons. As mentioned in the no-
cloning theorem [2], perfect quantum cloning of an arbitrary
unknown quantum state is forbidden because of the inherent
property of quantum mechanics. However, with the rapid
development of quantum information theory the unknown
quantum state can be copied approximately with certain
fidelity [3]. It is one of the reasons for the investigation of
approximate quantum cloning that provide insight into the
fundamental limits on the manipulation and distribution of
quantum information. The other more practical reason is that
these clones can be used as very efficient eavesdropping attacks
on quantum key distribution protocols [4,5]. In addition, much
effort [6–14] has been devoted to the realization of the optimal
approximations to quantum cloning machines (QCMs) since
the seminal scheme of a universal quantum cloning machine
(UQCM) was presented by Bužek and Hillery [3] in 1996.
Recently, some experiments on quantum cloning have been
reported [5,15–24].

We present an efficient scheme for implementation of
quantum cloning by considering a hybrid system based on
optical coherent pulse and electron-spin systems placed in the
cavities. The electron-spin systems may be achieved by single
electrons trapped in quantum dots [25]. Bartkiewicz et al. [26]
proposed a scheme which employed the electron-spin systems
in separate cavities based on quantum dots to implement
optimal mirror phase-covariant cloning in 2009. As van Loock
et al. pointed out in Ref. [27], the qubit system should be
placed in a cavity resonant with the light in order to obtain
a sufficient interaction between the electron and the light; for
the cavity, weak coupling is sufficient. In the present scheme,
the optical coherent pulse, called a quantum communication
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bus (qubus), sequentially interacts with two electron-spin
systems placed in the separate cavities. However, in those
schemes [28–36] with single-photon-based qubus, enormous
difficulties appear due to the demanding requirements on the
generation and detection of the photons. The present approach
can circumvent this obstacle by using the continuous variables
(CVs) mode as qubus, namely, the optical coherent pulse. The
coherent pulse can disentangle by itself from the qubits after
a sequence of qubit-qubus interactions. Thus it plays only the
role of a catalyst. The measurement-free operation for qubus
avoids measurement-induced errors in contrast to the previous
schemes [28–30] and the present cloning transformation
becomes deterministic without measurement-result-dependent
postselection [37–39] or any feedforward operations on the
qubits. Due to the deterministic and measurement-free opera-
tion, the present scheme has high efficiency with high success
probability. Compared with the previous scheme [14], the
coefficient of the output state for a quantum cloning machine
is just the product of two trigonometric functions due to the
controlled-rotation operation constructed. It becomes possible
that the same framework can be used to accomplish different
types of quantum cloning machine only by adjusting three
rotated angles. The present scheme can implement one-to-two
optimal symmetric (asymmetric) UQCM [3,40–42], optimal
symmetric (asymmetric) phase-covariant cloning machine
(PCCM) [7,41], optimal symmetric (asymmetric) real-state
cloning machine (RSCM) [7,8], optimal one-to-three symmet-
ric economical RSCM [43], and optimal symmetric cloning
transformations of qubits given by an arbitrary axisymmetric
distribution [44]. In addition, photon loss of the qubus mode
during the transmission and decoherence effects caused by
such a photon loss are investigated.

II. PROTOCOL FOR IMPLEMENTING QUANTUM
CLONING MACHINE

The interaction between the coherent field mode and
the matter qubit can generally be described by the Jaynes-
Cummings interaction �g(a†σ− + aσ+) and in the dispersive
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FIG. 1. (Color online) Schematic diagram of an effective con-
trolled displacement corresponding to Eq. (2) based on unconditional
displacements and conditional phase rotations. In the case of
controlled displacement, β ≡ 2iα sin θ . In the case of unconditional
displacement, D and D′ represent D(α cos θ ) and D(−2α), respec-
tively. The right figure is a simplified circuit diagram of controlled
displacement.

limit (large detunings) one obtains an effective interaction
Hamiltonian of the form [27,45,46]

Heff = �χσza
†a. (1)

Here, a (a†) is the annihilation (creation) operator of an
electromagnetic field mode in a cavity and the matter qubit is
described using the conventional Pauli operators {σx , σy , σz},
with the computational basis being given by the eigenstates
of σz = |0〉〈0| − |1〉〈1|, with |0〉 ≡ |↑z〉 and |1〉 ≡ |↓z〉. The
matter-light coupling strength is determined via the parameter
χ = g2/�, where 2g is the vacuum Rabi splitting for the dipole
transition. The optical coherent pulse is sufficiently detuned
from the dipole transition, which is described by the detuning
�, to allow a strictly dispersive light-matter interaction. The
interaction Heff applied for a time t generates a conditional
phase rotation ±2θ (with 2θ = χt) on the qubus coherent
state dependent upon the state of the matter qubit and the sign
depends on the qubit computational basis amplitude. As shown
in Fig. 1, the electron-spin system in the cavity is treated as
a �-configuration system, with two long-lived states |0〉 and
|1〉 and an excited state |e〉. The state |1〉 can be excited to
the state |e〉 via an optical coherent pulse while the transition
from |0〉 to |e〉 is forbidden or extremely weak. When the
optical coherent pulse interacts with the state |1〉, it picks up a
small phase shift due to the |1〉 ↔ |e〉 transition while no phase
shift occurs for the state |0〉. The coherent pulse is sufficiently
detuned from the transition between state |1〉 and state |e〉
to allow a strictly dispersive light-matter interaction. Local
rotations between state |0〉 and state |1〉 may be achieved via
stimulated Raman transitions. We may describe the effect of
a conditional rotation on a coherent state and a qubit superpo-
sition state as exp[−iθa†a] exp[−i2θσza

