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Multilevel superconducting circuits as two-qubit systems: Operations, state preparation,
and entropic inequalities
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We theoretically study operations with a four-level superconducting circuit as a two-qubit system. Using a
mapping on a two-qubit system, we show how to implement iSWAP gates and Hadamard gates through pulses
on transitions between particular pairs of energy levels. Our approach allows one to prepare pure two-qubit
entangled states with desired form of reduced density matrices of the same purity and, in particular, arbitrary
identical reduced states of qubits. We propose using schemes for the Hadamard gate and two-qubit entangled
states with identical reduced density matrices in order to verify log N inequalities for Shannon and Rényi entropies
for the considered noncomposite quantum system.
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I. INTRODUCTION

During the last decade, quantum correlations and the
entanglement phenomenon in composite quantum systems,
i.e., systems containing subsystems, has been viewed as a
potential resource for technologies such as high-efficiency
information processing [1], long-distance secure communica-
tions [2], ultrasensitive metrology [3], simulation of complex
systems [4], and many others. Inspiring progress on control for
quantum systems on the level of individual quantum objects,
e.g., in experiments with photons, electrons, nitrogen-vacancy
centers, nuclear spins, quantum dots, optomechanical systems,
superconducting circuits, ultracold trapped atoms, ions, and
polar molecules, has been achieved. However, the development
of a universal toolbox for efficient control for large quantum
systems scalable with respect to number of subsystems is still
a crucial challenge of quantum science and technologies [5].

Fundamental results on generalization of the Shannon
classical information theory in the quantum domain have
been obtained [6–8]. Quantum correlations for states of
composite systems are successfully described in terms of
various information and entropic characteristics, including the
von Neumann entropy and quantum mutual information [9],
discord related measures [10–12], informational asymme-
try [13], contextuality [14], entropic inequalities [15–17],
and subadditivity and strong subadditivity conditions
[17–20]. Entropic characteristics of quantum states have been
widely studied [18,20,21] in the framework of q-deformed
entropic functions, e.g., Rényi [22] and Tsallis entropies [23],
depending on a single extra parameter, as well as a larger
number of parameters [24].

Recently, possibilities of using noncomposite (i.e., indi-
visible) quantum systems as a potential platform for test
of underlying principles of quantum physics [25–28] and
realizations of quantum technologies have been discussed
[26–31]. This paradigm dates back to the foundation of the
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Kochen-Specker theorem [32], which provides certain types
of constraints on hidden variable theories, that could be used
to explain probability distributions of quantum measurement
outcomes. In particular, a photonic qutrit (d = 3) has been used
for experimental demonstration of fundamentally nonclassical
properties of noncomposite quantum systems [25].

For a j = 3/2-spin system, information and entropic
characteristics have been analyzed in detail [26,30,31,33].
The information properties of quantum states and their
characteristics could be associated indeed with both composite
and noncomposite systems. Then all the abovementioned
information and entropic measures for composite quantum
systems can be mapped in a very simple way on the case
of noncomposite quantum systems [26–30]. This framework
opens up new perspectives for the implementation of quantum
technologies, e.g., many-level quantum simulation [29] and
quantum information processing [30,31,34], with noncompos-
ite quantum systems.

In the present work, we report about operation with a
four-level superconducting circuit as a two-qubit system. We
consider the implementation of various quantum gates and
preparation of a specific class of two-qubit states. In particular,
we show how to realize iSWAP gate and Hadamard gate through
applying pulses on the transition between particular pairs
of energy levels in the system. We introduce a scheme for
preparation of two-qubit pure entangled states with desired
reduced density matrices of the same purity, as well as states
with identical matrices. Combining these approaches, we
demonstrate how these states can be used for verification
of entropic inequalities, related with the quantity log N with
N being the dimensionality of the Hilbert space [35], for
noncomposite systems. In short, we denote this class as log N

entropic inequalities. This type of inequalities is a particular
case of the Massen-Uffink entropic uncertainty relation [36],
which are in their turn a fundamental aspect of quantum
physics. Another important feature of these inequalities is a
link to the quantum Fourier transform [21], which plays a
crucial role for several quantum algorithms, e.g., the Shor’s
algorithm [37].
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FIG. 1. (Color online) Isomorphic correspondence between a qu-
dit state with d = 4 and a two-qubit system. Transition frequencies
between levels correspond to the multilevel superconducting circuit
investigated in Ref. [60].

