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Solid-state optical interconnect between distant superconducting quantum chips
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We propose a design for a quantum microwave-optical photonic interface using electron spins in crystals to
adiabatically swap the quantum states between a flux qubit and optical cavity that can achieve a transfer fidelity
in excess of 90%. Following detailed modeling, we show that our protocol is robust against inhomogeneous
broadening of the microwave and optical transitions, phase mismatch between the microwave and optical fields,
and has the advantage that we can dynamically control the overall microwave-optical coupling strength in
time. Using these capabilities we show how to coherently transport quantum information between two distant
superconducting chips optically with a fidelity exceeding 90%.
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I. INTRODUCTION

Superconducting qubits (SQs) are one of the most promis-
ing technologies for delivering a quantum computer which
will operate within a single superconducting chip [1]. Linking
remotely distant quantum systems, other than superconducting
systems, e.g., atoms or ions, via an optical data bus has enjoyed
some progress, but the technical challenges are considerable
[2–4]. Here, we propose a scheme based on solid-state spins in
crystals for microwave-to-optical (MW-O) quantum interface
and with this to fashion a quantum network for SQs. In
particular, we develop a scheme to controllably couple a
superconducting flux qubit and an optical cavity via the
crystal spins. Following detailed modeling, we show that our
scheme can successfully address two of the main difficulties
faced when controlling quantum dynamics in condensed-
matter systems: (a) we can overcome significant levels of
microwave and optical inhomogeneous broadening, (b) we
can achieve high-coupling strengths while circumventing the
phase mismatch that can build up between microwave and
optical light fields in the crystal due to the enormous difference
in wavelength.

Although the strong coupling between solid-state electronic
spin ensembles and superconducting circuits has been exper-
imentally demonstrated [5–8], these have been constrained
to the interaction between microwave photons and electron
or nuclear spins and none have explored how to couple to
optical light fields. The latter are quite difficult due to their vast
difference in frequencies but also the difference in coupling
strengths between microwave and optical photons to spin
ensembles. Recently, two proposals for a solid-state hybrid
quantum interface have been proposed [9,10], but both propose
very different physical setups than ours. The first work exploits
a large crystal sample to enhance the magnetic coupling as the
mode volume of the microwave resonator is extremely large.
Such a large interaction region may suffer from detrimental
phase mismatching between the microwave and optical cavity
modes (not incorporated in the model), which may destroy
the transfer. In addition, the microwave-ensemble coupling
strength could be reduced when taking into account the
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larger detunings required for the adiabatic elimination of
the collectively coupled spin ensemble as compared to those
required for an individual spin [11]. The work [10] involves
the application of time- and position-dependent large magnetic
fields over a large portion of a superconducting circuit in
addition to a complex process: absorbing a single-photon
pulse in the spin ensemble, then five staggered π pulses on
resonance. This involves putting the spin ensemble into an
optical excited state, but the effects of decay from this state
on the transfer efficiency are not obvious (not included in
the model), and no inhomogeneity in this optical transition
is discussed, only in the magnetic transition. Due to the
unknown optical and microwave inhomogeneous broadening
(sometimes considerable) in condensed state matter, which
can lead to enormous rates of decay into dark states [12],
it is practically impossible to effect perfect π pulses [13].
Our design addresses all of these issues and further, one
has complete temporal control over the overall microwave-
optical coupling strength, allowing complex protocols to be
built.

II. SYSTEM AND MODEL

We begin by describing the schematic configuration for
our quantum interface or node and later how to use two
distant nodes to achieve quantum state transfer, i.e., a quantum
network (Fig. 1). Each node works as a quantum interface and
composes of a Fabry-Pérot cavity, an ensemble of spins, and
a gap-tunable four-Josephson-junction (4JJ) flux qubit. This
4JJ flux qubit is fabricated on top of a suitable substrate (dark
plane) (Fig. 1). In order to optically couple the ensemble of
spins in a crystal chip, a round hole is cut in the main loop of
the flux qubit such that the light in the Fabry-Pérot cavity can
pass through it without significant absorption and scattering.
The crystal chip covers the hole. In this arrangement, the spin
ensemble can effectively couple to both of the cavity mode
and the magnetic field created by the flux qubit (see Appendix
for more details). We consider that an optical coherent control
field irradiates the crystal chip at almost normal incidence to
the chip.

We now describe the optical subsystem of each node and
the unidirectional optical fiber couplings [14,15]. We assume
that the optical cavity mode âc,l in the lth node (l ∈ {A,B})
has a resonance frequency ωc,l and an intrinsic decay rate κ

(l)
i .
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It couples to an output optical fiber with a coupling rate κ (l)
ex

and connects to the other node via this fiber. Thus, the total
decay rate becomes κl = κ

(l)
i + κ (l)

ex , and we assume κ (l)
ex = ξlκl

with 0 ≤ ξl ≤ 1. ξl < 1 represents the photon loss in the
transfer. In this two-node network, the Lindblad superoperator
describing the one-way quantum connection breaking the

time symmetry is given by ˆ̂Lnet = −√
κex,Aκex,B (â†

BâAρ −
âAρâ

†
B + ρâ

†
AâB − âBρâ

†
A), where â

†
A (â†

B) and âA (âB) are
the creation and annihilation operators of the cavity mode in
node A (B).

We next describe the crystal-chip spin ensemble.
We model the collection of electron spins as ensemble
of three-level systems, as shown in Fig. 1(b). These
could be either a collection of NV− centers in diamond
[16] or rare-earth ion crystal such as Er3+ ions in
Y2SiO5 [17,18]. Each spin system consists of three
levels: the optical excited state |rj 〉, and two electronic
ground states |gj 〉 and |ej 〉. In the case of the NV− we
have {|rj 〉,|gj 〉,|ej 〉} = {|3E,Sz〉j ,|3A,ms = 0〉j ,(|3A,ms =
+1〉j + |3A,ms = −1〉j )/

√
2}, while for the Er3+ system

we have {|rj 〉,|gj 〉,|ej 〉} = {|4I13/2,Y1〉j ,|4I15/2,Z1,ms =
−1/2〉j ,|4I15/2,Z1,ms = +1/2〉j }. The excited state |rj 〉
decays to the state |gj 〉 (|ej 〉) with a rate γ0,j (γ1,j ). Due to
the coupling to the magnetic environment, the state |ej 〉 also
decays to |gj 〉 with the rate �1,j and suffers pure dephasing
of a rate �φ,j . We can describe the ensemble of spins within
each node with the Hamiltonian (h = 1)

Hspin =
∑

j

Dj

2
Sz,j + geμBBz,j · Sz,j + ωr,j |r〉j 〈rj |, (1)

where Sz,j is the z component of the usual spin- 1
2 Pauli

operators Sj for the j th spin, Dj is the zero-field splitting
with Dj ≈ 2.8 GHz (4 GHz ) for the NV− (Er3+) centers, ωr,j

is the energy of the optical excited state |rj 〉. The second term
describes the magnetic interaction with the spins with ge being
the Landé g factor of the spin and μB = 14 MHzmT−1 is the
Bohr magneton. Note that rare-earth ions are preferable for a
large magnetic coupling because the g factor of the electronic

spin in Er3+ can be up to ge ∼ 15, which is much larger than in
NV− centers where ge ∼ 2. Here, we neglect the terms related
to the strain-induced splitting because they are very small and
only shift the energy of state |ej 〉.

The 4JJ flux qubit can be modeled as a two-level system
with the excited state |ef 〉 and the ground state |gf 〉, and
can be tuned by the flux biases 
b and 
α . The flux

α threading through the α loop is used to tune the gap
T (
α). We apply a time-dependent magnetic field 
μ(t) =
Aμ(t) cos(ωμt) to the α loop and thus tune the gap of
qubit. Thus, the free Hamiltonian of the gap-tunable flux
qubit becomes HQ = ωq/2σz + 
μ cos(ωμt)σz, where ωq =√

T 2+ ∈2 with ∈ (
b) = 2Ip(
b − 
0/2) (
b is the external
flux threading the qubit loop, 
0 the flux quantum, and Ip the
persistent current) the energy bias and T is the tunnel splitting
dependent on the bias 
α , and 
μ ∝ Aμ. In the vicinity of

b ≈ 
0/2 we have T (
α) 	∈. The flux qubit associated
Pauli spin- 1

2 operators is defined as σz = |ef 〉〈ef | − |gf 〉〈gf |
and σx = |ef 〉〈gf | + |gf 〉〈ef |. The decay and pure dephasing
rates of the excited state of the flux qubit |ef 〉 are denoted as
γ1,qb and γ ∗

2,qb, respectively.
We now describe the tripartite interaction between the

ensemble of spins, the cavity mode, and the flux qubit within
an individual node shown by Fig. 1(b). We consider an optical
Raman transition between the two spin ground states |gj 〉 and
|ej 〉 formed through a combination of the external driving
classical optical field and the quantum optical cavity field. This
optical driving of an individual spin at position Rj together
with the cavity mode âc,j drives the transition of |gj 〉 ↔ |rj 〉
with a rate gc,j and a phase θj dependent on the position Rj and
the wave vector k of âc,j . The coherent laser field 
c,j , with
the frequency ωL and chirped phase φ(t), drives the transition
of |ej 〉 ↔ |rj 〉. The fluctuation in the coherent driving is
taken into account by θj and gc,j . In the dispersive regime,
these optical transitions form a Raman transition between the
two ground states |gj 〉 and |ej 〉, which is also arranged to
dispersively couple to the flux qubit. Such optical �-type
configuration has been demonstrated in both ensembles of
NV− centers [16] and Er3+ host crystals [17,19,20]. The total

FIG. 1. (Color online) Schematic design and operation of the quantum network. (a) Schematic of quantum network between two
superconducting flux qubits. Nodes A and B are identical and connected by a one-way optical fiber. Each node consists of a four-junction flux
qubit and an ensemble of electronic spins. (b) Level diagram describing the interactions between the j th spin and the flux qubit and the optical
cavity mode. Each spin is modeled as a �-type three-level system, while the gap-tunable flux qubit is modeled as a two-level system. The
coherent (cavity) optical field 
c(âc) drives the transition |rj 〉 → |ej 〉(|gj 〉). The flux qubit magnetically drives the transition |ej 〉 → |gj 〉.
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Hamiltonian of the coupled system within one node is

H = ωq

2
σz + 
μ cos(ωμt)σz +

N∑
j

gf,j σxSx,j

+
N∑
j

Dj

2
Sz,j + ωr,j |rj 〉〈rj | + ωcâ

†â

+
N∑
j

(gc,j e
ikRj â†|gj 〉〈rj | + H.c.)