†a](|0〉 + |1〉)|α〉 =
|0〉|αe−iθ 〉 + |1〉|αeiθ 〉, in which an unconditional phase opera-
tion has been imposed. The right side of the expression appears
to be the effect of a single conditional rotation exp[−iθσza

†a]
on the coherent state and the qubit superposition state with
a phase shift occurring also for the state |0〉. The only
requirement for a dispersive light-matter interaction resulting
in a high-fidelity conditional rotation is a sufficiently large
cooperativity parameter in a weak or intermediate coupling
regime; the dispersive interaction does not require strong
coupling [45]. Such a conditional rotation in phase space is
very similar to the cross-Kerr nonlinearity for optical systems.
Now it is known in the quantum optics context that such
interactions can be used to implement a universal two-qubit

gate between photonic qubits based on probe coherent state
measurement [47].

The centerpiece of our approach for a quantum cloning
machine is a controlled displacement. In practice, it is hard
to generate such a controlled displacement directly through
photon-matter interactions. However, the Jaynes-Cummings-
type interaction of Eq. (1) called conditional rotation is
readily available. The controlled displacement relies on two
operations: the conditional rotation and the unconditional
displacement. In a concrete manner, this can be realized [48]
with the following sequence:

D(α cos θ ) exp[−iθσza
†a]D(−2α) exp[iθσza

†a]D(α cos θ )

= D(2iα sin θσz), (2)

with α real. Notice that a small phase shift occurs for the state
|0〉 or |1〉 using the conditional rotations in Eq. (2). Figure 1
illustrates a series of conditional rotations and unconditional
displacements to simulate a controlled displacement [45,49].
The controlled displacement D(2iα sin θσz) is exactly what
we need to implement a quantum cloning machine. In the
derivation of Eq. (2), we need to use the following three
equations:

D(β) = exp(βa† − β∗a),

D(β1)D(β2) = exp[iIm(β1β
∗
2 )]D(β1+β2),

exp[θa†a]f (a,a†) exp[−θa†a] = f (ae−θ ,a†eθ ). (3)

We now demonstrate how a quantum cloning machine can
be implemented via the controlled displacements from Eq. (2)
and local operations on each qubit. The mechanism for the
quantum cloning machine is shown in Fig. 2.

Qubit 1 of the electron-spin system in the cavity to be cloned
is in the state

|ϕ〉(in)
a1

= cos
θ

2
|0〉1 + eiφ sin

θ

2
|1〉1, (4)

with the polar angle θ ∈ [0,π ] and the azimuthal angle φ ∈
[0,2π ) on the Bloch sphere. Qubits a2 and a3 are prepared
respectively in the states

|ϕ〉a2
= cos θ1|0〉2 + sin θ1|1〉2,

(5)
|ϕ〉a3

= cos θ2|0〉3 + sin θ2|1〉3,

through performing the suitable single-qubit rotation opera-
tion, such as a rotated angle θ1 for the qubit a2 in the initial
state |0〉2 and a rotated angle θ2 for the qubit a3 in the initial
state |0〉3.

Let us pay attention to preparing the two quantum qubits
(a2 and a3) in a very specific state, prior to any interaction with
the input qubit a1. The module in the dashed rectangle needs to
perform two rounds in succession with the superscript r = 1,2
as displayed in Fig. 2. With the help of two round operations, a
controlled-rotation gate can be achieved between qubits 2 and
3. More specifically, the single-qubit operations R1

21 and R1
31

are performed on qubits 2 and 3 in the first round, respectively.
Here R1

21 = ei π
4 (1−σz2 ), R1

31 = e−i π
4 σz3 H3e

i π
4 σz3 . In addition,

the Hadamard operator Hλ = 1√
2
(1 1
1 −1) with λ = 1,2,3. A

coherent qubus mode, following four controlled-displacement
interactions with two qubits a2 and a3, can be used to
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FIG. 2. (Color online) Circuit diagram of a quantum cloning machine based on controlled displacements between the optical coherent
pulse and the qubits, and local operations on each qubit. In the case of controlled displacement, A ≡ β1σz and B ≡ β2σz with β1, β2 being real
and 2β1β2 ≡ π/4. The module in the dashed rectangle needs to perform two rounds in succession with the superscript r = 1,2.

implement an entangling operation between the two qubits.
For the case of A ≡ β1σz and B ≡ β2σz, the sequence of
controlled-displacement interactions [45,48] is defined as the
total unitary operator,

Ur=1
23 = D(−iβ2σz3 )D(−β1σz2 )D(iβ2σz3 )D(β1σz2 )

= exp[2iRe(β∗
1 β2)σz2σz3 ]. (6)

Although the coherent pulse is certainly entangled with
the qubits a2 and a3 during the controlled-displacement
operations, at the end of the sequence interactions the coherent
pulse is disentangled automatically from the two qubits a2 and
a3 without requiring any subsequent measurement because the
coherent qubus mode finishes in its initial state. From Eq. (6),
one can observe that (1) the evolution does not depend on this
coherent state; (2) the coherent pulse has effectively played the
role of a catalyst. By choosing 2β1β2 ≡ π/4, the total unitary
operator as in Eq. (6) gives

Ur=1
23 = ei π

4 σz2 σz3 . (7)

After the unitary operator Ur=1
23 on qubits a2 and a3, the

single-qubit operations R1
22 and R1

32 are performed on qubits
2 and 3, respectively. Here, R1

22 = I (the symbol I denotes an
identity operator) and

R1
32 =

(
cos θ3

2 − sin θ3
2

sin θ3
2 cos θ3

2

)
ei π

4 σz3 H3.