In the present proposal, the noncomposite system is
implemented as a single multilevel quantum system realized
via an anharmonic superconducting circuit (see Fig. 1).
Superconducting circuits with Josephson junctions have been
considered in early works [38–43] as well as in recent theoret-
ical [44–48] and experimental studies [47–66]. Noncomposite
quantum systems can be realized through a variety of physical
platforms, which include, but are not limited to photons [67]
and NMR systems [68]. Nevertheless, progress in experiments
with multilevel systems based on superconducting circuits
forces us to focus our study on this environment [49–61].

Superconducting circuits indeed can be considered as
highly tunable artificial atoms. Being a very useful envi-
ronment for demonstration of analogs of phenomena re-
lated to interactions between atoms and electromagnetic
radiation such as dynamical Casimir effect [49,50], Autler-
Townes splitting [51–53], electromagnetically induced trans-
parency [54], and dynamical Lamb effect [69], these systems
are promising candidates for quantum computing [62–65]
and simulation [66]. Performance of two-qubit quantum
algorithms [62,63] as well as implementations of a three-qubit
operation have been shown [64]. Schemes for realizations of
the quantum Fourier transform have been considered [65].

In the recent experimental study [60], isomorphic corre-
spondence between a four-level qudit and a two-qubit quantum
system has been used to explore “hidden” two-qubit dynamics
of a four-level superconducting circuit with the Josephson
junction. In fact, this straightforwardly demonstrates a poten-
tial resource of noncomposite systems realized as multilevel
superconducting circuits for quantum technologies.

Quantum correlations and quantum discord phenomena for
coupled LC-nanoelectric circuits [70] and superconducting
circuits with the Josephson junction [71] have been discussed.
However, the details of entropic inequalities for the Shannon
entropy and the Rényi entropy and a possible way for their
verification can be clarified.

Our paper is organized as follows. In Sec. II, we describe an
isomorphic correspondence between the qudit with d = 4 and
two-qubit quantum system as well as demonstrate possible
schemes for a set of quantum gates for our noncomposite
system: iSWAP and Hadamard gates. We briefly discuss
extension of the system towards realization of the universal

set of two-qubit gates. In Sec. III, we introduce a scheme
for the preparation of two-qubit entangled states with equal
levels of purity and, in particular, states with identical reduced
density matrices. In this framework, we discuss the application
of such schemes aimed on verification of particular cases of
entropic inequalities in noncomposite quantum systems based
on anharmonic superconducting circuits. Finally, in Sec. IV
we summarize the results of our work.

II. MULTILEVEL QUANTUM SYSTEM: QUANTUM GATES

Our approach can be applied to any many-level quantum
system. Here, we focus on the realization with superconducting
anharmonic multilevel circuits due to significant experimental
progress in this scope [57–61].

A. Mapping on a bipartite quantum state

In this work, we are particularly interested in the realization
of a four-level quantum system. One can introduce the
following mapping of an “original” four-level system on an
“artificial” bipartite (two-qubit) system [26–28,30] as the
following isomorphic correspondence between the stationary
energy states and two-qubit logic basis:

|0〉 ↔ |00〉, |1〉 ↔ |01〉, |2〉 ↔ |10〉, |3〉 ↔ |11〉, (1)

where we use the following notation (see Fig. 1):

|ij 〉 ≡ |i〉A ⊗ |j 〉B.

Here, A and B stand for qubits of an artificial two-qubit
quantum system.

For the original quantum system with the density matrix
written in the computational basis

ρ = ρAB =

⎡
⎢⎢⎢⎣

ρ00 ρ01 ρ02 ρ03

ρ∗
01 ρ11 ρ12 ρ13

ρ∗
02 ρ∗

12 ρ22 ρ23

ρ∗
03 ρ∗

13 ρ∗
23 ρ33

⎤
⎥⎥⎥⎦, (2)

we obtain the following density matrices of qubits in their
computational basis:

ρA =
[
ρ00 + ρ11 ρ02 + ρ13

ρ∗
02 + ρ∗

13 ρ22 + ρ33

]
,

(3)

ρB =
[
ρ00 + ρ22 ρ01 + ρ23

ρ∗
01 + ρ∗

23 ρ11 + ρ33

]
.

