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We introduce an efficient scheme for quantum state transfer that uses a parity-based mirror inversion technique.
We design efficient circuits for implementing mirror inversion in Ising σ Xσ X and σ Yσ Y coupled systems and
show how to analytically solve for system parameters to implement the operation in these systems. The key
feature of our scheme is a three-qubit parity gate, which we design as a two-control one-target qubit gate. The
parity gate operation is implemented by only varying a single control parameter of the system Hamiltonian and
the difficulty of implementing this gate is equivalent to that of a controlled-NOT gate in a two-qubit system.
By applying a sequence of N + 1 parity-based controlled-unitary operations between nearest-neighbor qubits,
where all qubits in an N-qubit chain function either as controls or targets, we are able to reverse the order of
all qubits along the array. These operations are accomplished by varying only a single control parameter per
data qubit. The control parameter depends on the physical system under consideration and on the choice of the
designer. Since every qubit participates in the mirror-inversion process functioning either as a control or target,
all nearest-neighbor couplings are used. Therefore, we do not need additional measures to cancel the effect of any
unwanted interactions and the quantum cost of our scheme does not increase in systems that do not have the ability
shut off couplings. Moreover, our scheme does not require additional ancillas, nor does it use a pre-engineered
mirror-periodic Hamiltonian to govern the evolution of the system. Using our mirror inversion scheme, we also
show how to implement a SWAP gate between two arbitrary remote qubits, move a block of qubits, and implement
efficient computing between two remote qubits in nearest-neighbor layouts.
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I. INTRODUCTION

Many proposed implementations for a physical quantum
computer use a one-dimensional line of qubits with nearest-
neighbor (NN) interactions [1–11], called linear nearest-
neighbor (LNN) arrays, where a qubit interacts only with the
two qubits adjacent to it. As such, to perform an operation
between two remote qubits along the array, that is, between
qubits that are not nearest neighbors, often additional SWAP

gate operations are required to first bring the qubits adjacent
to each other. Since each SWAP gate comprises three CNOT gates
[12], the overall computational overhead can be high. Thus,
increasing the efficiency of implementing quantum circuits in
LNN architectures is an active and important area of research.
In fact, it has been shown that if a quantum circuit can
be realized efficiently using an LNN architecture, it can be
implemented in other architectures as well [13].

The study of efficient realization of quantum circuits
on LNN architectures can be broadly classified into two
types. The first type of research involves finding methods
of translating general quantum circuits into equivalent NN
circuits efficiently, where worst-case synthesis costs for im-
plementing a general unitary matrix under the NN restriction
are investigated. The second type of research, which is the
focus of this paper, involves the development of protocols
for transmitting quantum states. In any multiqubit quantum
system, efficient quantum state transfer is necessary to allow
quantum information to be moved around within a quantum
processor. In [14], Bose proposed a scheme to use a spin chain
as a channel for short-distance quantum communication. Here
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communication is achieved by encoding a quantum state to be
transmitted on a spin at one end of the chain and waiting for a
specific amount of time after which the state propagates to the
other end. However, due to dispersion of quantum information
along the chain, the transport fidelities were less than perfect
[14–21]. As a result, several methods of improving the
transport fidelity have been investigated. It has been found
that perfect transport can be achieved along a spin chain if
the nearest-neighbor couplings in the quantum channel are
set to very specific values [19,20,22–25]. By encoding the
quantum information into low-dispersion wave packets or by
encoding or decoding via conditional quantum logic across
multiple quantum channels or wires, near perfect transport
can be achieved [15,21,26–29]. Other possibilities include
using teleportation of the quantum information along the
quantum wire by measurements [30], encoding into solitonlike
excitations [31], or using quantum cellular automata concepts
[32,33]. Besides the transport of single qubits, methods to
transport entire qubit registers via quantum mirror wires
have also been investigated [24,34–41]. Here an unknown
multiqubit quantum state, when encoded at one end of
the wire, is transmitted to the other end, in reverse order
[34–38], and the process is called mirror inversion (MI). One
method of implementing MI processes in spin chains is by
pre-engineering spin-spin couplings with a specific pattern.
Another method is to repeatedly apply global signal pulses
to the system during its dynamical evolution [39–41]. The
advantage of such globally controlled MI schemes is that a
regular uniformly coupled spin chain can be used, without the
necessity to manipulate individual couplings between qubits.
Since in some schemes using global control, special block
encoding of qubits using additional ancillary qubits is required,
the storage density can be less than unity.
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In this paper we present an efficient scheme for quantum
state transfer that uses a parity-based MI technique that can
be implemented in Ising (σ Zσ Z), σ Xσ X, and σ Yσ Y coupled
systems. There are several key features of our scheme. First,
we show how to implement a three-qubit parity gate in an Ising
coupled system where the gate operation is realized by varying
only a single control parameter of the system Hamiltonian.
This is achieved by designing the parity gate as a two-control
one-target qubit gate. Since the difficulty of implementing our
gate is equivalent to that of implementing a CNOT gate in a
two-qubit system, for all practical purposes, the parity gate
can be considered as an elementary gate. (Under a CNOT gate,
the target qubit flips its state from |0〉 to |1〉, and vice versa,
only if the control qubit is in the |1〉 state.) Next we show how
to use the parity gate to generate efficient circuits for MI as a
sequence of controlled-unitary operations between NN qubits.
We analytically solve for system parameters for implementing
these operations. We next design circuits for implementing MI
in σ Xσ X and σ Yσ Y coupled systems and analytically show
that the same values of the parameters that were calculated for
implementing an MI in an Ising coupled system can be used for
realizing MI in these systems. That is, using our scheme, MI
can be implemented in σ Xσ X and σ Yσ Y coupled systems using
the same set of parameters for which they can be implemented
in an Ising coupled system, without requiring any additional
gate operations, which is significant.

Our scheme has several advantages from a practical
implementation standpoint. The MI of an N-qubit chain is
accomplished in only N + 1 computational steps (a compu-
tational step comprises one or more elementary gates applied
in parallel). The scheme is efficient since each computational
step is accomplished by varying a single control parameter
on all target qubits. The control parameter depends on the
physical system under consideration and on the choice of the
designer. For instance, when implementing our MI scheme
in an Ising coupled system, we choose to vary the biases on
individual qubits since they are relatively easy to control. As
we will subsequently show, the biases resemble clock pulses
and the bias pulses on alternate qubits along an LNN array
(with the exception of the first and last qubits) are identical.
This symmetry can be used in a practical implementation to
reduce the number of control lines, wherein the bias lines for
qubits having identical pulse sequences can be tied together.
In general, the control circuitry can be reduced to three bias
control lines if N is odd and four bias control lines are required
if N is even. Another important feature of our scheme is that
since every qubit participates in the MI process functioning
either as a control or a target, all NN couplings are used.
Therefore, we do not need additional measures to cancel the
effect of any unwanted interactions, especially in systems
with untunable couplings. Also, no additional computational
overhead is introduced through the use of additional ancillas
for implementing the MI operation nor do we require a
pre-engineered Hamiltonian to implement MI.