Next, we perform the second round of operations on the
qubits a2 and a3 as shown in dashed rectangle of Fig. 2. The
single-qubit operations R2

21 = ei π
4 (1−σz2 ) and R2

31 = e−i π
4 σz3 H3

are performed on the qubits a2 and a3, respectively. The
sequence of controlled-displacement interactions is written
as the total unitary operator Ur=2

23 = ei π
4 σz2 σz3 following the

previous method. After the unitary operator Ur=2
23 on qubits a2

and a3, the single-qubit operations R2
22 and R2

32 are required to
perform on qubits 2 and 3, respectively. Here,

R2
22 =

(
1 0
0 i

)
,

R2
32 = e−i π

2 σz3

(
cos θ3

2 sin θ3
2

− sin θ3
2 cos θ3

2

)
H3.

Through the two-round operations as shown in the dashed
rectangle of Fig. 2, one can simulate a controlled-rotation
gate between qubits 2 and 3 with the interaction sequence
as mentioned above:

UT23 = (
R2

22 ⊗ R2
32

)
Ur=2

23

(
R2

21 ⊗ R2
31

)(
R1

22 ⊗ R1
32

)
×Ur=1

23

(
R1

21 ⊗ R1
31

)

=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ3 sin θ3

0 0 sin θ3 − cos θ3

⎞
⎟⎠ . (8)

in the computational basis {|00〉23, |01〉23, |10〉23, |11〉23}. The
action on the initial state |ϕ〉a2 ⊗ |ϕ〉a3 is

|
〉23 = UT23|ϕ〉a2 ⊗ |ϕ〉a3

= C1|00〉23 + C2|01〉23 + C3|10〉23 + C4|11〉23, (9)

where

C1 = cos θ1 cos θ2,

C2 = cos θ1 sin θ2,
(10)

C3 = sin θ1 cos(θ3 − θ2),

C4 = sin θ1 sin(θ3 − θ2).

Compared with the previous scheme [14], each coeffi-
cient (Cj with j = 1,2,3,4) is the direct product of only
two trigonometric functions due to the controlled-rotation
operation constructed. This ensures that different types of
quantum cloning machine can be achieved readily in the same
framework by the adjustment of rotated angles.

Once the qubits (a2 and a3) of the quantum copier are
properly prepared, then the copying of quantum information
about the input state |ϕ〉(in)

a1
can be performed by a sequence of

the following operations. In a more concrete manner, we per-
form the single-qubit operations R11 = ei π

4 (1−σz1 ) and R23 =
e−i π

4 σz2 H2 on the qubits a1 and a2, respectively. As before, four
controlled-displacement interactions are expressed as a total
unitary operator U12 = ei π

4 σz1 σz2 . After the unitary operation
between qubits a1 and a2, the single-qubit operation R24 = H2

is required to perform on qubit 2. These single-qubit operations
and the unitary operation are equivalent to a controlled-NOT
gate between qubits a1 and a2 because

UT12 = (I1 ⊗ R24)U12(R11 ⊗ R23)

=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (11)

Qubits a1 and a2 are encoded as the control and target ones,
respectively. The combined system |ϕ〉(in)

a1
⊗ |
〉23 evolves into

|�〉123 = UT12|ϕ〉(in)
a1

⊗ |
〉23

= cos
θ

2
(C1|000〉 + C2|001〉 + C3|010〉 + C4|011〉)
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+ eiφ sin
θ

2
(C1|110〉 + C2|111〉

+C3|100〉 + C4|101〉). (12)

Next, the single-qubit operations R12 = e−i π
4 σz1 H1 and

R33 = ei π
4 (1−σz3 ) are performed on the qubits a1 and a3,

respectively. Similarly, four controlled-displacement interac-
tions can be given by a total unitary operator U13 = ei π

4 σz1 σz3 .
After the unitary operation between qubits a1 and a3, the
single-qubit operation R13 is required to perform on qubit
3, where R13 = H1. These single-qubit operations and the
unitary operation consisting of four controlled-displacement
interactions are the same as the controlled- NOT gate between
qubits a1 and a3. At this time qubit a1 is encoded as the target
one, and qubit a3 as the control one. In the computational basis
{|00〉13, |01〉13, |10〉13, |11〉13}, three single-qubit operations
and the unitary operation can be described as

UT13 = (R13 ⊗ I3)U13(R12 ⊗ R33)

=

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠ . (13)

The operation in Eq. (13) evolves the system |�〉123 into

|� ′〉123 = UT13|�〉123

= cos
θ

2
(C1|000〉 + C2|101〉 + C3|010〉 + C4|111〉)

+ eiφ sin
θ

2
(C1|110〉 + C2|011〉

+C3|100〉 + C4|001〉). (14)

Finally, in order to construct the quantum cloning machine,
we will perform a controlled-NOT gate between the qubits a2

and a3. More specifically, the single-qubit operations R25 =
ei π

4 (1−σz2 ) and R34 = e−i π
4 σz3 H3 are performed on the qubits a2

and a3, respectively. As mentioned above, the following four
controlled-displacement interactions are represented by a total
unitary operator U23 = ei π