We note that there are other suitable ways to map multilevel
systems on two-qubit systems such as “Bell-state” encod-
ing [60]. However, it is crucial that the diagonal elements
of qubit matrices (3) are composed of the diagonal elements
of density matrix (2). This feature is the result of using
mapping (1).

In this case, we find that the measurement of the original
system state in the quanta number basis is equivalent to
the simultaneous measurements of both artificial subsystems
in their computational basis. Realization of unitary rotation
operators previous to such measurement opens a way to the
tomographic characterization of qubit states.
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B. Quantum logic gates

We consider a possible scheme for a set of quantum logic
gates for our noncomposite system. We assume that the only
operation we can perform is applying a θ pulse on the transition
between any pair of four energy levels in the system. It is
realizable by coupling of a superconducting circuit to an
external resonant field [48]. Nonlinearity of the potential,
which comes from the Josephson junction, makes it possible
to address a particular transition in the system at least on a
theoretical level of consideration.

The corresponding operator of the θ pulse, which is a
rotation operator around the x axis in the Bloch sphere of
the corresponding two-dimensional Hilbert subspace, reads

R(jk)
x (θ ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

](jk)

⊕ I(jk), (4)

where the superscript j,k ∈ {0,1,2,3} of the matrix indicates
that it is written in the basis {|j 〉,|k〉}, ⊕ denotes the direct
sum, and I(jk) stands for the identity operator acting in
the orthogonal complement (Span{|j 〉,|k〉})⊥, such that the
operator R

(jk)
x (θ ) acts in the whole Hilbert space of the

four-level system.
The useful feature of the considered system is that the

proper sequence of pulses, originally corresponded to rotation
around the x axis, allows one to implement the effective
rotation around the y axis of the particular Bloch sphere [see
Fig. 2(a)]:

R(jk)
y (θ ) =

[
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

](jk)

⊕ I(jk)

= R(j l)
x (π )R(kl)

x (θ )R(j l)
x (3π ). (5)

We note that in (5) the ancillary energy level l from jk is
used. Its occupation and phase in the result of this sequence of
pulses remains intact.

Using (4) and (5) allows us to construct important logical
gates for our noncomposite system. As an illustrative example,
we consider the two-qubit iSWAP gate, which can be realized

as follows [see also Fig. 2(b)]:

UiSWAP ≡

⎡
⎢⎣

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎤
⎥⎦ = R(12)

x (3π )

=
[

0 i

i 0

](12)

⊕ I(03), (6)

where the the full matrix is written in the computational
basis. One can see that its realization is rather straightforward,
because only a single appropriate rotation operation is needed.

One-qubit operations, in contrast, appear to be more
intricate for implementation. Here, we focus on the realization
of the Hadamard gate

H = 1√
2

[
1 1
1 −1

]
. (7)

The application of the Hadamard gate to both qubits of the
Hadamard gate (7) to particular qubits A and B corresponds
to the following sequences of the rotation operators:

H(A) ⊗ I(B) = 1√
2

⎡
⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎦

= R(13)
y

(
π

2

)
R(02)

y

(
π

2

)
R(23)

x (2π )

= R(23)
x (π )R(12)

x

(
7π

2

)
R(03)

x

(
7π

2

)
R(23)

x (π ),

(8)

I(A) ⊗ H(B) = 1√
2

⎡
⎢⎣

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎤
⎥⎦

= R(23)
y

(
π

2

)
R(01)

y

(
π

2

)
R(13)

x (2π )

= R(13)
x (π )R(12)

x

(
7π

2

)
R(03)

x

(
7π

2

)
R(13)

x (π ), (9)