The paper is organized as follows. In Sec. II we introduce
the three-qubit parity gate, which is the basic building block
of our MI process. We show how to implement this gate in
a three-qubit Ising coupled system by varying only a single
parameter of the system Hamiltonian. In Sec. III we show
how to construct circuits for implementing MI in N-qubit
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FIG. 1. (a) Two successive CNOT gate operations, which perform
the C2(P) gate operation as given by Eq. (1). For both gates, qubit
Q2 is the target qubit. (b) Our representation of the C2(P) gate as a
single elementary gate operation. Here the vertical line connecting
qubits Q1, Q2, and Q3 shows that the gate operation involves all
three qubits. To distinguish between the two controls and the target,
a square with the letter P is placed on the target qubit. This indicates
that after the gate operation, the state of the target qubit Q2 will hold
the parity of the three qubits, while the states of the two-control qubits
Q1 and Q3 remain unchanged [Eq. (1)].

linear arrays using N + 1 computational steps. We also show
how to extend these circuits to σ Xσ X and σ Yσ Y coupled
systems by using the same parameters derived for the Ising
coupled system. In Sec. IV several applications of MI are
presented, which include moving a block of data in one- and
two-dimensional (2D) arrays efficiently. In Sec. V the effects
of unwanted couplings, parameter mismatches, and rise and
fall times on the performance of our MI scheme are discussed.
In discussing the effects unwanted couplings, we consider
a physical quantum system of superconducting qubits. In
Sec. VI we present a summary.

II. THREE-QUBIT PARITY-BASED MIRROR INVERSION
IN AN ISING COUPLED SYSTEM

We define the three-qubit parity gate, which we will
represent as C2(P), as a two-control one-target qubit gate,
which computes the parity of three qubits. Under this gate
operation, the target qubit inverts its state from |0〉 to |1〉 or
vice versa, only if the two-control qubits are in opposite states.
That is, the linear transformation under the C2(P) gate can be
represented as

|q1,q2,q3〉 C2(P)−−−→ |q1, q1 ⊕ q2 ⊕ q3, q3〉

=
{|q1,q2,q3〉 for q1 = q3∣∣q1,q

′
2,q3

〉
for q1 = q ′

3.
(1)

Here |q1, q2, q3〉 represents a joint state of qubits Q1, Q2, and
Q3, which is one of the eight computational basis states |000〉
through |111〉. Qubits Q1 and Q3 are controls, while qubit Q2

is the target. Also, q ′
2 (q ′

3) represents the complement of q2

(q3), i.e., if q2 = 0, then q ′
2 = 1, and vice versa. Note that the

C2(P) gate is equal to two CNOT gates, one each between qubits
Q1 and Q2 and qubits Q2 and Q3, respectively, with qubit Q2

as the target qubit for both gates [Fig. 1(a)]. However, since
in this paper we devise a method of implementing the C2(P)
gate as a single gate by only varying a single control parameter
of the system Hamiltonian, without the need to decompose it
into two CNOT gates, hereafter we will represent the C2(P)
gate as shown in Fig. 1(b). Here the vertical line connecting
qubits Q1, Q2, and Q3 shows that the gate operation involves
all three qubits. To distinguish between the two controls and
the target, a square with the letter P in placed on the target
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FIG. 2. Swapping the states of qubits Q1 and Q3 in a one-dimensional LNN arrangement. (a) Conventional method of using SWAP gates
between adjacent qubits, where each swap comprises three CNOT gates. The total gate count of the circuit is 9. Also, since none of the gates
can be applied in parallel, the number of computational steps cannot be further reduced by applying gate operations in parallel. (b) Our method
of implementing a SWAP operation between qubits Q1 and Q3 using the C2(P) gate instead of SWAP gates. The overall gate count is 6 gates.
However, since each pair of CNOT gates following a C2(P) gate can be applied in parallel, the number of computational steps can be further
reduced to 4.

qubit. This indicates that after the gate operation, the state of
the target qubit Q2 will hold the parity of the three qubits,
while the states of the two-control qubits Q1 and Q3 remain
unchanged [Eq. (1)].

We will now show how the C2(P) gate can be used to
perform a MI operation in a three-qubit LNN system where
the qubits are arranged along a line in the order Q1, Q2,
Q3, with interactions only between qubits Q1 and Q2 and
between qubits Q2 and Q3. There is no interaction between
qubits Q1 and Q3 and they are called next-to-nearest-neighbor
qubits. Note that performing an MI operation in this system
is equivalent to swapping the states of the two next-nearest
neighbors Q1 and Q3. To do so, if we were to use conventional
methods of applying successive SWAP gates between adjacent
qubits, where each SWAP operation comprises three CNOT gates
[12], we would require a total of nine CNOT gates. (Note
that when making this comparison we are not considering
XY coupled and Heisenberg interaction systems, where the
natural gate operation is the SWAP.) Figure 2(a) shows the
circuit. However, using the C2(P) gate, we require only a total
of six gates as shown in Fig. 2(b): four CNOT and two C2(P)
gates. Moreover, since the two CNOT gates between qubits Q1

and Q2 and qubits Q2 and Q3 can be applied in parallel, we
can combine these two gates into a single computational step,
assuming that both CNOT gates require the same time duration.
We will hereafter refer to these double CNOT gate operations
as the D gate operation. Thus, by combining the operation
times of gates in parallel, the total number of operations can
be further reduced to 4. Observe that the circuit shown in
Fig. 2(a) does not have this advantage since none of the gates
can be applied in parallel.

The overall linear transformation under the circuit shown
in Fig. 2(b) is

|q1,q2,q3〉 C2(P)−−−→
step 1

|q1, q1 ⊕ q2 ⊕ q3, q3〉
CNOT−−−→
step 2

|q2 ⊕ q3, q1 ⊕ q2 ⊕ q3, q1 ⊕ q2〉

C2(P)−−−→
step 3

|q2 ⊕ q3, q2, q1 ⊕ q2〉 CNOT−−−→
step 4

|q3,q2,q1〉.
(2)

From Eq. (2) we can see that the states of qubits Q1 and
Q3 are interchanged. This method of using C2(P) gates in
conjunction with CNOT gates can be extended to implement
SWAP operations between arbitrarily separated qubits in NN
arrays, as we will show in the next section.