4 σz2 σz3 . After the unitary operation
between qubits a2 and a3, the single-qubit operation R35 is
required to perform on qubit 3, where R35 = H3. All these
operations can be described as

U ′
T23 = (I2 ⊗ R35)U23(R25 ⊗ R34)

=

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (15)

The quantum state |�out〉 is transformed into

|� ′′〉123 = U ′
T23|� ′〉123

= cos
θ

2
[C1|000〉+(C3|01〉+C2|10〉)|1〉+C4|110〉]

+ eiφ sin
θ

2
[C1|111〉 + (C3|10〉

+C2|01〉)|0〉 + C4|001〉]. (16)

By now we have prepared deterministically the state of
Eq. (16) for quantum cloning depicted in detail in Fig. 2. For

3a
ϕ

2a
ϕ

1

(in)

aϕ

FIG. 3. (Color online) A simplified circuit of quantum cloning
machine corresponding with Fig. 2. From left to right: the controlled-
rotation gate and three controlled-NOT gates.

easier understanding, we simplify the quantum circuit of Fig. 2
into Fig. 3. From the left side of Fig. 3 to the right, the first
component is a controlled-rotation gate described as Eq. (8)
and the subsequent three components are the controlled-NOT
gates in turn described as Eqs. (11), (13), and (15).

The reduced density operator of each output qubit, such as
cloners a1 and a2, after the cloning procedure, is given as

ρ
(out)
1 = Tra2,a3 [|� ′′〉123〈� ′′|] =

∑4

i=1
|�i〉a1

〈�i |,
(17)

ρ
(out)
2 = Tra1,a3 [|� ′′〉123〈� ′′|] =

∑4

i=1
|
i〉a2

〈
i |,
with

|�k∓1〉a1 ≡ cos
θ

2
Ck∓1|0〉1 + eiφ sin

θ

2
Ck±1|1〉1,

|
j+l〉a2 ≡ cos
θ

2
Cj+l|0〉2 + eiφ sin

θ

2
Cj̄+l|1〉2,

j = 1,2; k = 2,3; l = 0,2. (18)

Here the value of j̄ is opposite to j . In the symmetric cloning
process, the quantum information in the initial qubit a1 is
copied to qubits a1 and a2 equally well so that the reduced
density matrices at the output are identical, and the fidelities
used to evaluate the quality of the cloning transformation
are also identical. From Eq. (17) the corresponding fidelity
between the reduced density operator of each output copy and
the input state is described as

Fi = (in)
a1

〈ϕ|ρ(out)
i |ϕ〉(in)

a1

= C2
1 + C2

3−δ2,i
+ sin2θ

[
C2

4 + C2
3−δ1,i

− (C1 − C3−δ2,i
)2

+ (e2iφ + e−2iφ)C3−δ1,i
C4

]/
2, (19)

with i = 1,2. Here δj,i is the Kronecker delta. So far the prelim-
inary scheme about quantum cloning has been accomplished.
Then we will discuss how to implement different types of
quantum cloning machine based on the result in Eq. (16) by
regulating the rotated angle θi with i = 1,2,3.

If the three rotated angles satisfy tan θ1 + sin θ2 = cos θ2

and θ3 = θ2, we will implement an optimal one-to-two
asymmetric UQCM (AUQCM) [40–42] where the quantum
information in the original qubit a1, such as θ ∈ [0,π ] and
φ ∈ [0,2π ), is completely unknown. We describe such a
copying process in which the two fidelities do not depend
on the parameters θ,φ of the input state. That is to say, there
is the same quality of cloning transformation for an arbitrary
input state. A quantum cloning machine with this feature is
a universal one. The condition of θ3 = θ2 stems from the
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relation C4 = 0, which makes the fidelities in Eq. (19) be phase
independent. The other condition of tan θ1 + sin θ2 = cos θ2

originates from the relation C1 = C2 + C3. The relations
C1 = C2 + C3 and C4 = 0 ensure that the quality of the
cloning is independent of the input states. According to the
specific relations given above, from Eq. (19) we can easily
calculate the fidelities of two clones,

F1 = (1 + p2)/N2, F2 = (1 + q2)/N2, (20)

where p = tan θ1/ cos θ2, q = tan θ2, and N ≡√
1 + p2 + q2 = (cos θ1 cos θ2)−1. In this case, the cloning

transformation of the optimal AUQCM can be written as

cos
θ

2
[|000〉 + (p|01〉 + q|10〉)|1〉]/N

+ eiφ sin
θ

2
[|111〉 + (p|10〉 + q|01〉)|0〉]/N, (21)

according to the result, Eq. (4.3), given by Ghiu in [42]
with the coefficients p,q � 0 satisfying p + q = 1. For this
reason, we can redefine the coefficients p,q as functions of
the optimal angle ϑ , such as p ≡ cos2ϑ and q ≡ sin2ϑ with
ϑ ∈ [0,π/2]. The requirement for the coefficients p,q � 0 and
p + q = 1 limits the range of rotated angles θ1 and θ2, so that
θ1 ∈ [0, arctan

√
(
√

5 − 1)/2] and θ2 ∈ [0,π/4]. If the rotated
angle θ1 is set for arc tan(

√
1/5) and θ2 for arc tan(1/2), we will

find out there will be such a transition from optimal AUQCM
to optimal symmetric UQCM (SUQCM) [3]. In this case,
the fidelities F1 = F2 = 5/6 and the coefficients p = q = 1/2
and N = √