+
N∑
j


c(eiωLt+iφ(t)|ej 〉〈rj | + H.c.). (2)

We consider the first-order sideband transition and adi-
abatically eliminate the optical excited state |rj 〉, then the
Hamiltonian in the one-excitation space (OES) becomes (see
Appendix)

H = (φ̇ + �̃q)σ+σ− −
N∑
j

�j S̄+,j S̄−,j − δenâ
†â

−
N∑
j

[
gf,j J1

(

μ

ωμ

)
S̄+,j σ−+�jξj e

iθj â†S̄−,j +H.c.

]
,

where φ̇ is the chirp of the coherent driving. Here, we define
the detuning �j = ωr,j − ωr with ωr = 〈ωr,j 〉, δ = ωL − ωc,
�0 = ωr − ωc, and �1 = (ωr − ωL) − D̄ with D̄ = 〈Dj 〉,
�q = ωq − δ. 〈. . .〉 means the statistical ensemble average.
We have the identity �1 − �0 = δ − D̄. Under the two-
photon resonance condition, δ = D̄, and we also have �̃q =
�q − ωμ, δen = ∑N

j

g2
c,j

�0+�j
, �spin,j = [�1 − �0 − δj − φ̇ +


2
c

�1+�j −δj
], and we define the operators S̄+,j = |ej 〉〈gj | and

S̄−,j = S̄
†
+,j , while J1(x) is the Bessel function of the first kind.

Here, we assume that |�0|,|�0| 	 γj with γj = γ0,j + γ1,j ,
and set �j = 
c

2 ḡc( 1
�0+�j

+ 1
�1+�j −δj

), and ξj = gc,j

ḡc
, with

ḡc = 〈gc,j 〉. Note that the detuning δen and the parameters
gf,j ,ξj ,θj are fixed once the setup is fabricated. A major
advantage of our sideband transition configuration is that
it allows one to modulate the coupling rate within the
tripartite configuration of flux-spin ensemble-optical mode.
This flexibility will later permit us to use stimulated Raman
adiabatic passage (STIRAP) for quantum transfer and this
has tremendous advantage as regards robustness to noise
and parameter imprecision over fixed on-resonance coupling
schemes for transfer [8,12].

III. NUMERICAL RESULTS

We can now consider the swap of quantum information
between the flux qubit and the optical cavity mode in one
interface. We first determine a good model for the spin
ensemble with inhomogeneous broadening in the transition
frequencies and coupling rates. We divide the spins into Ng =
20 groups and consider small inhomogeneities between the
groups for the coupling rates gc,j , and transitions frequencies
Dj and ωr,j . This model reproduces quite precisely the Rabi

oscillations observed in the experimental observation [8], and
we use this model for our numerical investigations following.
Correspondingly, the Jaynes-Cummings coupling rates gf,j ,
and gc,j are the cooperative coupling rates of the j th group
which is increased by a factor

√
Nj with respect to the

single-spin coupling rate. Unlike the quantum memory by Zhu
et al. [8], the strength of the overall magnetic coupling rate
between the spin ensemble and the flux qubit is limited by
the applicable thickness of the crystal chip hosting the spins.
We will find that crystal chip must be quite thin to avoid
degradation of the transfer fidelity due to phase mismatching
and this reduced thickness restricts the degree of achievable
magnetic coupling.

To swap quantum information from the flux qubit to the
cavity mode we perform a two-photon resonant STIRAP trans-
fer of the population from the flux qubit to the optical cavity,
shown in Fig. 2. The system is initially populated in the excited
state of the flux qubit 〈σee(t = 0)〉 = 1. We modulate the coher-
ent optical driving 
c and the flux bias 
μ such that two Rabi
frequencies are Gaussian functions given by J1[
μ(t)/ωμ] =
0.58e−(t−τd,f )2/2τ 2

f and 
c(t) = 
c,0e
−(t−τd,c)2/2τ 2

c with the am-
plitude 
c,0 of the coherent classical optical control field. To
minimize the operation time, the three subsystems interact
on resonance such that φ̇ = �1 − �0 + 
2

c/�1 − δen and
φ̇ + �̃q = −δen, yielding ωμ = �q + (�1 − �0) + 
2

c/�1.
For 
c,0/κ,〈gf,j 〉/κ 	 1, we can finish the swap operation
before the loss of the excitation due to any decay within
the system. Here, 0.58

√
N〈gf,j 〉 ≈ �j ≈ 105 MHz. An ad-

vantage of this STIRAP transfer is that the excitation of the
spins is greatly suppressed. As a result, the detrimental effect
of the inhomogeneous broadening of the spins is very small.

FIG. 2. (Color online) Swap of quantum information from the
flux qubit to the cavity mode via the STIRAP protocol. Gray lines are
the time-modulated STIRAP couplings via a driving classical optical
field 
c(t) (solid line) and modulated cavity-QED coupling strength
gf J1[
μ(t)/ωμ] (dashed line). Blue line shows the population of the
excited state of the source flux qubit, red line is the population of
the target photonic state |n = 1〉, while green line shows collective
excitation of the spins. Inset is the Wigner function of the cavity
mode at γ1,qbt = 0.036. Other parameters are γ1,qb = 0.4 MHz, κ =
3 MHz, and g = 105 MHz.

042307-3



KEYU XIA AND JASON TWAMLEY PHYSICAL REVIEW A 91, 042307 (2015)

Figure 2 shows how well our STIRAP-based swap scheme
works for γ1,qb = 0.4 MHz, κ = 3 MHz. Such high-quality
flux qubits [21,22] and Fabry-Pérot cavities [23] are avail-
able using existing experimental technology. To perform
the STIRAP control, the pulse J1[
μ(t)/ωμ] follows the
pulse 
c(t) with a delay τd,f − τd,c = 1.25τf and τf =
τc = 3 ns (0.008γ −1

1,qb, see Appendix). At γ1,qbt = 0.036, the
fidelity of the photonic state |n = 1〉 reaches its maximum
F = √〈�|ρ|�〉 = 0.904 corresponding to a population of
P|n〉=|1〉 = 0.817. For γ1,qb = 0.4 MHz, we can achieve a swap
fidelity larger than 0.81 if κ ≤ 5γ1,qb and g > 40 MHz. A
simpler implementation of the STIRAP technology using a
constant chip corresponding to the maximal ac Stark shift

2

c,0/�1 can still reach F = 0.897 at γ1,qbt = 0.035.
Now, we use our microwave-optical quantum interface to

transfer quantum information between two remote SQs by
exploiting the scheme proposed by Cirac et al. [14], and to
construct a quantum internet. To do so, we create a tripar-
tite Raman transition where the spin ensemble dispersively
couples to the flux qubits and the cavity modes with detuning
20

√
Ngf . According to the scheme [14,24], we need only tune

the coupling �j by modulating the control field 
c and can set

μ = 0. In the simulation, we eliminate the small time delay
in the control field 
c of the node B related to the retardation
in the propagation between two nodes [14]. As an example,
Fig. 3 shows the distant transfer of the quantum state from
node A to node B. We assume that two nodes are identical.
The flux-qubit–spin ensemble coupling rates

√
Ngf,j = 10κ

with κ = 10 MHz is constant in time, while we modulate
the optical Raman coupling via the classical laser driving
field 
c = 
c,0 sech[−(t − τd,c)/τc], with 
c,0 = 200κ and
�0 = 20
c,0. As a result, the excitation in the flux qubit
in node A is transferred to the flux qubit in node B with
a fidelity in excess of 90%. For NV− centers, we use the
collective decay rate of the ensemble of spins �1,en = 12 MHz
for fitting the experimental data. The quantum state of the
flux qubit A can be transferred to qubit B with a fidelity of
F = 93.3% corresponding to a node B population of 0.87 at
κt = 9.55. While for the ensemble of Er3+, the spin magnetic

FIG. 3. (Color online) Transfer of quantum information between
two distant flux qubits (a) using an ensemble of NV− centers with
�1,en = 12 MHz, while (b) using an ensemble of Er3+ with �1,en ∼ 0.
Solid (dashed) blue line graphs the excitation of the source qubit A

(target qubit B), red line is the excitation of the antisymmetric state
of the combined cavity modes of nodes A and B, while the gray line
shows the control pulses (identical and simultaneous in both nodes).
The inset shows the density matrix of the superconducting qubit at
node B at κt ∼ 10. Other parameters are γ1,qb = 20 kHz, γ ∗

2,qb = 0,
�∗

2,en = 0.9 MHz, σ� = 14.4 MHz, σθ = 0.1π .

excited-state decay can be neglected as T1 = 4 s [25], and
the inhomogeneous broadening is 13.8 MHz. This negligible
decay increases the fidelity slightly to 95.1% (population of
0.904).

Next, we compare the available magnetic coupling rates
in two implementations using NV− centers or rare-earth
ions. Both the swapping and remote transfer of the quantum
information require a strong coupling between the flux qubit
and the spins. However, the physical size of the spin ensemble
is constrained by the area of the flux qubit and also the crystal
chip must be quite thin to reduce the detrimental effects of
optical phase mismatch on the transfer fidelity. Due to their
large electron g factors [25], rare-earth ions such as Er3+ can
provide a coupling rate of about 400 MHz, which is large
enough for our task. However, the largest usable magnetic
coupling strength between the flux qubit and the ensemble of
NV− centers is only about 19 MHz. To increase the coupling
rate, we can focus the magnetic flux on the small diamond
chip using superconducting flux focusing techniques [26–28],
and utilizing this our scheme can be usefully applied to an
ensemble of NV− centers to achieve good transfer fidelities.