To demonstrate how to implement a C2(P) gate operation,
consider a three-qubit Ising coupled NN system with the
Hamiltonian

H =
3∑

i=1

(�iσ Xi + εiσ Zi) + ξ

2∑
i=1

σ Ziσ Zi+1. (3)

Here εi and �i are the bias and tunneling parameters for qubit
Qi , and σ Xi and σ Zi for i = 1, 2, 3 are the corresponding
Pauli spin matrices for each qubit. The nearest-neighbor
couplings between qubits Q1 and Q2 and qubits Q2 and Q3

are assumed to be equal in magnitude ξ and are diagonal
in the interaction basis. The Hamiltonian model given by
Eq. (3) can be used to represent physical systems with and
without tunable couplings [42–44]. For instance, in charge
qubits with fixed interactions [43], the coupling between qubits
will be a fixed capacitance between adjacent boxes. In a
tunable coupling system as in [44], where nearest-neighbor
charge qubits are coupled through loop-shaped electrodes
with Josephson junctions (JJs) at the loop intersections, the
coupling between two qubits is varied by varying the bias
current through the Josephson-junction loop.

To implement the C2(P) gate operation, we use the pulsed
bias scheme proposed in [45,46], which is a scheme for
implementing controlled-unitary operations. In this scheme,
only a single pulse is applied on the target qubit (in this case,
Q2) and no operation is performed on the control qubits (Q1

and Q3) [45,46]. The magnitude and the duration of the pulse
depend upon the gate operation that is performed and also on
whether the system is operating in the weak- (ξ < �) [45] or
strong- (ξ1 > �) [46] coupling regime. Suppose the couplings
are strong. Then, by setting the biases on the two-control
qubits to any arbitrary value, including zero, such that it does
not cancel the effect of the couplings, we can essentially
freeze their dynamics, wherein each qubit only undergoes
Z precessions at rates determined by the magnitudes of the
couplings [46]. As a result, 2 × 2 reduced Hamiltonians can
be written for the target qubit Q2 in a subspace |ψ〉, where
|ψ〉 corresponds to a joint state of qubits Q1 and Q3, which is
|00〉, |01〉, |10〉, or |11〉 [46]:

H|ψ〉
2 = �2σ X + (ε2 + ξ 〈ψ |σ Z1|ψ〉 + ξ 〈ψ |σ Z3|ψ〉)σ Z

+(ε1〈ψ |σ Z1|ψ〉 + ε3〈ψ |σ Z3|ψ〉)I. (4)

Here the subscript 2 in the Hamiltonian represents qubit Q2

and I is the 2 × 2 identity matrix. Since |ψ〉 can be one of
four states, there are four reduced Hamiltonians for qubit Q2.
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FIG. 3. Simulation results for the C2(P) gate when the initial state
is an equal superposition of the |001〉 and |101〉 states, respectively.
The plot shows the evolution of probabilities of the different basis
states of the system (except for those states whose probabilities remain
zero throughout). From the plots we can see that, under the C2(P)
gate, the |101〉 initial state remains in the same state, while the |001〉
initial state changes to |011〉, confirming the C2(P) gate operation.

Integrating the Hamiltonian using the Schrödinger equation,
we obtain the following unitary matrix for the evolution of
qubit Q2 in subspace |ψ〉:
U = eiθ

×
(

cos(2πf t)− iE
f

sin(2πf t) −i�2
f

sin(2πf t)
−i�2

f
sin(2πf t) cos(2πf t)+ iE

f
sin(2πf t)

)
,

(5)

where

E = ε2 + ξ 〈ψ | σ Z1 |ψ〉 + ξ 〈ψ | σ Z3 |ψ〉 , (6)

f =
√

�2
2 + E2 (7)

and

θ = −2πt (ε1 〈ψ | σ Z1 |ψ〉 + ε3 〈ψ | σ Z3 |ψ〉) . (8)

Equation (5) describes the unitary evolution of the target in
subspace |ψ〉. Here we have normalized the Planck constant
to 1. Also, by appropriately choosing the values of the biases
on Q1 and Q3, the phase in a subspace as given by Eq. (8) can
be made zero (or an integer multiple of 2π ).

Under the C2(P) gate, we want qubit Q2 to invert its state
when Q1 and Q3 are in opposite states. This means that in
the |01〉 or |10〉 subspaces, we need the effective bias E to
be zero, which allows qubit Q2 to undergo Rabi oscillations
between its |0〉 and |1〉 states at a rate 2π�2t in these subspaces.
From Eq. (6), since the two coupling terms, being equal in
magnitude, completely cancel each other in these subspaces,
to implement the C2(P) gate, we simply need to make the bias
ε2 on Q2 zero, for a time step T such that

T = 4P + 1

4�2
, (9)

where P is an integer [45,46]. From Eq. (9), qubit Q2 undergoes
a quarter-cycle oscillation, wherein it inverts its state in the |01〉
and |10〉 subspaces. Note that, in the |00〉 and |11〉 subspaces,
qubit Q2 only undergoes Z precessions, since the bias ε2 does
not cancel out the effect of the strong couplings. The values of
the couplings can be chosen such that these precessions result
in identity gate operations on the target qubit in the |00〉 and
|11〉 subspaces [45,46]. One set of parameters in the strong-
coupling regime, which we have used in our simulations,
consists of �1 = �2 = �3 = 25 MHz, T = 10 ns, ε1 = ε3 =
3 GHz, ξ = 1 GHz, and ε2 = 0. (The tunneling parameter is
assumed to be fixed at the same magnitude for all qubits, even
though methods to tune the tunneling have been experimentally
demonstrated [47].) Initially, the bias on target qubit Q2 is
3 GHz. To implement the gate, the bias on qubit Q2 is made
zero for a time step of T = 0.25� (for � = 25 MHz and
T = 10 ns), after which it is raised to its initial value (3 GHz)
once again. Simulations confirmed the gate operation and the
average fidelity was 100%. In calculating the average fidelity,
simulations were run for each of the eight basis states |000〉

0
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FIG. 4. Simulation results for the MI operation between qubits Q1 and Q3 in a three-qubit LNN system using the circuit shown in Fig. 2(b).
The initial state of the system is |110〉, where the probabilities in the |1〉 state of each qubit has been plotted. The final state is |011〉, which
confirms the SWAP operation between qubits Q1 and Q3.
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through |111〉, the fidelity was calculated for each input state,
and then an average was computed. The following equation
was used to compute the fidelity [12]:

F = tr(
√√

ρσ
√

ρ), (10)

where σ is the density matrix of the desired state and ρ is
the density matrix of the final state obtained after simulation.
Figure 3 shows an example of simulation results when the ini-
tial state is an equal superposition of the |001〉 and |101〉 states,
respectively. The plot shows the evolution of probabilities of
the different basis states of the system (except for those states
whose probabilities remain zero throughout). From the plots
we can see that, under the gate operation, the |101〉 initial state
remains in the same state, while the |001〉 initial state changes
to |011〉, confirming the C2(P) gate operation.