3/2. Thus the state of the three qubits in Eq. (16)
can be described as [3]

cos
θ

2

[√
2

3
|000〉 +

√
1

3
|+〉|1〉

]

+ eiφ sin
θ

2

[√
2

3
|111〉 +

√
1

3
|+〉|0〉

]
, (22)

where |+〉 ≡ (|01〉 + |10〉)/√2.
AUQCM or SUQCM produces two copies with the invari-

able quality for all possible input states. However, if partial
prior knowledge of the input state to be cloned is available, or
it is known to belong to a subset of all possible input states,
then it is probable to clone the state with a higher fidelity. Take
the states whose Bloch vector lies in the equator of the Bloch
sphere—for example, the so-called phase covariant, used for
the first time by Bruß, et al. [7], is derived from the fact that
the fidelity of cloning will not depend on the azimuthal angle
ϕ. For the present scheme, if the joint relations of the three
rotated angles meet the conditions of cos θ1 cos θ2 = 1/

√
2 and

θ3 = θ2, we will implement an optimal one-to-two asymmetric
PCCM (APCCM) [41] where the prior knowledge of the
original input state is the polar angle (fixed to π/2) of a vector
on the Bloch sphere with the azimuthal angle completely
unknown φ ∈ [0,2π ). For the optimal APCCM, the state of
the three qubits in Eq. (16) can be written as [41]

{[|000〉 + (cos ϑ |01〉 + sin ϑ |10〉)|1〉]/
√

2

+ eiφ[|111〉 + (cos ϑ |10〉 + sin ϑ |01〉)|0〉]/
√

2}/
√

2,

(23)

where sin ϑ =
√

2cos2θ1 − 1 and cos ϑ = √
2 sin θ1 with ϑ ∈

[0,π/2]. Then we can easily calculate the fidelities of two
clones,

F1 = (1 + cos ϑ)/2, F2 = (1 + sin ϑ)/2. (24)

This (ϑ ∈ [0,π/2]) limits the rotated angles within the
range θ1,θ2 ∈ [0,π/4]. If the specific values are assigned to
the angles θ1 and θ2, such as θ1 ≡ π/6 and θ2 ≡ arcsin(1/

√
3),

the APCCM will reduce to an optimal one-to-two symmetric
PCCM (SPCCM) [7]. Under this condition, the fidelities F1 =
F2 = 1

2 (1 + 1√
2
) and the coefficients cos ϑ = sin ϑ = 1/

√
2.

Thus the state of three qubits in Eq. (16) can be described as
[7]

1√
2

[
1√
2

(|000〉 + |+〉|1〉) + eiφ 1√
2

(|111〉 + |+〉|0〉)
]
. (25)

Because the equatorial states with φ = 0, π/2, π, 3π/2
are used as the encoded states in the BB84 cryptographic
scheme [50], proposed by Bennett and Brassard in 1984, for
its significant uses in the well-known QKD protocol [1,51],
copying the equatorial states has obtained extensive attention.

The comparison between fidelities of APCCM with those
of AUQCM is plotted in Fig. 4. From the viewpoint of optimal
angle ϑ , the fidelity of clone a1 or a2 in APCCM is not
permanently greater than the corresponding one in AUQCM.
As functions of the rotated angle θ1, the fidelity of qubit
a2 in APCCM is distinctly better than that in AUQCM, but
the cloning fidelity of qubit a1 in APCCM is slightly worse
than that in AUQCM. The difference between the sum of the
fidelities a1, a2 for APCCM and one for AUQCM as a function
of ϑ and θ1 is shown in Figs. 4(c) and 4(d), respectively. In the
perspective of total fidelity as a function of θ1, it is in accord
with the rule that the restriction of the input state to the equator
of the Bloch sphere improves the cloning performance.

We consider the input state to be cloned at the equator in
the x-z plane instead of the x-y equator. This requires a priori
known value of the azimuthal angle φ for the initial input

(a) (b)

(c) (d)

FIG. 4. (Color online) The fidelities of AUQCM and APCCM as
functions of (a) the optimal angle ϑ , (b) the rotated angle θ1; the
difference between the sum of the fidelities a1, a2 for APCCM and
one for AUQCM versus (c) ϑ , (d) θ1.
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state, such as 0 or π . Thus the initial state can be described as
|ϕ〉(in)

a1
= cos θ

2 |0〉1 + sin θ
2 |1〉1 with θ ∈ [0,π ] ∪ [−π,0] due

to φ = 0 or π in the real states. This type of restrictive
quantum cloning is referred to as the real-state cloning
machine [8]. From the viewpoint of the rotated spherical
coordinate, e.g., the vector |ψ〉 = cos θ0

2 |0〉 + eiφ0 sin θ0
2 |1〉

with θ0 = φ0 = π/2 as the new polar axis of the Bloch
sphere [44], RSCM is just a conventional PCCM in essence.
The optimization of asymmetric RSCM (ARSCM) becomes
very simple in the way which is proposed by Bartkiewicz
et al. [44] to tackle the symmetric cloning for an arbitrary
axisymmetric distribution of qubits, avoiding the complicated
deduction in [8]. According to the change of basis, the unitary
transformation matrix