FIG. 2. (Color online) In (a) realization of rotation around the y axis in the Bloch sphere of the corresponding two-dimensional Hilbert
subspace spanned by vectors |j〉 and |k〉 (blue arrow) using only operators of rotations around the x axis (black arrows) applied to different
couples of three-level set {|j〉,|k〉,|l〉} [see Eq. (5)]. In (b)–(e) we show the implementation of various gates via sequences of θ pulses (4)
applied to different two-level transitions. The duration of each pulse is denoted by the value near the corresponding arrow. We note that in the
figure, time is directed from left to right, i.e., the order of pulses is opposite to that in Eqs. (5), (6), and (8)–(10).
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where superscripts (A) and (B) indicate that the particular
operator acts in the Hilbert subspace of the corresponding
qubit [see Figs. 2(c)–2(d)].

The application of the Hadamard gate (7) to both qubits
can be realized by the coherent implementation of (8) and (9),
which needs eight pulses, or via the following optimized
sequence:

H(A) ⊗ H(B) = 1

2

⎡
⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎦

= R(13)
y

(
π

2

)
R(02)

y

(
π

2

)
R(23)

y

(
5π

2

)

×R(01)
y

(
π

2

)
R(13)

x (2π )

= R(12)
x (π )R(23)

x

(
π

2

)
R(01)

x

(
7π

2

)
R(13)

x

(
5π

2

)

×R(02)
x

(
7π

2

)
R(12)

x (3π )R(13)
x (2π ), (10)

which uses seven pulses [see Fig. 2(e)].
It is important to note that using such methods does not

allow one to realize the universal set of two-qubit quantum
gates [8]: one-qubit Hadamard gate, π/8 gates, and controlled-
NOT gate. Indeed, our primary rotation operators (4) and (5)
together with implemented logic gates given by Eqs. (6)
and (8)–(10) belong to the SU(4) group. Apparently, one
cannot realize any operator beyond the SU(4) group by a
sequence of rotation operator (4).

A particular example of such operator is the controlled-NOT

gate,

UCNOT =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦, (11)

which has the determinant being equal to −1.
Thus, its implementation requires another approach for

the implementation and realization of noncomposite systems.
A possible way towards overcoming this challenge is by
using an ancillary level for realization of operators from
the U(4) group through operators from the SU(5) group.
This strategy has been recently studied in the context of
the Deutsch algorithm realization using five-level anharmonic
superconducting multilevel quantum circuits [34].

III. OPERATING WITH TWO-QUBIT STATES

Here, we consider an example operation with a four-level
superconducting circuit as a two-qubit system aimed at the
preparation of a pure two-qubit entangled state with desired
reduced density matrices of the same purity. As a particular
case, we demonstrate how to prepare the state with identical
reduced matrices. Such class of two-qubit states can be used
for verification of log N entropic inequalities.

FIG. 3. (Color online) The suggested scheme of preparation of a
pure two-qubit state |ψ〉 (15) with reduced states having the same
purity (length of Bloch radius vector): in (a) reduced states of qubits
in Bloch sphere representation; in (b) sequence of pulses applied to a
four-level superconducting circuit that prepares |ψ〉 from the ground
state |0〉, where the black arrows stands for x rotations (4) and blue
for y rotations (5).

A. Preparation of states with equal purity

We assume that our four-level circuit is initially in the
ground state |0〉. Our aim is to prepare a two-qubit state |ψ〉
with desired reduced density matrices ρA and ρB having the
equal modules of corresponding Bloch vectors. This equality
is a consequence of the purity of the joint state, which implies
the equal purity of marginals:

Trρ2
A = Trρ2

B. (12)

One can cope with the preparation of the state |ψ〉 in three
steps. The first step is to apply an entangling pulse R(03)

x (θ0)
which sets radii of the Bloch vectors of ρA and ρB to cos θ0

(see Fig. 3).
The second is to apply rotations around the x axis on angles

θA
1 and θB

2 in the Bloch spheres of the both qubits Hilbert
spaces:

R(A)
x

(
θA

2

) = R(13)
x

(
θA

2

)
R(02)

x

(
θA

2

)
,

(13)
R(B)

x

(
θB

2

) = R(01)
x

(
θB

2

)
R(23)

x

(
θB

2

)
.