Next, to implement the MI operation between qubits Q1

and Q3, we simulated the circuit shown in Fig. 2(b). Assuming
ideal pulses, the simulation was divided into four time steps
of duration T = 0.25� (in our simulations, we used � =
25 MHz, wherein T = 10 ns). When the qubits were idle and
no gate operations were performed on them, the bias on the
qubits was 3 GHz. The value of the bias was randomly chosen
such that ε � �. [Simulations have shown that the final state
is obtained with high probability (greater than 99% if ε is
at least 10�). However, the larger the value of the bias, the
closer the fidelity of the gate operation is to unity.] The first
and third time steps correspond to the C2(P) gate operations,
where the bias on qubit Q2 is made zero for T = 0.25�. The
second and fourth time steps correspond to two pairs of CNOT

gate operations during which the bias on target qubits Q1 and
Q3 are each lowered to ξ (which is 1 GHz) for T = 0.25�

[45,46], while the bias on the control qubit Q2 is kept high at
3 GHz. Simulations confirmed the gate operation with fidelity
of 99.97%. Figure 4 shows simulation results when the initial
state is |110〉, where the probabilities in the |1〉 state of each
qubit have been plotted. The final state is |011〉, which confirms
the MI operation between qubits Q1 and Q3.

III. PARITY-BASED MIRROR INVERSION IN LINEAR
CHAINS OF NEAREST-NEIGHBOR

QUBITS WITH N > 3

We will now show how to construct efficient circuits for
MI in LNN arrays using the results of Sec. II. Since we will
be primarily using an Ising coupled system in our simulations,
throughout this section we compare the performance of our
circuits to one that uses successive applications of SWAP

gates (three CNOT gates) between adjacent qubits. As we
will subsequently show, all the methods presented here can
be easily extended to σ Xσ X and σ Yσ Y coupled systems, by
simply exchanging the magnitudes of the bias and tunneling

Q1 Q2 Q3 QN-1 QN 

FIG. 5. The LNN arrangement of N qubits (represented as circles)
with each qubit coupled only to its immediate neighbors (couplings
represented as squares). The couplings may or may not be switchable.
Qubits are labeled Q1, Q2, . . . .,QN .

QN

QN 1

Q2

Q1

Q2Q
Q1

QN 1

QN

MM

FIG. 6. Symbol for an MI operation, where the states of qubits
Q1, . . . ,QN are reversed.

parameters. (Note that even though we do not consider
Heisenberg interactions where the natural gate is the SWAP,
our scheme can be extended to NN systems with anisotropic
Heisenberg interactions when the transverse coupling terms
are much smaller than the diagonal coupling terms.)

Consider Fig. 5, which shows a system of N qubits arranged
along a one-dimensional array with interactions only between
nearest neighbors. The qubits are represented as circles and
have been labeled Q1,Q2, . . . ., QN . The couplings have
been represented by squares and each qubit only interacts
with its nearest neighbors. The couplings may or may not
be switchable, depending upon the physical system under
consideration. In this system, under an MI, the order of the
qubits changes to QN, . . . ,Q2,Q1. Figure 6 shows the symbol
that we will use for MI, which comprises a rectangular box
with M in it.

We will now introduce four operations that are each
constructed using CNOT and C2(P) gates applied in parallel. All
N qubits are involved in these operations, where some of them
function as controls and the rest as targets. Each operation
corresponds to a single computational step, where we define
a computational step as a single operation comprising one or
more gates applied simultaneously in parallel and within the
same time duration. A computational step is analogous to the
depth of a circuit, where depth is a measure of the number of
layers of gates in a circuit. However, we are using the term
computational step since in addition to all gates being applied
in parallel, they also are realized within the same time interval.
Since we are interested in maximizing the performance of
our circuits by lowering both the depth and the quantum cost
(number of elementary gates in the circuit), the number of
computational steps will be used as a performance measure.

Following are the four operations, the circuit representa-
tions for which have been shown in Fig. 7.

P 

P 

P 

P 

P 

P 

P 
P 

P 

(a) (b) (c) (d) 

FIG. 7. The (a) P, (b) CNOT-P-CNOT, (c) P-CNOT, and (d) CNOT-P

operations.
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A. The P operation

We define a P operation as a computational step comprising
only of C2(P) gates applied in parallel. Figure 7(a) shows a P

operation for N = 7 qubits.

B. The CNOT-P-CNOT operation

We define a CNOT-P-CNOT operation as a computational step
comprising C2(P) gates and two CNOT gates (one at each end
of the array) applied in parallel. The CNOT gates are between
qubits 1 and 2 and qubits N − 1 and N, with qubits 1 and
N functioning as targets and qubits 2 and N − 1 functioning
as controls. Figure 7(b) shows a CNOT-P-CNOT operation for
N = 7 qubits.

C. The P-CNOT operation

We define a P-CNOT gate as a computational step comprising
C2(P) gates and one CNOT gate applied in parallel. The CNOT

gate is between qubits N − 1 and N, with qubit N as the target
and qubit N − 1 as the control. Figure 7(c) shows a P-CNOT

operation for N = 6 qubits.

D. The CNOT-P operation

We define a CNOT-P gate as a computational step comprising
C2(P) gates and one CNOT gate applied in parallel. The CNOT

gate is between qubits 1 and 2, with qubit 1 as the target and
qubit 2 as the control. Figure 7(d) shows a CNOT-P operation
for N = 6 qubits.

Each of the four operations shown in Fig. 7 can be imple-
mented by only varying a single control parameter per target
qubit. Since the bias on a qubit is relatively easy to control,
throughout this paper we will use the bias on individual qubits
as our control parameters. Also, as we will shortly show, in our

MI scheme, the bias pulses on alternate qubits are identical.
Therefore, the bias control lines of alternate qubits along the
array can be tied together to a common bias control line. As
such, the overall control circuitry can be greatly simplified.