IV. CONCLUSION

In summary, we have proposed a theoretical scheme for
an all-solid-state quantum interface between microwave and
optical quantum information with sufficient tunability to
permit local and long-distance high-fidelity quantum transfer.
Our scheme uses a coupling configuration which incorporates
either a combined Raman-STIRAP control or a three-body
Raman control to robustly swap between the superconducting
qubit and the optical cavity with full dynamical tunability of the
transfer. Using this quantum interface, we have demonstrated
the proof-in-principle quantum network transferring the quan-
tum information with a fidelity larger than 90% between two
remote superconducting qubits.
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APPENDIX

Our device for quantum interface and quantum network
mainly includes three subsystems: a gap-tunable flux qubit, an
ensemble of spins doped in a crystal chip, and optical cavities
connected via an optical fiber.

To provide the readers a clear picture for the complicated
protocol and simulation in the main paper, we include the
detailed discussions about the implementation of our device,
the model and method, the more specified level diagram in this
Appendix.

In this appendix, we present a model to reproduce the
experimental measurement by Zhu et al. [8]. We first model the
gap-tunable flux qubit and then its interaction with an ensemble
of spins in the one-excitation space. By fitting the experimental
data, we justify our model valid and all parameters for
the system reasonable. Then, we provide a detailed method
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showing how a quantum interface interconverts the microwave
quantum information to optical and how to swap the quantum
state from the flux qubit to an added optical cavity. All
simulations are performed in the so-called one-excitation
space. In the end, we compare the two implementations using
ensemble of NV centers and rare-earth ions.

1. Reproduction of experimental results

Before we study the swap and distant transfer of a quantum
state, we present a model to reproduce the experimental
observation by Zhu et al. [8]. Through this study, we are able
to gain a sufficient detailed description of the NV diamond
+ flux qubit hybrid system to enable our further investigation
into swap and distant transfer.

a. A gap-tunable flux qubit

Superconducting flux qubits consisting of three Josephson
junctions (JJs) embedded in a low-inductance superconducting
loop have shown to be promising candidates for quantum
computing [29]. With the standard design, the magnetic flux
(
b) passing through the loop, which induces an energy
difference ∈ between the ground state and the first excited
state, is the only tunable parameter during the experiment. At
the degeneracy point, namely, when 
b = (n + 1/2)
0 (with
integer n and the quantum flux 
0), the energy spacing reaches
its minimum value, the so-called gap T , which is related to
the quantum mechanical tunnel rate. This degeneracy point
is optimal because at this point the flux qubit is decoupled
to the first order from low-frequency flux noise (1/f noise)
and has maximum coherence time [29]. Away from this sweet
point, the decoherence time drops rapidly. In comparison with
the standard three-JJ design, the gap of the four-JJ flux qubit
replacing the smallest junction with a dc-SQUID can be tuned
without leaving its optimal work point [8,22,30].

A gap-tunable flux qubit used in our scheme for quantum
transfer is shown in Fig. 4. Two identical junctions with
Josephson energy EJ in series with a symmetric dc-SQUID,
in which each junction has Josephson energy of α0EJ , are
enclosed in a dc superconducting loop [8,22]. The control
current I2 created by the line 2 mainly generates the magnetic
flux 
b threading the main loop (magenta loop) [22]. It is
used to tune the energy difference ∈= 2Ip[
b − (n + 1

2
0)]
with Ip the persistent current of the flux qubit through the
main loop. To decouple the current I1 from the main loop, our
design use a sketched dc loop to increase the distance between
the line 1 and the main loop, and subsequently decreases
their mutual inductance. Thus, the flux 
α is only induced
by the current I1 in the control line 1. This arrangement
has an advantage over the normal design by allowing one
to separately tune the magnetic flux 
b and 
α via the
control currents I2 and I1, respectively. The dc-SQUID (green
loop) works as an effective Josephson junction with energy of
αEJ = 2α0 cos(π
α/
0)EJ .

With the bias magnetic fluxes set as 
b and 
α , the flux
qubit can be modeled as a two-level system with the original
Hamiltonian (� = 1) [22]

Ĥ = ∈
2

σ ′
z + T (
α)

2
σ ′

x, (A1)

f

gf

γ1,qb

Ωμ

(b)

EJ

EJ

α0EJ α0EJ
⊗ΦbI2 ⊗Φα

I1×
× ×

×: Josephson junction

(a)

FIG. 4. (Color online) (a) Schematic diagram of a four-JJ flux
qubit consisting of a main loop (magenta) and a dc-SQUID loop
(green). The smallest Josephson junction is replaced by two identical
Josephson junctions forming a dc-SQUID. (b) Level diagram of the
four-JJ flux qubit modeled as a two-level system with the ground state
|gf 〉 and the excited state |ef 〉. The main control current I2 creates
the magnetic flux threading the main loop and is used to tune the
transition frequency, while the current I1 is used to tune the tunneling
between the two levels.

where the spin operators σ ′
z = |e′〉〈e′| − |g′〉〈g′| and σ ′

x =
|e′〉〈g′| + |g′〉〈e′| with |e′〉 (|g′〉) the excited (ground) state
of the flux qubit. T (
α) is the tunnel rate between
these two states and can be evaluated as T (
α) =
ωa/2π exp{−√

4α(1 + 2α)EJ /Ec(sin φ∗
m − 1

2α
φ∗

m)} through
the WKB approximation according to the tight-binding model
[29], where ωa is the attempt frequency of escape in the
potential well and cos φ∗

m = 0.5α. For a general discussion,
we assume that the flux qubit operates at the optimal point
such that T 	∈, and apply a time-dependent flux δ
α(t) in

α to create a tunnel element T = T0 + 
μ cos(ωμt). Using
the transform

|ef 〉 = cos(θ/2)|e′
f 〉 + sin(θ/2)|g′

f 〉, (A2)

|gf 〉 = sin(θ/2)|e′
f 〉 − cos(θ/2)|g′

f 〉 (A3)

and

σ ′
z = cos θσz + sin θσx, (A4)

σ ′
x = sin θσz − cos θσx, (A5)

with sin θ = T√
T 2+∈2 and sin θ = ∈√

T 2+∈2 , we have the Hamil-
tonian

Ĥ0 = ωq

2
σz + 
μ cos(ωμt)σz (A6)

with ωq = √
T 2+ ∈2 the transition frequency of the flux qubit

in the basis of {|ef 〉,|gf 〉}. We model the flux-qubit dissipation
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substrate

Spins
Flux qubit

Josephson Junctions ×

FIG. 5. (Color online) Schematic design of the chip coupling a
flux qubit (magenta bars) to an ensemble of electron spins in a crystal
chip (cyan cylinder). The gaps between the magenta bars denote the
weak connections (Josephson junctions) of the flux qubits. The flux
qubit and the crystal chip are fabricated on a substrate (gray base).

and the pure dephasing by

L (1)
q ρ = γ1,qb

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−), (A7)

L (2)
q ρ = �∗

2,qb(σzρσz − ρ), (A8)

where γ1,qb and �∗
2,qb are the decay rate and the pure dephasing

rate of the flux qubit, respectively. The flux qubit with a loop
radius RQ and a persistent current Ip can generate a quantum-
state-dependent magnetic field

B ∼ μ0Ip

2RQ

σz . (A9)

b. Modeling of interaction between flux qubits
and ensemble of NV− centers

Now, we study the interaction between a flux qubit and an
ensemble of NV− centers. In the design shown in Fig. 5, the
four-JJ flux qubit is made on top of a wafer. In the main loop
of qubit, we make a hole through the wafer (to admit light) and
the diamond crystal chip with a thickness of tens of nm covers
the hole of the wafer. This design allows the NV− centers to
couple to an optical cavity mode later.

3E
|r = Sz

Sx
Sy

3A2

|ms = 0

|ms = ±1

FIG. 6. Level diagram of a single NV− center [31–34]. Both of
the excited and ground states are triplet. The state |r〉 = |3E,Sz〉 can
optically couple to the ground state |3A2,ms = 0〉 and |3A2,ms =
±1〉.

A single NV− center in diamond can be modeled as in
Fig. 6. The free Hamiltonian of NV− centers is given by

HNV0 =
N∑
j

DjS
2
z,j + Ej

(
S2

x,j − S2
y,j

)
+ geμBBj · Sj + ωr,j |r〉j 〈r|

=
N∑
j

DjS
2
z,j + Ej

(
S2

xj
− S2

y,j

) + geμBBz,jSz,j

+ geμBB⊥,j S⊥,j + ωr,j |r〉j 〈r|, (A10)

where Dj ≈ 2.88 GHz is the zero-field splitting (ZFS) of
the j th center and Ej < 10 MHz, and ge = 2.0028,μB = 14
MHz mT−1. Each NV− center has slightly different zero-field
splitting Dj due to the slightly different local strain in the
crystal. We define the statistic average ZFS as D̄ = ∑

j PjDj

with Pj the probability of Dj and the derivation δj = Dj − D̄.
Generally, the flux qubit can generate a magnetic field Bq along
the direction of Sz or Sx,y . In our setup, we assume that the
Bq orients along the Sx direction. Sx,y,z represent the spin 1
operators of the NV− centers and have the forms

Sz =
⎛
⎝

|ms =+1〉 |ms =0〉 |ms =−1〉
|ms =+1〉 1 0 0
|ms =0〉 0 0 0
|ms =−1〉 0 0 −1

⎞
⎠,

Sx = 1√
2

⎛
⎝

|ms =+1〉 |ms =0〉 |ms =−1〉
|ms =+1〉 0 1 0
|ms =0〉 1 0 1
|ms =−1〉 0 1 0

⎞
⎠,

Sy = 1√
2

⎛
⎝

|ms =+1〉 |ms =0〉 |ms =−1〉
|ms =+1〉 0 −i 0
|ms =0〉 i 0 −i

|ms =−1〉 0 i 0

⎞
⎠,

S2
z =

⎛
⎝

|ms =+1〉 |ms =0〉 |ms =−1〉
|ms =+1〉 1 0 0
|ms =0〉 0 0 0
|ms =−1〉 0 0 1

⎞
⎠,

S2
x − S2

y =
⎛
⎝

|ms =+1〉 |ms =0〉 |ms =−1〉
|ms =+1〉 0 0 −1
|ms =0〉 0 0 0
|ms =−1〉 −1 0 0

⎞
⎠ .