S =
(

cos θ0
2 e−iφ0 sin θ0

2
eiφ0 sin θ0

2 − cos θ0
2

)
(26)

connects the old orthonormal set {|0〉,|1〉} and the new
orthonormal set {|ψ〉,|ψ̄〉}, where |ψ̄〉 is a state orthogonal to
|ψ〉. Using the change of the representation we can transform
an expression of RSCM in the old orthonormal basis,

cos
θ

2
[C1|000〉 + (C3|01〉 + C2|10〉)|1〉 + C4|110〉]

+ sin
θ

2
[C1|111〉 + (C3|10〉 + C2|01〉)|0〉 + C4|001〉],

(27)

into one in the new orthonormal basis,

ie−i θ
2

{
1√
2

[C ′
1|ψ̄ψ̄ψ̄〉 + (C ′

3|ψ̄ψ〉 + C ′
2|ψψ̄〉)|ψ〉

+C ′
4|ψψψ̄〉] + 1√

2
ei(θ+ π

2 )[C ′
1|ψψψ〉 + (C ′

3|ψψ̄〉

+C ′
2|ψ̄ψ〉)|ψ̄〉 + C ′

4|ψ̄ψ̄ψ〉]
}
, (28)

where C ′
j ≡ [

∑4
k=1 (−1)δj,kCk]/2 with j =

1,2,3,4. The initial input state becomes |ϕ〉(in)
a1

=
e−i θ

2 [ 1√
2
|ψ〉 + 1√

2
ei(θ+ π

2 )|ψ̄〉] in the new computational

basis. We can ignore the global phases ie−iθ/2 and e−iθ/2 at
the beginning because they have no observable effects. This
is commonly known as phase-covariant cloning from the
form of initial input state in the new orthonormal basis. The
fidelities of the transformation in Eq. (28) for the clones can
be described as

F ′
j = 1

2

[
2C ′

4C
′
2+δ2,j

+ C ′
3−δ2,j

C ′
1(e−2iγ ′ + e2iγ ′

)

+
∑4

i=1
C ′

i
2
]
, (29)

with j = 1,2. Obviously, the condition C ′
1 = 0 means that the

cloning transformation is phase independent. We can further
obtain the expressions of C ′

2,C
′
3,C

′
4 by optimizing the fidelity,

e.g., C ′
2 = 1√

2
cos ϑ , C ′

3 = 1√
2

sin ϑ , and C ′
4 = 1√

2
. Therefore,

the coefficients in Eq. (27) for the optimal ARSCM are

Cj = [(−1)δ4,j + (−1)δ2,j cos ϑ + (−1)δ3,j sin ϑ]/
√

8, (30)

with j = 1,2,3,4. And from Eq. (19) the fidelities
are F1 = (1 + cos ϑ)/2, F2 = (1 + sin ϑ)/2 with the
optimal angle ϑ ∈ [0,π/2]. The relation expression
C1 − C4 = C2 + C3, due to C ′

1 = 0, ensures that the
fidelities are independent of the equatorial input states
in the x − z plane. If the relationship between optimal
angle ϑ and rotated angles θ1,θ2,θ3 satisfies cos ϑ =√

2 cos θ1(cos θ2 − sin θ2) = 2 cos θ1(cos θ1 − √
2 sin θ2),

sin ϑ = cos 2θ1 = 1 + √
2 sin θ1[sin(θ3 − θ2) − cos(θ3 − θ2)]

in the present scheme, we can implement an optimal ARSCM.
The range of rotated angles is θ1,θ2,θ3 − θ2 ∈ [0,π/4] due to
the restrictive condition of optimal angle ϑ ∈ [0,π/2]. When
we assign the specific values to the rotated angles θ1, θ2, and
θ3, such as θ1 = θ2 = π/8 and θ3 = π/4, the present scheme
will implement an optimal one-to-two symmetric RSCM
(SRSCM) [8], which is also referred to as the optimal SPCCM
in [7]. Under the constraint of the given angles θ1,θ2,θ3,
the parameters cos ϑ = sin ϑ = 1/

√
2 and the fidelities

F1 = F2 = 1
2 (1 + 1√

2
). The optimal SPCCM transformation

can be described explicitly as follows [7]:

cos
θ

2

[(
1

2
+ 1√

8

)
|000〉 + 1

2
|+〉|1〉 +

(
1

2
− 1√

8

)
|110〉

]

+ sin
θ

2

[(
1

2
+ 1√

8

)
|111〉 + 1

2
|+〉|0〉

+
(

1

2
− 1√

8

)
|001〉

]
. (31)

The present scheme can implement an optimal one-to-three
symmetric economical RSCM (SERSCM) proposed by Fan
et al. [43]. With a priori knowledge of the azimuthal angle (i.e.,
φ = 0 or π ) and the polar angle being completely unknown,
the optimal SERSCM can be determined as follows [43]:

cos
θ

2

[√
3

2
|000〉 + 1√

12
(|011〉 + |101〉 + |110〉)

]

+ sin
θ

2

[√
3

2
|111〉 + 1√

12
(|100〉 + |010〉 + |001〉)

]
,

(32)

with θ ∈ [0,π ] ∪ [−π,0]. For each of three clones, the
fidelity is F = 5/6. To implement the optimal SERSCM,
the rotated angles of the present scheme can be chosen
as θ1 = arc sin