We will now show how each of the four operations shown
in Fig. 7 can be used for constructing efficient circuits for
MI when N > 3. We will first focus on an LNN array such
as that shown in Fig. 5 and later extend our scheme to 2D
arrays. Using the four operations shown in Fig. 7, we can
construct a simple circuit for implementing an MI in only N +
1 computational steps. Each computational step comprises one
of the four operations P, P-CNOT, CNOT-P, and CNOT-P-CNOT.
If N is even and N > 2, we alternately apply the P-CNOT and
CNOT-P operations. If N is odd and N > 3, we alternately apply
the P and CNOT-P-CNOT operations. As examples, Figs. 12(a)
and 12(b) show circuits for implementing an MI when N = 6
and 7, respectively.

To prove that the circuits in Fig. 8 indeed accomplish MI,
we show the equivalence of our circuit to the one presented in
[40] by considering a four-qubit system. In [40], the authors
showed how to implement MI using a series of controlled-Z

and Hadamard (H) gates. Figure 9(a) shows how to implement
MI using our scheme. In Fig. 9(b) we replace each of the five
P-CNOT and CNOT-P operations by controlled-Z and H gates.
Since the H gate is self-inverse, two successive H gates cancel
each other and we obtain the reduced circuit shown in Fig. 9(c).
Figure 9(d) shows the circuit presented in [40] for MI in a
four-qubit system. Note that Figs. 9(c) and 9(d) are equivalent.
Figure 9(c) presents the circuit for MI when qubits Q1, . . . ,Q4

are in arbitrary quantum states. Figure 9(d) presents the circuit
for MI when qubit Q1 is in an arbitrary quantum state, while
qubits Q2, Q3, and Q4 are in the |+〉, |0〉, and |+〉 states,
respectively. Here the |+〉 state is the state (|0〉 + |1〉)/√

2.
To understand how either of the circuits in Fig. 8 works,

consider the circuit shown in Fig. 8(a), for N = 6 qubits. If |qi〉,
for i = 1, . . . ,6, is the state of qubit Qi , the evolution of the
states of the six qubits under each of the seven computational
steps in Fig. 8(a) is

|q1,q2,q3,q4,q5,q6〉
step 1: P-CNOT−−−−−−−→ |q1, q1 ⊕ q2 ⊕ q3, q3, q3 ⊕ q4 ⊕ q5, q5, q5 ⊕ q6〉
step 2: CNOT-P−−−−−−−→ |q2 ⊕ q3, q1 ⊕ q2 ⊕ q3, q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q5, q3 ⊕ q4 ⊕ q5, q3 ⊕ q4 ⊕ q5 ⊕ q6, q5 ⊕ q6〉
step 3: P-CNOT−−−−−−−→ |q2 ⊕ q3, q2 ⊕ q3 ⊕ q4 ⊕ q5, q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q5, q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q5⊕q6, q3⊕q4⊕q5⊕q6,q3⊕q4〉
step 4: CNOT-P−−−−−−−→ |q4 ⊕ q5, q2 ⊕ q3 ⊕ q4 ⊕ q5, q2 ⊕ q3 ⊕ q4 ⊕ q5 ⊕ q6, q1 ⊕ q2 ⊕ q3 ⊕ q4 ⊕ q5 ⊕ q6, q1 ⊕ q2 ⊕ q3 ⊕ q4, q3 ⊕ q4〉
step 5: P-CNOT−−−−−−−→ |q4 ⊕ q5, q4 ⊕ q5 ⊕ q6, q2 ⊕ q3 ⊕ q4 ⊕ q5 ⊕ q6, q2 ⊕ q3 ⊕ q4, q1 ⊕ q2 ⊕ q3 ⊕ q4, q1 ⊕ q2〉
step 6: CNOT-P−−−−−−−→ |q6, q4 ⊕ q5 ⊕ q6, q4, q2 ⊕ q3 ⊕ q4, q2, q1 ⊕ q2〉
step 7: P-CNOT−−−−−−−→ |q6,q5,q4,q3,q2,q1〉 . (11)

From Eq. (11) we can see that each computational step
performs two- or three-qubit exclusive-OR operations between
qubits. The qubits that function as controls during a computa-
tional step perform as targets in the next computational step.
The process of repeatedly applying the P-CNOT and CNOT-P

operations in Fig. 8(a) [P and CNOT-P-CNOT operations in

Fig. 8(b)] allows us to reverse the order of the qubits in only
seven computational steps [eight for Fig. 8(b)]. Likewise, we
can show that for any N, the order of the qubits along the array
can be reversed in exactly N + 1 steps. If we use successive
applications of SWAP gates between NN qubits, which are
used to reverse the order of the qubits, a total of 3(2N − 3)
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FIG. 8. Circuits for parity-based MI where the order of qubits along an N-dimensional array is completely reversed using only N + 1
computational steps. If N is even, we alternately apply the P-CNOT and CNOT-P gates. If N is odd, we alternately apply the P and CNOT-P-CNOT

gates. (a) Circuit for N = 6 and (b) circuit for N = 7. Since all gate operations in a computational step can be simultaneously implemented,
the overall circuit complexity and the computational overhead are greatly reduced.

computational steps are required for N � 2 (assuming none
of the qubits are ancillas, since a swap between a data qubit
and an ancilla requires two CNOT gates). Another significant
advantage of the scheme presented here is that in these circuits
all N qubits are involved in the gate operations (either as
controls or targets). As such, all NN couplings are used in
implementing these operations. Thus, the quantum cost and
number of computational steps required to implement these
operations do not change in systems with untunable couplings

because no extra steps are needed to overcome the effects of
unwanted NN couplings.