We define |+〉 = (|3A2,ms = +1〉 + |3A2,ms = −1〉)/√2
and |−〉 = (|3A2,ms = +1〉 − |3A2,ms = −1〉)/√2 so that
S2

x − S2
y = −(|3A2,ms = +1〉 〈3A2,ms = −1| + |3A2,ms =

−1〉〈3A2,ms = +1|) = (|−〉〈−| − |+〉〈+|). The term
Ej (S2

x,j − S2
y,j ) only shifts the state |+〉 = (|3A2,ms =

+1〉 + |3A2,ms = −1〉)/√2 down by energy Ej . It can
be absorbed in Dj when we study the coupling between
|3A2,ms = 0〉 ↔ |+〉. The term Bz,jSz,j describes the Zeeman
splitting due to the magnetic field applied to the z direction.
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NVj Flux Qubit
|gj

|ej

Γ1,j

|gf

|ef

γ1,qb

Ωμ

gf,j

FIG. 7. (Color online) Diagram of the interaction between the
flux qubit and the j th NV− center. The states are defined
as |gj 〉 = |3A2,ms = 0〉j and |ej 〉 = (|3A2,ms = +1〉j + |3A2,ms =
−1〉j )/

√
2. The NV center and the flux qubit decay with rates �1,j and

γ1,qb, respectively. The flux qubit couples to the magnetic transition
of the two ground states |ej 〉 and |gj 〉 of the j th NV center with the
rate gf,j . The transition frequency of the qubit is sine modulated with
the amplitude of 
μ and the frequency ωμ.

A reasonable large magnetic field also can be used to lift
the degeneracy between |ms = ±1〉 levels, and subsequently
excludes the transition of |ms = 0〉 ↔ |ms = −1〉 [12]. This
term is assumed to be negligible (Bz,j ≈ 0) through our
investigation following.

The flux qubit couples to the ensemble of NV− centers via
the magnetic field created by its persistent current. To study the
magnetic interaction between these two quantum subsystems,
we only consider the triplet ground state of the NV’s electric
spin in this stage. In order to match the experimental setup [8],
we consider the transition of |gj 〉 ↔ |ej 〉, as shown in Fig. 7.

We assume that the magnetic field Bq,j created by the flux
qubit orients to the x direction of the j th center so that it is
parallel to Sx . Thus, we have Bq,j = Bx,j = μ0Ip

2Rj
σ ′

z [8], where
Rj =√

D2+d2
j with D the distance from the flux qubit to the

center of the flux loop and dj the distance from the center of
the flux loop to the ensemble center. Generally, Rj denotes the
distance between the flux qubit and the j th NV− center. Then,
the interaction Hamiltonian describing the coupling between
the flux qubit and the NV− centers is

HQ−NV =
N∑
j

gf,j Sx,j σ
′
z =

N∑
j

gf,j Sx,j σx, (A11)

where gf,j /2π = geμ0μBIp

Rj
∼ 4.4 kHz in [8] for D = 0.7 μm

and dj = 1 μm. μ0 is the vacuum permeability (we have
used σ ′

z = cos θσz + sin θσx ⇒ σ ′
z = σx when T 	∈ yield-

ing sin θ ≈ 1. We now assume that the wavelength correspond-
ing to the microwave transition of the flux qubit to be much
larger than the size of diamond crystal and from this we can
neglect the phase diffusion in the coupling gf,j .

The Hamiltonian for our flux qubit coupled to an ensemble
of NV− centers can be represented by

H = ωq

2
σz +

N∑
j

DjS
2
z,j +

N∑
j

gf,j Sx,j σx . (A12)

c. Modeling the interaction between flux qubits and a rare-earth
ion doped crystal Er3+ : Y2SiO5

An ensemble of rare-earth Er3+ ion doped in Y2SiO5 crystal
is another promising candidate for the quantum interface
transferring quantum information from optical to microwave

4I13/2, Y1

|ms = +1/2

|ms = −1/2

4I15/2, Z1

|ms = −1/2

|ms = +1/2
MW

Telecom C-band
λ = 1536 nm

FIG. 8. (Color online) Level diagram of a rare-earth ion Er3+ in
crystal Y2SiO5 allowing an optical Raman transition and a microwave
transition [7,18,35].

and vice versa. It has significant advantages: (i) The two
electronic ground states have a large-g factor up to 15. (ii) The
concentration of ions in the hosting crystal can be very large.
These two unique properties allow it to strongly couple to a flux
qubit. (iii) It has long-lived optical and microwave lifetimes.
(iv) It works in both optical telecom C-band around 1.55 μm
and microwave C-band round 4–9 GHz. We next discuss
here how our scheme can be extended to the rare-earth ion
crystal.

As shown in Fig. 8, both the excited state 4I13/2 : Y1

and the ground states 4I15/2 : Z1 for each Er3+ ion are
doublets. The optical transition 4I15/2 : Z1 → 4I13/2 : Y1 and
the microwave transition |4I15/2 : Z1,ms = −1/2〉 → |4I15/2 :
Z1,ms = +1/2〉 form two �-type systems [7,18,35]. In the
dispersive coupling regime, we can model the system as a
simple �-type system with one excited state |rj 〉 = |4I13/2 :
Y1〉, two ground states |ej 〉 = |4I15/2 : Z1,ms = +1/2〉 and
|gj 〉 = |4I15/2 : Z1,ms = −1/2〉. The electric dipole moment
of the optical transition is about 2.07 × 10−32 C m, while the
g factor for the magnetic coupling depends on the orientation
of the extinction axis and can be up to 15 [25,35], yielding
a spin tuning rate (Zeeman splitting) up to 200 GHz/T [7].
The optical transition is at around λ ∼ 1536 nm, while the
zero-field splitting of the two ground states is around 4 GHz
[36].

The Hamiltonian of an ensemble of rare-earth ions includ-
ing the magnetic coupling is given by [7,25]

HEr =
N∑
j

Dj

2
S̃z,j + μBBj · ge · S̃j + ωr,j |rj 〉〈rj |, (A13)

where Dj is the zero-field splitting of the j th spin,
Bj denotes the external magnetic field applied to
the j th spin and are slightly different because it is
inhomogeneous at different sites of the spins. ge is the
g-factor tensor, and the electronic spin operator S̃j are defined
as {S̃z,j ,S̃x,j ,S̃y,j } = {|4I15/2 : Z1,ms = +1/2〉 〈4I15/2 :
Z1,ms = +1/2| − |4I15/2 : Z1,ms = −1/2〉 〈4I15/2 :
Z1,ms = −1/2|,|4I15/2 : Z1,ms = +1/2〉 〈4I15/2 : Z1,ms =
−1/2| + |4I15/2 : Z1,ms = −1/2〉 〈4I15/2 : Z1,ms = +1/2|,
− i(|4I15/2 : Z1,ms = +1/2〉 〈4I15/2 : Z1,ms = −1/2| −
|4I15/2 : Z1,ms = −1/2〉 〈4I15/2 : Z1,ms = +1/2|)}. Here, we
neglect the hyperfine interaction and the nuclear quadrupole
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interaction and ωr,j is the energy of the optical excited state
|rj 〉.

We use the arrangement similar to the qubit-NV system
discussed above [8] such that the magnetic field created by the
flux qubit orients to the local x direction of the ions. When the
rare-earth ions are inserted within the loop of the flux qubit,
the magnetic coupling between these two systems is described
by [25]

HQ-Er =
N∑
j

gf,j S̃x,j σx . (A14)

As a result, the Hamiltonian describing the evolution of the
spins and the flux qubit is given by

H = ωq

2
σz +

N∑
j

Dj

2
S̃z,j + gf,j S̃x,j σx . (A15)

Because there is only one excitation in the system at
most, we can consider the motion of the system in the one-
excitation basis. We instead use the notations S̄z,j = |ej 〉〈ej | −
|gj 〉〈gj |,S̄+,j = |ej 〉〈gj |,S̄−,j = |gj 〉〈ej |. After applying the

unitary transform U = e−i( D̄
2 σz+

∑N
j D̄S2

z,j )t to Eq. (A12) or

U = e−i( D̄
2 σz+

∑N
j

D̄
2 S̃z,j )t to Eq. (A15), and the rotating-wave

approximation, we have the Hamiltonian describing the
general qubit-spin system

HQ-spin = �q

2
σz +

N∑
j

δj

2
S̄z,j + gf,j (S̄+,j σ− + σ+S̄−,j )

(A16)

with �q = ωq − D̄. Under cryogenic temperature, we may
assume that the spins remain in |gj 〉 if they are initialized in
that state because Dj is a few GHz (Dj ≈ 2π × 2.88 GHz [8]
for NV− centers and Dj ≈ 2π × 4 GHz [36] for Er ions).

d. Interaction in the single-excitation space

We model the case in which a single excitation is injected
into the system via the flux qubit. It allows one to consider the
one-excitation space (OES) whose spanning state vectors are
each N + 2 long and can be written as

|gf ,G〉 = |gf ,g1,g2, . . . ,gM〉 = |0〉M,

|ef ,G〉 = |ef ,g1,g2, . . . ,gM〉 = |1〉M, (A17)

|gf ,ėj 〉 = |gf ,g1,g2, . . . ,gj−1,ej ,gj+1, . . . ,gM〉 = |j + 1〉M,

j ∈ {1,2, . . . ,N}. We thus have M = N + 2 eigenstates in the
OES.

Setting the state |gf ,G〉 as the zero-energy level in the OES,
one can find the following OES representations:

σz =

⎛
⎜⎜⎜⎜⎝

−1 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠ = |1〉M〈1| − |0〉M〈0|,

σ− =

⎛
⎜⎜⎝

0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎠ = |0〉M〈1|,

S̄z,j = |j + 1〉M〈j + 1| − |0〉M〈0|,

and

S̄−,j = |0〉M〈j + 1| .