√
1/6, θ2 = arc sin

√
1/10, and θ3 = π/4 +

arcsin
√

1/10.
As mentioned above, the cloning transformations in our

scheme are based on the special axisymmetric distribution on
the Bloch sphere for the qubits to be cloned, e.g., along the
vector (|0〉 + i|1〉)/√2 for the RSCM and along the vector |0〉
for the rest cloning. The present scheme can also implement a
cloning transformation of an arbitrary axisymmetric distribu-
tion [44] with the highest fidelity. Suppose we know the pure
state |ψ〉 = cos θ0

2 |0〉 + eiφ0 sin θ0
2 |1〉, which acts as the polar

axis of the rotated spherical coordinate; in the new spherical
coordinate we can express all other qubit states on the Bloch
sphere as

|ψ(θ ′,φ′)〉 = cos
θ ′

2
|ψ〉 + eiφ′

sin
θ ′

2
|ψ̄〉. (33)
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The symbol θ ′ is a polar angle and φ′ is an azimuth angle
in the new coordinate corresponding to the Bloch vector
|ψ〉 as the polar axis. The one-to-two symmetric cloning
transformation for an arbitrary distribution of qubits in Eq. (33)
can be expressed as

cos
θ ′

2
[cos α+(cos β+|ψψ〉

+ sin β+|ψ̄ψ̄〉)12|ψ̄〉3 + sin α+|ψ+〉12|ψ〉3]

+ eiφ′
sin

θ ′

2
[cos α−(cos β−|ψ̄ψ̄〉 + sin β−|ψψ〉)12|ψ〉3

+ sin α−|ψ+〉12|ψ̄〉3], (34)

where |ψ+〉 = (|ψψ̄〉 + |ψ̄ψ〉)/√2. For the sake of simplicity,
Ref. [44] mainly paid attention to axisymmetric distributions.
The axisymmetric distribution for qubits to be cloned means
that the cloning transformation is phase independent. Under
the condition of |�| > 1, which is a parameter in [44], and
α± = α and β± = 0, the fidelity of the symmetric cloning
for an arbitrary axisymmetric distribution of qubits can be
described as

F = F1 = F2 = η0P0(cos θ ′) + η2P2(cos θ ′), (35)

with η0 = 1
2 (1 + cos2α) − η2, η2 = − 1

3 ( sin 2α√
2

− cos2α). Here

Pn(cos θ ′) is the Legendre ploynomial. If α ≡ arctan(1/
√

2)
corresponds to the coefficient η2 = 0, the transformation
represents the SUQCM [3] for an arbitrary axisymmet-
ric distribution with the fidelity F = 5/6. If cos α ≡√

1 + cos2θ ′/
√

P/
√

2 with P = 2 − 4cos2θ ′ + 3cos4θ ′, the
transformation denotes an optimal mirror phase-covariant
cloning (MPCC) [26]. Especially for θ ′ fixed to π/2, the
optimal MPCC machine reduces to the optimal SPCCM
[7,52] in the new computational basis. Our scheme can
implement these symmetric cloning transformations for an
arbitrary axisymmetric distribution using the approach which
is analogous to the one for optimizing the ARSCM above.
Because the change of representation can transform Eq. (16)
in the old orthonormal basis {|0〉,|1〉} into an expression in
the new orthonormal basis {|ψ〉,|ψ̄〉}, we can express the
coefficient Cj (j = 1,2,3,4) in Eq. (16) as a function of the
parameter α through comparing the expression with Eq. (34)
in the case of α± = α and β± = 0. That is to say, the relation
between the rotated angle θl(l = 1, 2, 3) and the parameter α

can be established based on the change of basis.

III. EFFECT DUE TO THE QUBUS PHOTON LOSSES

For clarity, we have discussed above the implementation of
quantum cloning machines in the absence of the qubus photon
loss. In what follows, we shall investigate the decoherence
effect of photon losses of the qubus pulse through utilizing the
approach provided in [53–56]. To implement the controlled
displacement in Eq. (2), it seems to be necessary to couple
the qubus coherent pulse out of the cavity and back into
it every time when an unconditional displacement must be
applied through an external local oscillator field. However, this
rather inefficient feature can be avoided in an all-cavity-based
approach. This approach is to perform the unconditional
displacement through driving the qubus pulse directly with

an intense classical pump. It is no longer needed to couple
the optical pulses out of the cavities for performing the
unconditional displacement so as to reduce the degrading
effect of photon losses [48]. In spite of this, the qubus
pulse is still required in and out of two cavities in order to
accomplish an interaction with both qubits placed in different
cavities. Take such a stage; for an example, we investigate the
decoherence effect of qubus photon losses. After the qubus
coherent pulse in the state |2α〉C interacts with qubit a2 as
described by Eq. (2), it is sent to a neighboring cavity and is
just preparing to interact with the other qubit a3. Ideally, the
stage without the photon losses of qubus pulse can be described
as

|ψ(β)〉(id)
a2C = cos θ1|0〉2|βeiφ〉C + sin θ1|1〉2|βe−iφ〉C, (36)

where β ≡ 2α
√

1 + sin2θ , e±iφ ≡ (1 ± i sin θ )/
√

1 + sin2θ .
Photon losses in the qubus channel can be modeled by
considering a simple beam splitter, which reflects, on av-
erage, 1 − η photons into an environment mode. For sim-
plicity, the environment mode is assumed initially in the
vacuum state [57]. Therefore, this stage can be rewritten
as

|ψ〉a2CE = cos θ1|0〉2|√ηβeiφ〉C|
√

1 − ηβeiφ〉E

+ sin θ1|1〉2|√ηβe−iφ〉C|
√

1 − ηβe−iφ〉E. (37)