For our simulations, we considered an extension of the
three-qubit LNN Ising-coupled Hamiltonian to an N-qubit
system

H =
N∑

i=1

(�σ Xi + εiσ Zi) + ξ

N−1∑
i=1

σ Ziσ Zi+1, (12)
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FIG. 9. Equivalence of our circuit with the circuit presented in [40] for MI in a four-qubit system. (a) Circuit for implementing MI using
our scheme. (b) Replacing each of the five P-CNOT and CNOT-P operations in (a) by controlled-Z and Hadamard (H) gates. (c) Reduced circuit
obtained by canceling two successive H gates (the H gate is self-inverse). (d) Circuit presented in [40] for MI in a four-qubit system. Note
that (c) and (d) are equivalent. (c) Circuit for MI when qubits Q1, . . . ,Q4 are in arbitrary quantum states. (d) Circuit for MI when qubit Q1

is in an arbitrary quantum state, while qubits Q2, Q3, and Q4 are in the |+〉, |0〉, and |+〉 states, respectively. Here the |+〉 state is the state
(|0〉 + |1〉)/√

2.
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FIG. 10. Sequence of bias pulses on qubits Q1, . . . ,Q7 under the MI operation. The magnitudes of the bias pulses are in GHz. Also, the
first 5 ns and the last 5 ns do not correspond to any gate operation, during which the biases on all seven qubits are maintained at 3 GHz.

where the terms have their usual meaning. The coupling and
tunneling parameters were chosen to be the same as those for
the three-qubit system (ξ = 1 GHz and � = 25 MHz). The
biases on all qubits were initially kept high at 3 GHz. For a
C2(P) gate, the bias on the target qubit was made zero for
10 ns. For a CNOT gate, the bias on the target qubit was made
1 GHz for 10 ns. Since the gate times of both the CNOT and
the C2(P) gates are the same (10 ns), the duration of each
computational step is 10 ns, during which the biases on all
target qubits are simultaneously lowered (to either zero or
1 GHz). Figure 10 shows the sequence of bias pulses on a
seven-qubit system for implementing the circuit in Fig. 8(b).
None of the other parameters of the system were varied
(ξ = 1 GHz and � = 25 MHz). In this system, simulations
confirmed the MI operation with an average fidelity of 99.92%.
Note that the biases resemble clock pulses and the bias pulses
on alternate qubits along the array (with the exception of
qubits Q1 and QN ) are identical. That is, the bias pulses
on qubits Q2, Q4, and Q6 are identical and the bias pulses
on qubits Q3 and Q5 are identical. When N is odd [as in
Fig. 8(b)], the bias pulses on the first and last qubits (here
qubits Q1 and Q7) are also identical. This symmetry can be
used in a practical implementation to reduce the number of
control lines, wherein the bias lines for qubits having identical
pulse sequences can be tied together. In general, the control
circuitry can be reduced to three bias control lines if N is odd
and four bias control lines are required if N is even.

Our scheme for MI can be easily extended to σ Xσ X and
σ Yσ Y coupled systems by using the same parameters derived
for an Ising coupled system, with the bias and tunneling
terms interchanged (coupling values remain the same as those
calculated for an Ising coupled system). To demonstrate,
consider the Hamiltonian of a three-qubit σ Xσ X coupled
system, which is given as

H =
3∑

i=1

(�iσ Xi + εiσ Zi) + JX

2∑
i=1

σ Xiσ Xi+1, (13)

where, as before, �i and εi are the tunneling and bias
parameters, respectively, and JX is the magnitude of the σ Xσ X
coupling between adjacent qubits. Under the MI operation,
the state |q1, . . . ,qN 〉 maps to |qN, . . . ,q1〉 for all single-
qubit states (not just basis states). Hence, for any single-
qubit unitary, we also have that U⊗N |q1, . . . ,qN 〉 maps to
U⊗N |qN, . . . ,q1〉. What this means is that if any Hamiltonian
HN achieves the MI transformation, so does U⊗N HN U †⊗N .
So, for σ Xσ X interactions, we let U be the Hadamard gate,
which exchanges the roles of σ X and σ Z. This means that
the MI operation is accomplished simply by exchanging the
control fields for the X and Z magnetic fields. That is, gate
operations in the σ Xσ X coupled system can be implemented
using the same parameters for implementing the C2(P) and
D gates, respectively, in an Ising coupled system, with the
parameters �i and εi interchanged. The magnitude of the
coupling parameters is the same as that solved for under
the Ising interactions.

Similarly, for σ Yσ Y interactions, we let U = (σ Y +
σ Z)/

√
2, which exchanges the roles of σ Y and σ Z. That is, the

same parameters that accomplish MI in a σ Xσ X coupled sys-
tem can be used to implement MI in a σ Yσ Y coupled system.

IV. APPLICATIONS OF PARITY-BASED MIRROR
INVERSION

A. Swapping the states of remote qubits

To swap the states of the first and last qubits along an
array, we can apply two MI operations, first between qubits
Q1, . . . ,QN and then between qubits Q2, . . . ,QN−1. The
total number of computational steps is 2N . The number of
computational steps can be further reduced from 2N to N + 5
by dividing the qubits along the array into two groups and
then performing MI on each group as shown in Figs. 11(a)
and 11(b) when N is even and odd, respectively. Simulations
were carried out in a seven-qubit system, which implemented
a SWAP operation with an average fidelity of 99.8%. Note that
using conventional methods of successively swapping adjacent
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FIG. 11. (a) Circuit for swapping qubits Q1 and QN when N is even. (b) Circuit for swapping qubits Q1 and QN when N is odd. Both
circuits require a total of N + 5 computational steps. In either circuit, the first and last pairs of MIs are applied in parallel. (c) Circuit for
moving a block of M qubits in an N-qubit system. The total number of computational steps is (N + 1) + max{M + 1, N − M + 1}. The order
of the qubits changes QM+1, QM+2, . . . , QN, Q1, Q2, . . . ., QM−2, QM . (d) Circuits for implementing a CNOT gate between remote qubits Q1

and QN . The qubits are divided into two groups and MI is performed on each group in parallel, both before and after the CNOT gate operation.

qubits, a total of 3N computational steps is required if N is
odd and N � 3 and a total of 3(N − 1) steps is required when
N is even and N � 2.

B. Moving blocks of qubits in LNN arrays

Consider the circuit shown in Fig. 5. Suppose we want
to move a block of qubits Q1, . . . ,QM , where M < N ,
such that the order of the qubits changes from Q1,

Q2, . . . ,QM,QM+1, . . . ..,QN−1,QN to QM+1,QM+2, . . . ,

QN,Q1,Q2, . . . .,QM−2,QM . That is, the qubits are divided
into two blocks on M and N − M qubits and the block of
M qubits simply hops over the N − M qubits. Figure 11(c)
shows a generalized circuit for achieving this operation using
MI. From the figure, the total number of computational steps is
(N + 1) + max{M + 1, N − M + 1}. (Here max {x, y} gives
the maximum of two numbers x and y.) Simulation results for
a seven-qubit system confirmed the operation with an average
fidelity of 99.76%. Note that if conventional SWAP gates

between adjacent qubits are used, 3(N − 1) computational
steps are required.