Using the notations {|l〉M} for the OES, the operators take
the forms

σz = |1〉M〈1| − |0〉M〈0|,
σ− = |0〉M〈1|,

(A18)
S̄z,j = |j + 1〉M〈j + 1| − |0〉M〈0|,
S̄−,j = |0〉M〈j + 1|.

By defining the operator

I =
N+1∑
l=0

|l〉M〈l|

= |gf ,G〉〈gf ,G| + |ef ,G〉〈|ef ,G| +
N∑

j=1

|gf ,ėj 〉〈gf ,ėj |,

we also find

σz = |1〉M〈1| −
∑

j

|j + 1〉M〈j + 1| − |0〉M〈0|

= 2|1〉M〈1| − I
(A19)

and

S̄z,j = |j + 1〉M〈j + 1|
−

∑
l �=j

|l + 1〉M〈l + 1| − |0〉M〈0| − |1〉M〈1|

= 2|j + 1〉M〈j + 1| − I.

Since we can drop I in the Hamiltonian, we can then have

σz = 2σ+σ−, (A20)

S̄z,j = 2S̄+,j S̄−,j , (A21)

where all operators are represented in the OES. Thus, the
Hamiltonian describing the full system of coupled flux-qubit–
spin ensemble takes the form

HQ-spin = �qσ+σ− +
∑

j

δj S̄+,j S̄−,j

+ gf,j (S̄+,j σ− + σ+S̄−,j ),

(A22)
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or in matrix form by

HQ-spin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|gf ,G〉 |ef ,G〉 |gf ,ė1〉 . . . |gf ,ėj−1〉 |gf ,ėj 〉 |gf ,ėj+1〉 . . . |gf ,ėN 〉
|gf ,G〉 0 0 0 . . . 0 0 0 . . . 0
|ef ,G〉 0 �q gf,1 . . . gf,j−1 gf,j gf,j+1 . . . gf,N

|gf ,ė1〉 0 gf,1 δ1 . . . 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
|gf ,ėj−1〉 0 gf,j−1 0 . . . δj−1 0 0 . . . 0
|gf ,ėj 〉 0 gf,j 0 . . . 0 δj 0 . . . 0
|gf ,ėj+1〉 0 gf,j+1 0 . . . 0 0 δj+1 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
|gf ,ėN 〉 0 gf,N 0 . . . 0 0 0 . . . δN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The decoherence superoperators for dissipation and pure
dephasing for each NV− center are given by

L (1)
spin,j ρ =�1,j

2
{2S̄−,j ρS̄+,j − S̄+,j S̄−,j ρ − ρS̄+,j S̄−,j },

(A23)

L (2)
spin,j ρ =�∗

2,j (S̄z,j ρS̄z,j − ρ), (A24)

where �1,j and �∗
2,j are the depopulation and pure dephasing

rates of the state |ej 〉 in the j th NV− center or spin. Combining
all this, we can simulate the dynamics of the full system using
the Lindblad master equation

∂ρ

∂t
= −i[HQ-spin,ρ] + L (1)

q [ρ] + L (2)
q [ρ]

+
∑

j

L (1)
spin,j [ρ] +

∑
j

L (2)
spin,j [ρ], (A25)

where the Hamiltonian takes the form given by Eq. (A22).

e. Confirmation of the model with experimental data

To study the performance of the quantum interface between
optical and microwave, our single-excitation model describing
the interaction of the ensemble of spins and the flux qubit
considers the inhomogeneous broadening of the transition
frequencies of the spins. This is an important difference
between our model and that used in [8]. Before discussing the
quantum interface, we first justify the validity of our model by
a near perfect matching with the experimental data presented
in [8]. The parameters given by Zhu et al. are described in
Tables I and II and their values are listed in Tables III, IV, V,
and VI.

Although Zhu et al. reproduced well the experimental result
of the vacuum Rabi oscillation curve by varying the T1 and T2

of the flux qubit and the NV centers, we instead first explore the
validity of assuming homogeneous decay and dephasing rates
for the diamond subsystem. With this assumption we achieve
a poor agreement with the experiment for the Rabi oscillation
over the whole duration with only good agreement during the
first period of oscillation. Our best fit is shown in Fig. 9 using
the homogeneous parameters listed in Tables VII and VIII.
Obviously, we successfully reproduce the first Rabi oscillation,
however, we note that more population than predicted by the

model returns to the flux qubit during the period from ∼20 to
∼60 ns.

We understand this excess qubit population to be mainly
due to a dark-state-related strengthening of the revival of the
qubit population due to an inhomogeneous broadening in the
transition frequencies of the spins. When the inhomogeneous
broadening of the transition frequencies of the spin ensemble
is small in comparison with the ensemble-qubit coupling
rate, this inhomogeneity creates a slow decay channel from
the single-excitation state (or bright state), to a multitude
of spin dark states which are relatively long lived. This
inhomogeneous broadening can be considered as an additional
decay of the single-excitation bright state of the spins [12,37–
39] during the first few Rabi oscillation periods. However, if
the inhomogeneous broadening is comparable to the coupling
rate, one can have cycling from the multitude of dark state
bath to the bright state. To consider this effect, we expand
our model to encompass a distribution (inhomogeneity) of
transition frequencies for the spin ensemble. It can be clearly
seen from Fig. 10 that this model correctly reproduces the
emergence of the large population of the flux qubit when
t > 20 ns. The parameters listed in Tables IX–XI are used is
this extended inhomogeneous model. We will use this model
including the broadening of the transition frequencies of the
spin ensemble for our numerical investigations throughout the
remainder of our study below and in the main manuscript.

The parameters of the flux qubit and the NV centers for
our fit in Fig. 10 are listed in Tables IX and X. Obviously, the
decay rate of the flux qubit is small. Interestingly, although

TABLE I. Description of parameters of the flux qubit.

Notation Description

Ip Persistent current
γ1,qb Relaxation rate
T1,qb Relaxation time
γ ∗

2,qb Pure dephasing rate
T2,qb Dephasing time
T ∗

2,qb Pure dephasing time
� Representing the detuning between the flux qubit and

the magnetic transition of the spins (NV centers)
B Magnetic field created the flux qubit
σ� Inhomogeneity of the detuning �
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TABLE II. Description of parameters of the spins (NV centers).

Notation Description

D Zero-field splitting of the ground states
ge g factor of the electron
E Strain-induced splitting
γen Relaxation rate of the ensemble of spins
�∗

2 Pure dephasing rate of the ensemble of spins
T ∗

1,en Relaxation time of the ensemble of spins
T2,en Dephasing time of the ensemble of spins
T ∗

2,en Pure dephasing time of the ensemble of spins
R Distance from the flux qubit to the center of the ensemble of spins
BNV,z Magnetic field along Sz of the ensemble of the spins. It is applied to tune the Zeeman splitting.

N Total number of spins (NV centers) in the ensemble
Ng Group numbers of the spins (NV centers). It means that we divided all spins into Ng groups, in which the spins are

considered as identical, for simulations
gf Magnetic coupling rate of the flux qubit to one group of spins
ḡi Collective coupling rate of the total spins to the flux qubit

σδ Inhomogeneous broadening of the zero-field splitting Dj of the spins. It means that the parameter Dj varies within a
variance of σδ as a random number in simulations

σ�1,j
Inhomogeneous broadening of the relaxation rate of the spins. It means that the parameter �1,j varies within a variance

of σ�1,j
as a random number in simulations

σ�∗
2,j

Inhomogeneous broadening of the pure dephasing rate of the spins. It means that the parameter �1,j varies within a
variance of σ�∗

2,j
as a random number in simulations

σgf
Inhomogeneity in the grouped coupling rate gf . It represents that the parameter gf varies within a variance of σgf

as a
random number in simulations

TABLE III. Parameters of the flux qubit in [8].

Ip (mA) γ1,qb/2π (MHz) �/2π (nHz) γ ∗
2,qb/2π (MHz)

300 1 0

TABLE IV. Parameters of the NV− centers in [8].

D/2π μB E/2π γen/2π (MHz) B R Density gi/2π gi/2π = √
Ngi/2π

(GHz) ge (MHz mT−1) (MHz) (on resonance) �∗
2/2π B (μm) cm−3 N (kHz) (MHz)

2.88 2.0028 14 0(< 10) ∼8 (∼20 ns) μ0Ip

2R
1.2 5 × 1018 3 × 107 4.4 35

TABLE V. Parameters of the flux qubit in [12].

Ip (mA) T1,qb (ns) T2,qb (ns) away from sweet point T2,qb (ns) at sweet point T ∗
2,qb = [T −1

2,qb − (2T1,qb)−1]−1 (ns)

395 19.7 100 20.2 (for T2,qb = 19.7 ns); 114 (for T2,qb = 100 ns)

TABLE VI. Parameters of the NV− centers in [12].

D/2π BNV,z E/2π T ∗
1,en T ∗

2,en (ns) T2en = [(2T1,en)∗−1 + T ∗−1
2,en ]−1 (D+ − D−)/2π Density gi/2π gi/2π = √

Ngi/2π

(GHz) (mT) (MHz) (ns) (pure dephasing) (ns) B (MHz) cm−3 N (kHz) (MHz)

2.878 2.67 4 20.8 175 33.6 μ0Ip

2R
∼40 4.7 × 1017 107 4.4 8.9
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TABLE VII. Parameters of the flux qubit for our fit in Fig. 9.

γ1,qb/2π γ ∗
2,qb/2π σ�/2π �/2π (MHz)

(MHz) (MHz) (MHz) detuning

0.4 1 0 0

we set the detuning � = 0 in our simulations, the random
broadening in Dj gives an effective detuning of 2π × 5.8 MHz
which we believe comes from the energy shift due to the
strain-induced splitting E. To do the simulations, we divided
the NV centers into 20 groups. There is no observable change
when we increase the number of groups to 40.

In Fig. 10, we consider an inhomogeneous model where
some parameters vary throughout the ensemble of NV centers.
The extent of these variations is characterized in Table
XI. The parameter variances used in Table XI are defined

as σX =
√∑N

j (X̄ − Xj )2/N with Xj ∈ {�j,�1,j ,�2,j ,gf,j },
where X̄ = 〈Xj 〉 is the statistic average value. Note that the
decay rate �∗

1,en/2π = 28 MHz of the NV− centers in the first
model is somewhat close to the sum of the collective decay rate
of �∗

1,en and the inhomogeneous broadening in the transition
frequency σδ in the second model. It provides strong evidence
that the inhomogeneous broadening plays a role of the decay
in short time [37–39].