Finally, the third step is to apply rotations around the y axis
for both qubits as follows:

R(A)
y (θ3) = R(13)

y

(
θA

2

)
R(02)

y

(
θA

2

)
,

(14)
R(B)

y (θ3) = R(01)
y

(
θB

2

)
R(23)

y

(
θB

2

)
.

As a result, one can obtain the following state:

|ψ〉 = R(B)
y

(
θB

2

)
R(B)

y

(
θA

2

)
R(B)

x

(
θB

1

)
R(A)

x

(
θA

1

)
×R(03)

x (θ0)|0〉, (15)

with reduced states

ρj =
[

1 + zj xj + iyj

xj − iyj 1 − zj

]
, (16)

where the following notations are used:

xj = cos θ0 cos θ
j

1 sin θ
j

2 ,

yj = − cos θ0 sin θ
j

1 , (17)

zj = cos θ0 cos θ
j

1 cos θ
j

2 , j = A,B.

Thus, using of a proper sequence of θ pulses allows one to
prepare arbitrary reduced qubit states of the same purity.
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B. States with identical reduced density matrices

There is an important particular case of the scheme
discussed above, which allows one to prepare two-qubit states
with identical reduced matrices:

ρA = ρB = ρ0. (18)

Towards this end, we consider a simple modification of this
scheme, with the setting in Eq. (15):

θA
1 = θB

1 , θA
2 = θB

2 . (19)

In reality, the identity between resulting states of qubits
depends strongly on the accuracy of applied pulses.

C. Application: Verification of entropic inequalities

We note that the class of two-qubit states with identical
reduced density matrices can be used for verification of
particular types of entropic inequalities, being a manifestation
of uncertainty relations written in terms of information theory.
The general idea is to construct a two two-qubit state, with
a reduced density matrix of one qubit being the Hadamard
transform of the other one, and then study their properties.

For instance, one can prepare an entangled state with
identical reduced matrices ρ0, apply a Hadamard gate on the
second qubit B, perform a measurement in computational
basis of the whole system getting the diagonal elements of
each qubit, and verify the following log 2 inequality [35],
being a particular case of the Maassen-Uffink uncertainty
relation [36]:

H (ρ0) + H (Hρ0H) � log 2, (20)

where

H (σ ) = −
∑
m

σmm log σmm (21)

is the Shannon entropy calculated from measurement statistics
in the computational basis.

The similar inequality

Rα(ρ) + Rβ(HρH) � log N, α−1 + β−1 = 2 (22)

can be considered for Rényi entropy

Rα(ρ) = 1

1 − α
log

∑
m

(ρmm)α, α � 0, (23)

which reduces to Shannon entropy at α = 1.

We should note two points. First, the verification of
inequalities (20) and (22) requires that the reduced operators
were identical to a very high degree of accuracy. Second, the
considered setup of a four-level circuit also allows one to check
log 4 inequalities by preparing some pure two-qubit state |ψ〉,
measuring it in the computational basis, then preparing the
state again, applying Hadamard gates to both qubits obtaining
vector

H(A) ⊗ H(B)|ψ〉, (24)

and also measuring it in the computational basis.
The limitation of the last scheme is that we are restricted to

the space of pure two-qubit spaces, assuming that our circuit is
initially in the ground state |0〉 and we can neglect decoherence
processes during operation with the system.

IV. CONCLUSIONS AND OUTLOOK

We summarize the main results of the present paper. Using
the isomorphic correspondence between the qudit with d = 4
and the “two-qubit” quantum system, we considered possible
schemes for a set of quantum logic gates for our noncomposite
system: iSWAP and Hadamard gates. We discussed possible
methods for producing classes of two-qubit states with the
same purity and the same reduced density matrices. We
suggested using these schemes for verification of log N

inequalities for Shannon and Rényi entropies, which are one
of the manifestations of uncertainty relations for conjugate
variables.

A link between our consideration and the framework of
the highly controllable and easily implementable in exper-
iment platform results in opportunities for the verification
of log N entropic inequalities via existing experimental tools
[57–61], and furthermore, consider possibilities to investigate
computational speedup in oracle-based quantum algorithms
with the use of multilevel artificial atoms.
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