Moving blocks of qubits will become important in 2D and
3D layouts of qubits, especially in designing quantum memory,
where blocks or chains of data will need to be moved around
to different locations. Consider Fig. 12(a), which shows a
2D layout of qubits, where qubits are represented by circles
and NN couplings between adjacent qubits are represented by
dashed lines. In this layout, we are assuming that individual
couplings can be switched on and off and a dashed line for
the coupling between two qubits means that the coupling is
off. A solid line for the coupling between two qubits means
that the coupling is on. Suppose we want to move the block
or chain of qubits WXYZ [black circles in Fig. 12(a)] to the
position of the block or chain of qubits PQRS (gray circles).
For this, first the NN couplings along the chain of qubits
WXYZABPQRS are switched on [Fig. 12(b)]. Next an MI is
performed along the chain so that the order of the qubits
now becomes SRQPBAZXYW [Fig. 12(c)]. Next the coupling
between qubits A and Z is switched off, which divides the
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FIG. 12. Moving a block of qubits in a 2D array. Here qubits
are represented as circles. Switchable NN couplings are represented
as dashed lines and are assumed to be off. Solid lines for the NN
couplings indicate that the couplings are on. (a) Suppose we want to
move the block or chain of qubits WXYZ (black circles) to the position
of qubits PQRS (gray circles). (b) The NN couplings along the chain
of qubits WXYZABPQRS is switched on. (c) An MI operation is
performed along the chain so that the order of the qubits now becomes
SRQPBAZXYW. (d) The coupling between qubits A and Z is switched
off, which divides the chain into two chains of six (SRQPBA) and four
(ZXYW) qubits, respectively. An MI operation is performed on each
of the two chains, after which qubits WXYZ move to the positions of
qubits PQRS, respectively.

chain into two chains of six (SRQPBA) and four (ZXYW)
qubits, respectively [Fig. 12(d)]. Finally, an MI is performed
on each of the two chains, after which qubits WXYZ move to
the positions of qubits PQRS, respectively, as has been shown
in Fig. 12(d).

C. Quantum computing between remote qubits

Our MI technique can be used to implement controlled-
unitary gate operations between remote qubits in NN archi-
tectures. Figure 11(d) shows a method for implementing a
CNOT gate between qubits Q1 and QN with qubit Q1 as
the control and QN as the target. The circuit requires only
N + 3 computational steps if N is even and N + 4 steps if
N is odd. [Using conventional methods of swapping adjacent
qubits, 3N − 8 steps are required if N is even (N � 2) and
3N − 5 steps are required if N is odd (N � 5). In a quantum
system, if the only method for bringing remote qubits together
to perform a gate operation is by means of SWAP gates, our
method will provide a significant improvement in lowering
the computational overhead.]

It is important to point out here that all the operations
discussed in Secs. II–IV can be easily extended to 2D NN
(and possibly 3D NN) layouts. This is because an NN chain of
qubits need not be restricted to an LNN array, but can follow
a nearest-neighbor 2D (or 3D) path similar to that shown in
Fig. 12. Therefore, since all gate operations in Secs. II–IV
are designed for a chain of qubits with NN interactions, they
can easily be extended to 2D and 3D layouts. Also, several
unitary operations can be applied in parallel along the array
by dividing the array into two or more NN chains, with no
overlap in qubits between the chains.

V. EFFECTS OF UNWANTED COUPLINGS, PARAMETER
MISMATCHES, AND FINITE RISE AND FALL TIMES

ON GATE OPERATIONS

A. Presence of unwanted couplings

Throughout our discussion, we only assumed couplings
between NN qubits. However, in some systems, unwanted
couplings might be present that cannot be switched off. For
instance, consider Fig. 13,which shows a linear array of three
flux qubits [48,49], where each pair of adjacent qubits is
coupled through a dc superconducting quantum interference
device (SQUID), which makes use of the long-range coupling
scheme presented in [50]. The couplings in this system are
tunable and can range between positive and negative values.

JX JY

X Y 

X,2 Io

X,1 Io

Y,2 Io

Y,1 Io

I1 I2
I3

X Y

Flux qubit 
couplers Josephson junction

FIG. 13. Linear array of three flux qubits, where each pair of adjacent qubits is coupled through a dc SQUID. Each flux qubit is represented
by a square with three JJs (represented as smaller squares with diagonals in them). Larger squares surrounding the qubits and connected through
double lines represent couplers between two adjacent qubits. The couplers are labeled X and Y, where coupler X is represented by a solid line
and coupler Y by a dashed line. The phase difference across the ith junction in coupler n (where n = X,Y ) is represented by γn,i . The applied
flux threading through coupler n, its bias current, and its circulating currents are represented by �n, In, and Jn, respectively. The critical currents
Io of the JJs in the coupling dc SQUIDs are all assumed to be the same for simplicity.
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The couplers are labeled X and Y. We will hereafter use the
label n, where n = X,Y . The phase difference across the ith
junction in coupler n is represented by γn,i . The applied flux
threading through coupler n, its bias current, and its circulating
currents are represented by �n, In, and Jn, respectively. The
critical current Io of the JJs in the coupling dc SQUIDs are
all assumed to be the same for simplicity. We are able to
control the flux independently through each of the coupling dc
SQUIDs and the flux qubits.

The total Hamiltonian of the system is given as

H =
∑

j=1,2,3

1

2
(�jσ Xj

+ εjσ Zj
) −

∑
i 
=j

Kijσ Zi
σ Zj

. (14)

Here εj is the bias energy acting on individual qubits, which
depends on the flux threaded through the qubit, and can be
independently controlled; �j is the tunneling energy, which
can be taken to be fixed during fabrication, even though
methods for varying the tunneling have been experimentally
demonstrated [47]; and Kij is the coupling energy between
qubits i and j and is given as [51,52]

Kij = MijIiIj −
∑

n=X,Y

∑
k=X,Y

Mn,iMk,j

∂Jn

∂�k

IiIj . (15)

Here the first term constitutes the direct coupling between
qubits and the other terms constitute the indirect couplings
through the dc SQUIDs. Each of the two couplers can be
controlled by applying a bias current In and/or a bias flux �n.
The bias current does not depend on the flux. By adjusting
these two parameters the coupling between a pair of qubits
can be enhanced or reduced and can be varied between positive
and negative values [50]. In our scheme, we can either set the
couplings at the start of a computation and treat them as fixed
parameters or vary them during the course of a computation.
To perform gate operations, the bias on individual qubits can
be varied by controlling the flux threading through the qubit.