2. Transfer quantum information between qubit and
cavity via sideband transition

In this section, we show how to use the technique of
stimulated Raman adiabatic passage (STIRAP) to transfer
quantum information between the flux qubit and the cavity
mode robust against the inhomogeneity and decoherence of
the ensemble of spins.

In the widely studied schemes by Zhu et al. [8], etc., the
coupling of the flux qubit to the ensemble of spins is constant
in time. As a result, to switch off the interaction with the
spins, the flux qubit must be biased far away from the “sweet
spot” which causes a large decoherence. We next present a
method to modulate the qubit-spin coupling via the sideband
transition. One of the advantages of this sideband-transition
scheme is that one can efficiently tune on and off the flux-
qubit–spin interaction while the qubit remains at the“sweet
spot” where the decoherence is lowest. More importantly, the
sideband-transition scheme enables the STIRAP technique
and avoids much excitation of the ensemble of spins, and
subsequently greatly suppresses the unwanted influence of the
inhomogeneity of the spins on the quantum transfer.
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FIG. 9. (Color online) Predicting the experimental data of the
Rabi oscillation in [8] assuming homogeneity in the NV ensemble.
Blue line and dots are the experimental measurement data taken from
[8]. Magenta line shows the decay rate we use for fitting. Cyan line for
the switching probability as a fitting of the Rabi oscillation. The pure
damping data (blue dots) are fitted using e−2πt/150 (corresponding to
a decay rate of 2π × 1 MHz).

a. Modulation of the qubit-spin-cavity interaction

Here, we consider a hybrid quantum system consisting of a
flux qubit, an ensemble of spins, and an optical cavity shown
in Fig. 11. The scheme depicting the coupling between the
flux qubit and the spin ensemble for one node is shown in
Fig. 12. In the level diagram of the spins, |rj 〉 = |3E,Sz〉 for
NV centers, while |rj 〉 = |4I13/2 : Y1〉 for Er3+ ions. As before,
we neglect the terms

∑N
j geμeBz,jSz,j + Ej (S2

x,j − S2
y,j ) in

the NV centers. For NV centers, Bz,j can be large enough
to split |ms = +1〉 and |ms = −1〉 such that the splitting is
much larger than Ej . When a σ+-polarized control field 
c is
applied, the fields and qubit only couple to the transitions
|rj 〉 ↔ |ms = +1j 〉 and |ms = 0j 〉 ↔ |ms = +1j 〉, respec-
tively. Alternatively, we also can arrange that Bj ∼ 0 and the
control field 
c is linearly polarized. Thus, 
c optically and
the qubit magnetically couple to the transitions |rj 〉 ↔ (|ms =
+1j 〉 + |ms = −1j 〉)/

√
2 and |gj 〉 ↔ (|ms = +1j 〉 + |ms =

−1j 〉)/
√

2, respectively. Either way, we can replace the states
|ms = +1j 〉 or (|ms = +1j 〉 + |ms = −1j 〉)/

√
2 with |ej 〉.

For rare-earth ions, we simply have |ej 〉 = |4I15/2 : Z1,ms =
+1/2〉 and |gj 〉 = |4I15/2 : Z1,ms = −1/2〉. The Hamiltonian
related to the free evolution of the NV centers or the rare-earth
ions takes the form

HNV =
N∑
j

DjS
2
z,j + ωr,j |rj 〉〈rj |, (A26a)

TABLE VIII. Parameters of the NV centers for our fit in Fig. 9.

�∗
2,en/2π gf /2π (MHz)

D/2π BNV,z E/2π �∗
1,en/2π (pure T −1

2en = 2T ∗−1
1en + T ∗−1

2en Ng (D+ − D−)/2π Density grouped gi/2π = √
Ngi/2π

(GHz) (mT) (MHz) (MHz) dephasing) (ns) groups (MHz) cm−3 N coupling (MHz)

2.878 0 <10 28 0.9 33.6 40 ∼0 5 × 1018 1.6 × 107 5.56 35
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FIG. 10. (Color online) As in Fig. 9 but including inhomogeneity
in the transition frequencies of the spin ensemble, the coupling rates
gf,j , and the decoherence rates.

HEr =
N∑
j

Dj

2
Sz,j + ωr,j |rj 〉〈rj |. (A26b)

We set the energy of the ground state |gj 〉 to be zero.
Using this, the free Hamiltonians (A26) and the optical-spin
interaction can be rewritten both as

Hspin0 =
∑

j

Dj |ej 〉〈ej | + ωr,j |rj 〉〈rj |, (A27)

Ho-spin =
∑

j

(gc,j e
ikRj â

†
j |g〉j 〈rj |+gc,j e

−ikRj â|rj 〉〈gj |)

+
∑

j


c(eiωLt+iφ(t)|e〉j 〈rj |+e−iωLt−iφ(t)|rj 〉〈ej |).

(A28)

This system including three subsystems {flux qubit, spin
ensemble, cavity mode} can be described by the Hamiltonian
Hnode in Eq. (A29):

Hnode = Hq + Hspin0 + Hc + Hq-spin + Ho-spin, (A29)

Hq = ωq

2
σz + 
μcos(ωμt)σz, (A30)

Hc = ωcâ
†â, (A31)

Hq-NV =
N∑
j

gf,j σxSx,j , (A32)

where Rj is the position of the j th NV center. The JC coupling
between the cavity mode â and the j th NV center is given
through the coupling strength gc,j and the phase ikRj which

is inhomogeneous because this optical phase is sensitive to the
site of the spins Rj . The Raman control field has a frequency
ωL, and Rabi frequency 
c, and a nontrivial phase φ(t).

We next apply the unitary transform

Û = exp{−i[(ωr,j − ωL)t − φ]|ej 〉〈ej |}
⊗ exp{−iωr t |rj 〉〈rj | − i(ωr,j − ωc)t |gj 〉〈gj |}

⊗ exp

{
− iωct â

†â − i

[
ωq

2
tσz

+ 
μ

ωμ

sin(ωμt)σz − φ

2
σz

]}

to the full system and define �j = ωr,j − ωr with ωr =
〈ωr,j 〉, δ = ωL − ωc, �0 = ωr − ωc, and �1 = (ωr − ωL) −
D̄, �q = ωq − δ. From this we have the relations

�1 − �0 = δ − D̄. (A33)

Under the two-photon resonance condition, δ = D̄. From
this, we have [40–43]

Ĥ = φ̇

2
σz −

∑
j

(�1 + �j − δj − φ̇)|ej 〉〈ej |

−
∑

j

(�0 + �j )|gj 〉〈gj |

+
∑

j


c(|ej 〉〈rj | + |rj 〉〈ej |)

+
∑

j

(gc,j e
ikRj â

†
j |gj 〉〈rj | + gc,j e

−ikRj â|rj 〉〈gj |)

+
∑

j

gf,j

∞∑
k=1

(−1)kJk

(

μ

ωμ

)
[e−i(�q−kωμ)t S̄+,j σ−

+ H.c.] +
∑

j

gf,j J0

(

μ

ωμ

)
[e−i�q t S̄+,j σ− + H.c.],

(A34)

with S̄+,j = |ej 〉〈0j | and S̄−,j = S̄+,j . �̃q = �q − ωμ and we
set �q ≈ 700 MHz. With this we can safely neglect the off-
resonance terms for k �= 1 and obtain the Hamiltonian

Ĥ = φ̇

2
σz −

∑
j

(�1 + �j − δj − φ̇)|ej 〉〈ej |

−
∑

j

(�0 + �j )|0〉j 〈0| +
∑

j


c(|ej 〉〈rj | + |rj 〉〈ej |)

+
∑

j

(gc,j e
ikRj â

†
j |0〉j 〈r| + gc,j e

−ikRj â|r〉j 〈0|)

−
∑

j

gf,j J1

(

μ

ωμ

)
(e−i�̃q t S̄+,j σ− + ei�̃q t S̄−,j σ+).

(A35)

TABLE IX. Parameters of the flux qubit for our fit in Fig. 10.

γ1,qb/2π (MHz) decay rate of qubit γ ∗
2,qb/2π (MHz) pure dephasing of qubit �/2π (MHz) detuning

0.4 1.0 5.8 = −E (Table II)

042307-12



SOLID-STATE OPTICAL INTERCONNECT BETWEEN . . . PHYSICAL REVIEW A 91, 042307 (2015)

TABLE X. Parameters of the NV centers for our fit in Fig. 10.

D̄/2π Bz,j E/2π �1,en/2π �∗
2,en/2π (MHz) Ng (D+ − D−)/2π gf /2π (MHz) gi/2π = √

Ngi/2π

(GHz) (mT)] (MHz) (MHz) (pure dephasing) groups (MHz) N grouped coupling (MHz)

2.878 0 Neglected 12 0.9 20 ∼0 1.6 × 107 5.56 35

In the optical dispersive Raman transition, we can adiabatically
eliminate the states |rj 〉 [44], and the Hamiltonian becomes

Ĥeff = φ̇ + �̃q

2
σz −

∑
j

[
�1 + �j − δj − φ̇

+ 
2
c(�1 + �j − δj )

(�1 + �j − δj )2 + (γj/2)2

]
|ej 〉〈ej |

−
∑

j

[
�0 + �j + g2

c,j â
†â(�0 + �j )

(�0 + �j )2 + (γj/2)2

]
|gj 〉〈gj |

−
∑

j

gf,j J1

(

μ

ωμ

)
(S̄+,j σ− + S̄−,j σ+)

− 
c

2

∑
j

gc,j e
ikRj

(
1

�0 + �j − iγj /2

+ 1

�0 + �j − iγj /2

)
â†|gj 〉〈ej | + H.c. (A36)

We define �j = 
c

2 ḡc( 1
�0+�j −iγj /2 + 1

�1+�j −δj −iγj /2 ),

ξj = gc,j

ḡc
with ḡc = 〈gc,j 〉, θj = kRj . We also have the

modified Lindblad operators from the decay channels
|rj 〉 → |g(e)j 〉 as [44]

L̂
(0)
eff,j =

√
γ0,j gc,j e

−iθj â

(�0 + �j ) + iγj /2
|gj 〉〈gj |

+
√

γ0,j
c

(�0 + �j − δj ) − iγj /2
|gj 〉〈ej |, (A37)

L̂
(1)
eff,j =

√
γ1,j gc,j e

−iθj â

(�0 + �j ) + iγj /2
|ej 〉〈gj |

+
√

γ1,j
c

(�0 + �j − δj ) − iγj /2
|ej 〉〈ej |. (A38)

These operators will be later used for the swap and quantum
transfer of quantum state.