We may now define a set of orthogonal, two-dimensional
basis {|u〉, |v〉} for the environment mode [58]:

|
√

1 − ηβeiφ〉E ≡ (μE|u〉E + νE|v〉E)ei(1−η)ξ ,
(38)

|
√

1 − ηβe−iφ〉E ≡ (μE|u〉E − νE|v〉E)e−i(1−η)ξ ,

with

νE =
√

1 − μ2
E; μE = [1 + e−8(1−η)α2sin2θ ]1/2/

√
2,

ξ = 4α2 sin θ. (39)

The reduced density matrix for tracing over the loss mode
can be expressed as

ρa2C = TrE[|ψ〉a2CE〈ψ |]
= cos2θ1|0〉2〈0||√ηβeiφ〉C〈√ηβeiφ |+e2i(1−η)ξ

(
2μ2

E−1
)

× cos θ1 sin θ1|0〉2〈1||√ηβeiφ〉C〈√ηβe−iφ |
+ e−2i(1−η)ξ (2μ2

E − 1) cos θ1 sin θ1|1〉2〈0||√ηβe−iφ〉C

×〈√ηβeiφ| + sin2 θ1|1〉2〈1||√ηβe−iφ〉C〈√ηβe−iφ |.
(40)

The decoherence in the photon loss leads to a damping
factor determined by ξ and −2(1 − η)(2α sin θ )2. We can find
that the entangled state about the qubus mode and qubit a2 is
subject to decoherence and becomes mixed due to the presence
of photon loss. This decohered state obviously will have less
entanglement than that in Eq. (36). A relevant measure of
how much useful entanglement remained is the overlap of
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FIG. 5. (Color online) The fidelity as a function of α,η for the
phase θ = 0.01, α ∈ [0,200] and η ∈ [0,1].

ρa2C with states of the form (36). However, as Enk and Hirota
mentioned in [57], the maximum overlap is in fact with the
state |ψ(

√
ηβ)〉(id)

a2C. The fidelity is defined as the maximum
overlap,

F = (id)
a2C〈ψ(

√
ηβ)|ρa2C|ψ(

√
ηβ)〉(id)

a2C

= {1 + exp[−8(1 − η)α2sin2θ ]}/2. (41)

We can easily observe from Fig. 5 that the fidelity decreases
with decreasing the transmission parameter η while it increases
with decreasing α. A reasonable length for the individual cav-
ities of the quantum cloning machine would be 1 m so that the
transmission parameter η approaches unit. The reduced density
matrix in Eq. (40) approaches the pure state |ψ(

√
ηβ)〉(id)

a2C for
small α. However, this pure state is nearly unentangled for
too small α. In other words, it is almost a product state of the
single-photon a2 and the basis vector |u〉C corresponding to
one component of the expanded qubus mode in Eq. (36) with
the orthogonal, two-dimensional basis {|u〉, |v〉}. In addition,
due to photon loss the controlled displacement on the qubus
mode is no longer exactly the one desired, leading to a smaller
phase shift and an error in the gate, to such an extent that
the qubus mode will not disentangle exactly from the qubits.
As long as the degree of loss is known, these effects can
be eliminated by increasing the amplitude of the controlled
displacement [48].

IV. CONCLUSION

We present a scheme for deterministic implementation
of quantum cloning by using an optical coherent pulse as
qubus to mediate interaction between the electron-spin systems
placed in the separate cavities, instead of direct qubit-qubit
interaction. The distinct advantage of our scheme is that (1) the
quantum information is encoded into discrete variables (DVs),
namely, the electron-spin system in the individual cavity while
the CVs mode, the optical coherent pulse, plays the role
of a quantum communication bus to mediate interactions.
In those schemes [28–36] with single-photon-based qubus,
enormous difficulties arise due to the requirements on the
generation and detection of the photons. As is known to all,
the performance of a successful near-deterministic gate is
indispensable from efficient detectors which unambiguously
detect a single photon. The present approach to circumvent this
obstacle is based on the CVs mode. (2) The entangled qubit
pair (two electron-spin systems in separate cavities) is con-
structed deterministically through a sequence of qubit-qubus
interactions without requiring any subsequent measurement
because the qubus mode is disentangled automatically from
the qubits at the end of the interactions. Thus the present
cloning scheme could effectively avoid measurement-induced
errors. Additionally, the measurement-free operation in the
present scheme not only simplifies the cloning procedure,
but also makes the cloning transformation faster. Due to
the deterministic and measurement-free operation in our
scheme, the success probability of quantum cloning, which
is unit in principle, is superior to the previously reported
ones [37–39]. (3) In contrast to the previous scheme [14],
the coefficient of the output state of our cloning machine
is just the product of two trigonometric functions due to
introducing the controlled-rotation operation. This ensures that
different types of quantum cloning machine could be achieved
readily in the same framework by appropriately adjusting the
rotated angles. The present scheme can implement optimal
one-to-two symmetric (asymmetric) UQCM, optimal sym-
metric (asymmetric) PCCM, optimal symmetric (asymmetric)
RSCM, optimal one-to-three symmetric economical RSCM,
and optimal symmetric cloning of qubits given by an arbitrary
axisymmetric distribution.
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[14] V. Bužek, S. L. Braunstein, M. Hillery, and D. Bruß, Phys. Rev.

A 56, 3446 (1997).
[15] A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester,

Science 296, 712 (2002).
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