Note that, in addition to direct coupling between NNs,
Eq. (14) also shows an unwanted cross-coupling term K13

due to a next-nearest neighbor interaction between qubits 1
and 3. However, as shown in [50], the magnitude of this cross-
coupling term is much lower than the direct NN couplings K12

or K23. For instance, when K12 (or K23) was 1 GHz, K13 was
found to be around 47 MHz or lower. Moreover, as shown in
[50], the effect of the next-nearest-neighbor coupling can be
overcome by choosing couplers with longer arm lengths, where
the arm length is roughly the distance between two adjacent
qubits coupled by a coupler. It was found that the longer the
arm length of the coupler, the lower the cross coupling was and
for arm lengths greater than 200 μm, the unwanted crosstalk
was found to be lower than 5 MHz [50].

To study the effect of this unwanted coupling term on our
MI operation, we ran simulations on a three-qubit system with
an additional coupling term between qubits 1 and 3, K13 (or
ξ13), where we used two values for K13 (47 and 5 MHz)
[50]. Further, to match our parameter values with those in
[50], we used the following values in our simulations: �j =
1 GHz, K12 = K23 = 866 MHz (or, equivalently, ξ12 = ξ23 =
866 MHz), and T = 1.25 ns. These values were obtained by
scaling up the values obtained in a weak-coupling regime [53]

by multiplying each parameter by a scaling factor of 40. This
is because in increasing �j from 25 MHz (value of tunneling
solved for in Sec. II and in [53]) to 1 GHz we have increased
it 40 times. Note that in scaling the time required for each gate
operation (P gate and DCN gate), we used Eq. (9) with P = 1.
[This is because in Sec. II, for �j = 25 MHz we found T to
be 10 ns for P = 0 using Eq. (9). Since Eq. (9) is linear, if we
increase �j to 1 GHz, T becomes 250 ps, which is a very short
pulse. We can use larger values of P to increase the value of
T, however, simulations showed that the fidelity of either gate
operation is decreased if longer duration pulses are used by
increasing P.] For the high value of the bias on control qubits,
we used 10 GHz. It was found that the higher the value of
the bias, the higher the fidelity of either gate operation was.
From our simulations we see that when K13 = 47 MHz, the
average fidelities of the P gate and the DCN gate were found
to be 99.47% and 98.18%, respectively. When K13 = 5 MHz,
the average fidelities of the P gate and the DCN gate were
found to be 99.47% and 99.74%, respectively. (The average
fidelities of the P and DCN gates with K13 = 0 were 99.47%
and 99.73%, respectively.) Note that the cross-coupling term
K13 affects only the evolution of qubits 1 and 3 with respect
to each other. When realizing the P gate, since high biases
are applied on qubits 1 and 3 since they behave as control
qubits, the presence of K13 does not have any significant effect
on the fidelity of the P gate. However, during the DCN gate,
the biases on both qubits are lowered so that the effect of
the cross-coupling term can become significant if it is large
enough, resulting in lowering of the gate fidelity. In addition
to lowering the fidelity of the DCN gate, the presence of the
cross-coupling term introduced unwanted relative phases in
the overall MI operation. For instance, when K13 = 5 MHz,
relative phases of 20° and 35°, respectively, were picked up by
the |010〉 (and |111〉) and |000〉 (and |101〉) states.

B. Effect of rise and fall times

Typically, in an experimental system, pulses are nonideal
with finite rise and fall times. As a result, the switching process
itself might give rise to nonideal gate operations wherein
the magnitudes of the probability amplitudes can change
depending on the slope of the rise and fall lines. Also, if
the initial state of the system is in a superposition of two or
more computational basis states, random relative phases may
occur in the final state as different phases may be picked up by
the different basis states during rise and fall times. In [54], the
authors proposed an NN architecture that uses special encoding
between pairs of qubits that is immune to random relative
phases due to rise and fall times. The change in probability
amplitudes can be addressed by decreasing the pulse width
of the gate operation (from its original value under an ideal
pulse and previously referred to as T) to an adjusted value that
takes into account the slope of the rise and fall lines. This
new value of the gate time can be found through simulations.
For instance, in Fig. 2(b) we found that upon introducing rise
and fall times of 1 ns each, the overall fidelity of the SWAP

gate reduced to 96.4% (for ideal pulses it was 99.97%). This
is because the fidelity of the first and second gates drops to
98.93% and 99.25%, respectively. However, on adjusting the
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pulse widths of the C2(P) and a pair of CNOT gates to 9.3
and 9.8 ns, respectively, the fidelities of these gates increased
to 99.93% and 99.55%, respectively. As a result, the overall
fidelity of the SWAP gate increased to 98.97%. Likewise, for
each of the four operations shown in Fig. 7, we can find ideal
pulse widths for a given value of N depending on the slope of
the rise and fall lines.

C. Effect of parameter mismatches

Parameter mismatches can be due to fabrication defects or
when tuning a control parameter. Since for both the CNOT and
C2(P) gates the time step of the gate operation is proportional
to the tunneling parameter [Eq. (9)], any mismatches in the
tunneling parameter can be overcome by adjusting the pulse
width of the bias pulse on the target qubit. Next, suppose the
couplings between NN qubits in Fig. 5 are mismatched and are
not all equal to ξ . For instance, suppose the coupling between
qubits Q1 and Q2 is ξ and the coupling between qubits Q2 and
Q3 is ξ+δ. In this system, the C2(P) gate between qubits Q1,
Q2, and Q3 can be implemented with high fidelity by applying
two consecutive bias pulses of magnitude δ and −δ on target
qubit Q2. Each pulse is applied for duration T as given by
Eq. (9). If, however, δ��, we can implement the C2(P) gate
as before by making the bias on qubit Q2 zero for time step
T. The gate operation thus implemented might not be perfect
and the magnitude of the error will depend on the ratio δ/�,
where the smaller the ratio, the higher the fidelity of the gate
operation will be.

VI. CONCLUSION

An efficient scheme for quantum state transfer that uses a
parity-based MI technique was presented here. The scheme
can be implemented in Ising, σ Xσ X, and σ Yσ Y coupled
systems and we showed how to analytically solve for system
parameters to implement the operation in these systems. The
key feature of our scheme is a three-qubit parity gate, which
we designed as a two-control one-target qubit gate. Since the
parity gate operation is implemented by only varying a single
control parameter of the system Hamiltonian, the difficulty
of implementing this gate is equivalent to that of a CNOT in
a two-qubit system and therefore it can be considered as an
elementary gate for practical implementations. By applying a
sequence of N + 1 parity-based controlled-unitary operations
between NN qubits, where all qubits in an N-qubit chain
function either as controls or targets, we reversed the order
of all qubits along the array. Using our MI scheme, we also
showed how to implement a SWAP gate between two arbitrary
remote qubits, move a block of qubits, and implement efficient
computing between two remote qubits in nearest-neighbor
layouts.
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