If |�0|,|�1| 	 γj ,|δj |, we have

Ĥeff = φ̇ + �̃q

2
σz −

∑
j

�̂NV,j |ej 〉〈ej |

−
∑

j

[
�0 + �j + g2

c,j â
†â

(�0 + �j )

]
|gj 〉〈gj |

−
∑

j

gf,j J1

(

μ

ωμ

)
(S̄+,j σ− + S̄−,j σ+)

−
∑

j

�jξj

(
eiθj â†S̄−,j + e−iθj S̄+,j â

)
, (A39)

with �̂NV,j = �1 + �j − δj − φ̇ + 
2
c

(�1+�j −δj ) , �j =

c

2 ḡc( 1
�0+�j

+ 1
�1+�j −δj

) ∼ 
cḡc

�0+�j
because δ = D̄. If

|�0| 	 |�j |, �j ≈ � = 
cḡc

�0
is constant in time. In our

sideband transition regime, all parameters 
c,
μ,φ̇,�̃q

can be modulated in time. This flexibility provides a
significant advantage over the fixed on-resonance coupling
for transferring quantum information. When 
μ = 1.8ωμ,
the effective coupling between the flux qubit and the NV−

centers has maximum value J1(
μ/ωμ)gf,j = 0.58gf,j . Note

that the total coupling strength �tot =
√

Nḡc
c

�0
=

√
Nḡc

�0/
c
is

the collective JC coupling strength which is suppressed by
a factor of �0/
c in comparison with the on-resonance
coupling rate

√
Nḡc.

b. Operators in the one-excitation space

In the OES including the cavity mode, we write the basis
vectors (N + 3 long, N the number of spins in the ensemble) as

|gf ,0,G〉 = |gf ,0,g1,g2, . . . ,gN 〉 = |0〉M,

|ef ,0,G〉 = |ef ,0,g1,g2, . . . ,gN 〉 = |1〉M,

|gf ,1c,G〉 = |gf ,1c,g1,g2, . . . ,gN 〉 = |2〉M,

|gf ,0,ėj 〉 = |gf ,0,g1,g2, . . . ,gj−1,ej ,gj+1, . . . ,gN 〉
= |j + 2〉M, j = 1,2, . . . ,N.

After defining the unitary operator for the system

I =
N+2∑
l=0

|l〉M〈l|

= |gf ,0,G〉〈gf ,0,G| + |ef ,0,G〉〈|ef ,0,G|

+ |gf ,1c,G〉〈gf ,1c,G| +
N∑

j=1

|gf ,0,ėj 〉〈gf ,0,ėj |,

the operators have the forms

σz = 2|1〉M〈1| − I, (A40a)

σ+ = |ef 〉〈ef | = |1〉M〈0|, (A40b)

S̄z,j = 2|j + 2〉M〈j + 2| − I, (A40c)

TABLE XI. Variance in parameters for our fit in Fig. 10.

σδ/2π (MHz) (Variance in σ�1/�1,en (Variance in σ�2,en
/�2,en (Variance in σgf

/gf (Variance in coupling
Dj of NVs) decay rate of NVs) decay rate of NVs) between qubit and NVs)

14.4 0 10% 1%
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S̄+,j = |j + 2〉M〈0|, (A40d)

â = |0c〉〈1c| = |0〉M〈2|, (A40e)

â†â = |1c〉〈1c| = |2〉M〈2|. (A40f)

In the single-excitation basis, we have the relations σz =
2σ+σ− = 2|1〉M〈1| and S̄z,j = 2S̄+,j S̄−,j = 2|j + 2〉M〈j +
2|. So, the operators in the effective Hamiltonian above are
given by

â†â|gj 〉〈gj | = |2〉M〈2| = â†â, (A41a)

|ėj 〉〈ėj | = S̄+,j S̄−,j , (A41b)

|gj 〉〈gj | = (|gj 〉〈gj | + |ej 〉〈ej | − |ej 〉〈ej |) (A41c)

= I − |gf ,0c,ėj 〉〈gf ,0c,ėj |
= I − |j + 2〉M〈j + 2| ,

â†â|ej 〉〈ej | = ∅. (A41d)

c. Master equation

Substituting Eqs. (A40) and (A41) into the effective
Hamiltonian, Heff has the form

Ĥeff = (φ̇ + �̃q)σ+σ− −
∑

j

�̂NV,j S̄+,j S̄−,j − δenâ
†â

−
∑

j

gf,j J1

(

μ

ωμ

)
(S̄+,j σ− + S̄−,j σ+)

−
∑

j

�jξj (eiθj â†S̄−,j + e−iθj S̄+,j â), (A42)

with δen = ∑
j

g2
c,j

(�0+�j ) is constant in time. Note that gf,j , ξj ,

and θj are also constant. We modulate 
μ, φ̇, 
c, and ωq ,
and subsequently �j and �̃q become time dependent. The full
effective Hamiltonian in the OES in matrix form reads as

Ĥeff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|gf ,0,G〉 |ef ,0,G〉 |gf ,1,G〉 |gf ,0,ė1〉 |gf ,0,ė2〉 . . . |gf ,0,ėN 〉
|gf ,0,G〉 0 0 0 0 0 . . . 0
|ef ,0,G〉 0 (φ̇ + �̃q) 0 −gf,1J1

(
μ

ωμ

) −gf,2J1
(
μ

ωμ

)
. . . −gf,NJ1

(
μ

ωμ
)

|gf ,1,G〉 0 0 −δen −�1ξ1e
iθ1 −�2ξ2e

iθ2 . . . −�NξNeiθN

|gf ,0,ė1〉 0 −gf,1J1
(
μ

ωμ

) −�1ξ1e
−iθ1 −�̂NV,1 0 . . . 0

|gf ,0,ė2〉 0 −gf,2J1
(
μ

ωμ

) −�2ξ2e
−iθ2 0 −�̂NV,2 . . . 0

...
...

...
...

...
...

. . .
...

|gf ,0,ėN 〉 0 −gf,NJ1
(
μ

ωμ

) −�NξNe−iθN 0 0 . . . −�̂NV,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A43)

The superoperators describing the dissipation and pure de-
phasing for all systems are

L (1)
q [ρ] = γ1,qb

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−),

L (2)
q [ρ] = γ ∗

2,qb(σzρσz − ρ),

L (1)
NV,j [ρ] = �1,j

2
(2S̄−,j ρS̄+,j − S̄+,j S̄−,j ρ − ρS̄+,j S̄−,j ),

L (2)
NV,j [ρ] = �∗

2,j (S̄z,j ρS̄z,j − ρ),

Lc[ρ] = κ

2
(2âρâ† − â†âρ − ρâ†â),

L (L0)
NV,j [ρ] = 1

2

(
2L̂

(0)
eff,j ρL̂

(0)†
eff,j − L̂

(0)†
eff,j L̂

(0)
eff,j ρ

− ρL̂
(0)†
eff,j L̂

(0)
eff,j

)
,

L (L1)
NV,j [ρ] = 1

2

(
2L̂

(1)
eff,j ρL̂

(1)†
eff,j − L̂

(1)†
eff,j L̂

(1)
eff,j ρ

− ρL̂
(1)†
eff,j L̂

(1)
eff,j

)
.

Thus, the dynamics of the node can be described by the
Lindblad master equation

∂ρ

∂t
= −i[Ĥeff,ρ] + L (1)

q [ρ] + L (2)
q [ρ] + Lc[ρ]

+
∑

j

L (1)
NV,j [ρ] +

∑
j

L (2)
NV,j [ρ]

+
∑

j

L (L0)
NV,j [ρ] +

∑
j

L (L1)
NV,j [ρ].

(A44)

d. MQ-Optical swap quantum state via STIRAP

We are interested in the transfer of quantum state between
the flux qubit and optical mode using the STIRAP method
because it is robust against the imperfection in the control
process [45] and avoids much excitation of the spins. We
now assume the tripartite two-level (2L) system interacts
on resonance, i.e., under the one-photon resonance condition
(OPRC). To enable the OPRC, the spin ensemble must interact
on resonance with the photon in the optical mode and also with
the first sideband transition of the flux qubit. Thus, we have
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Control field Ωc

Cavity field
Mirror

FIG. 11. (Color online) Schematic diagram of the interaction
among the hybrid quantum system consisting of a flux qubit, an
ensemble of spins, and an optical cavity.

the relations

φ̇ = �1 − �0 + 
2
c

�1
− δen (NVs-photons), (A45)

φ̇ + �̃q = −δen (qubit-NVs) (A46)

yielding

φ̇ = �1 − �0 + 
2
c

�1
− δen, (A47)

ωq = ωμ + D̄ − 
2
c

�1
, (A48)

ωμ = �q + δen + φ̇ . (A49)

Using Gaussian control paired pulses J1(
μ/ωμ) =
0.58e−(t−τd,f )2/2τ 2

f and 
c = 
c,0e
−(t−τd,c)2/2τ 2

c with the am-
plitude 
c,0 of the coherent control field, we can swap the
quantum state from the flux qubit to the cavity mode with a
fidelity F = √〈ψ |ρ|ψ〉 [46] larger than 90% (see Fig. 13).
We also calculate the fidelity shown in Figs. 13(b) and 13(c) as
a function of the decay rate κ of the cavity and the coupling rate
gf and the optical Raman transition rate �R ∼ 
cgc

�0
by setting

g = 0.58
√

N〈gf,j 〉 = �R . During the scan, we fix the pulse
widths gτf = gτc = 2.1 and delays τd,f − τd,c = 1.25τf for
γ1,qb = 0.4 MHz in Fig. 13(b), while gτf = gτc = 6.3 and
τd,f − τd,c = 1.2τf for γ1,qb = 0.02 MHz in Fig. 13(c). For
a flux-qubit decay rate γ1,qb = 0.4 MHz, we can achieve a
swap fidelity larger than 0.81 if κ ≤ 5γ1,qb and g > 40 MHz.
This shows that if the qubit and cavity decay quickly, then
to achieve the transfer fast enough to avoid significant loss,
then the coupling to the spin ensemble must be quite large.
However, practically the magnitude of this coupling g can be
much reduced if the qubit and the cavity decay more slowly.
As shown in Fig. 13(c), the fidelity can be higher than 73% for
γ1,qb = 20 kHz, κ ≤ 5γ1,qb and g > 10 MHz corresponding
to a collective coupling strength

√
N〈gf,j 〉 > 18 MHz. Such

high-quality flux qubits [21,22] and Fabry-Pérot cavities [23]
are available using existing experimental technology.

|gj

|ej

|rj

|gf

|ef

γ1,qb

γ0,j
γ1,j

Γ1,j

Ωμ
gf,j

gc,je
ikRj

C
av

ity Ωce
iφ

C
on

tro
l

|r
0

Δ1

Spins Flux qubit

FIG. 12. (Color online) Level diagram showing the interactions
between spins (left panel) and optical fields (gc,j e

ikRj for the cavity
mode and 
ce

iφ for the classical driving) and qubit (right panel). The
energy of levels |rj 〉 and |ej 〉 of the spins have an inhomogeneous
broadening of �j and δj , respectively. The inhomogeneity in the
phase φ(t) is absorbed into ikRj which is dependent on the site of the
spin Rj . The occupation in the state |rj 〉 decays to the state |ej 〉 and
|gj 〉 with rates γ1,j and γ0,j , respectively. γj = γ0,j + γ1,j is the total
dissipation rate of |rj 〉. The state |ej 〉 also decays to the state |gj 〉 with
a rate �1,j due to the magnetic dipole transition. γ1,q is the dissipation
rate of the flux qubit whose transition frequency is modulated with
amplitude 
μ and frequency ωμ. The qubit-spin coupling rate is gf,j .

3. Remote quantum transfer

To construct a quantum network, we create a tripartite
Raman transition in each node, as shown in Fig. 14. We now

FIG. 13. (Color online) Swap of quantum information from the
flux qubit to the cavity mode via the STIRAP protocol. (a) Gray
lines are the time-modulated STIRAP couplings via a driving
classical optical field 
c(t) (solid line) and modulated cavity-QED
coupling strength gf J1[
μ(t)/ωμ] (dashed line). Blue line shows the
population of the excited state of the source flux qubit, red line is the
population of the target photonic state |n = 1〉, while green line shows
collective excitation of the spins. Inset is the Wigner function of the
cavity mode at γ1,qbt = 0.036. We have chosen parameter values such
that γ1,qb = 0.4 MHz, κ = 3 MHz, and g = 105 MHz. Subplots (b)
and (c) show the swap fidelity as a function of κ and g for γ1,qb = 0.4
MHz (b) and (c) with γ1,qb = 0.02 MHz.
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FIG. 14. (Color online) Schematic diagram for the tripartite Ra-
man transition in one node.

consider that the ensemble of spins dispersively couples to the
flux qubit and the cavity mode. The photon from the cavity is
injected into an optical fiber and is then received by the cavity
in another node. To transfer the quantum information between
two distant nodes, we modulate the coupling rate �j (t) by
tuning the coherent control field 
c(t), remembering that the
flux qubit couples to the spins with constant rates gf,j .

The Hamiltonian describing the motion of the system in
each node is given by Eq. (A42) in the sideband transition
regime. However, to build a quantum internet, we do not need
to modulate the coupling gf because we can quickly adjust
the coherent optical driving 
c, which in turn will modulate
the overall microwave-optical coupling strength. With this, the
flux qubit can interact resonantly with the spins with a constant

coupling rate if needed. The Hamiltonian is given by

Ĥeff = (φ̇ + �q)σ+σ− −
∑

j

�̂j S̄+,j S̄−,j − δenâ
†â

−
∑

j

gf,j (S̄+,j σ− + S̄−,j σ+)

−
∑

j

�j (t)ξj (eiθj â†S̄−,j + e−iθj S̄+,j â). (A50)

In this arrangement, the flux qubit can interact resonantly with
the spins with a constantly maximal coupling rate if needed. In
comparison with the case modulating the qubit-spin coupling
but fixing the spin-cavity coupling, it allows us to transfer
quantum information with a faster speed and a higher fidelity.

a. Two-node quantum network in the one-excitation space

Now, we study the simplest quantum network with two
nodes A and B, each node including NA (NB) NV centers (see
Fig. 15). Although their individual OES basis span a Hilbert
space, they share a common ground state. Again, in the OES
we have the basis

|gf ,0,G; gf ,0,G〉 = |gf ,0,g1,g2, . . . ,gNA
; gf ,0,g1,g2, . . . ,gNB

〉 = |0〉M, (A51a)

|ef ,0,G〉A = |ef ,0,g1,g2, . . . ,gNA
; gf ,0,g1,g2, . . . ,gNB

〉 = |1〉M, (A51b)

|gf ,1c,G〉A = |gf ,1c,g1,g2, . . . ,gNA
; gf ,0,g1,g2, . . . ,gNB

〉 = |2〉M, (A51c)

|gf ,0,ėj 〉A = |gf ,0,g1,g2, . . . ,gj−1,ej ,gj+1, . . . ,gNA
; gf ,0,g1,g2, . . . ,gNB

〉 = |j + 2〉M, j = 1,2, . . . ,NA (A51d)

|ef ,0,G〉B = |gf ,0,g1,g2, . . . ,gNA
; ef ,0,g1,g2, . . . ,gNB

〉 = |NA + 3〉M, (A51e)

|gf ,1c,G〉B = |gf ,0,g1,g2, . . . ,gNA
; gf ,1c,g1,g2, . . . ,gNB

〉 = |NA + 4〉M, (A51f)

|gf ,0,ėj 〉B = |gf ,0,g1,g2, . . . ,gNA
; gf ,0,g1,g2, . . . ,gj−1,ej ,gj+1, . . . ,gNB

〉 = |j + NA + 4〉M, j = 1,2, . . . ,NB.

(A51g)

The size of this OES is M = NA + NB + 5. We define the
identity operator for the whole system

INet =
NA+NB+4∑

l=0

|l〉M〈l|

= |gf ,0,G〉A〈gf ,0,G| + |ef ,0,G〉A〈|ef ,0,G|

+ |gf ,1c,G〉A〈gf ,1c,G| +
N∑

j=1

|gf ,0,ėj 〉A〈gf ,0,ėj |

+ |gf ,0,G〉B〈gf ,0,G| + |ef ,0,G〉B〈|ef ,0,G|

+ |gf ,1c,G〉B〈gf ,1c,G| +
N∑

j=1

|gf ,0,ėj 〉B〈gf ,0,ėj |.

(A52)

Then, the relevant operators have the forms

σ+,A = |1〉M〈0|, (A53a)

σz,A = 2σ+,Aσ−,A, (A53b)

S̄+,A = |j + 2〉M〈0|, j = 1,2, . . . ,NA (A53c)

S̄z,A = 2S̄+,AS̄−,A, (A53d)

|ej 〉A〈ej | = S̄+,AS̄−,A, (A53e)

|0j 〉A〈0j | = INet − S̄+,AS̄−,A, (A53f)

σ+,B = |NA + 3〉M〈0|, (A53g)

σz,A = 2σ+,Aσ−,A, (A53h)

S̄+,B = |j + NA + 4〉M〈0|, j = 1,2, . . . ,NB (A53i)

S̄z,B = 2S̄+,AS̄−,A, (A53j)

|ej 〉B〈ej | = S̄+,B S̄−,B, (A53k)

|0j 〉B〈0j | = INet − S̄+,B S̄−,B, (A53l)

âA = |0〉M〈2|, (A53m)

âB = |0〉M〈4|. (A53n)
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Unidirectional optical fiberOutput

Input

Node NA ode B

FIG. 15. (Color online) Schematic diagram for a two-node quan-
tum network. The quantum information of the node A (left) is sent to
the node B (right) via a undirectional optical fiber (red curve). Here,
we neglect the optical circulator.

Using the basis and operators above, we can extend the
effective Hamiltonian and master equation into a two-node
quantum network if a connecting unidirectional cascaded
Lindblad operator is provided as follows:

ˆ̂LNet = −√
κex,Aκex,B (â†

BâAρ−âAρâ
†
B + ρâ

†
AâB −âBρâ

†
A),

(A54)

where κex,A/B is the decay rate of cavities A and B due to the
external coupling to a quantum bus, e.g., optical fibers.

b. Tripartite Raman transition

To transfer quantum state between two distant supercon-
ducting qubits using the 1997PhRvL..78.3221C scheme [14],
we need to adiabatically eliminate the spins. To achieve this,
the flux qubit and the cavity must dispersively couple to the
spins and together they form a tripartite Raman transition under
the tripartite two-photon resonance conditions

φ̇ =�1 − �0 + 
2
c

�1
− δen − �SP (NVs-photons), (A55)

φ̇ + �̃q = − δen (qubit-NVs), (A56)

where �SP is the one-photon detuning between the spins and
the flux qubit and the cavity. Thus, we have

φ̇ = �1 − �0 + 
2
c

�1
− δen − �SP , (A57)

ωμ = �q + δen + φ̇

= (�1 − �0) + 
2
c

�1
− �SP + �q. (A58)

FIG. 16. (Color online) Quantum transfer from the flux qubit A

to the qubit B. To perform the remote transfer of quantum information,
the protocol requires identical and simultaneous controls in both A

and B nodes if we eliminate the time day due to the retardation in the
propagation in optical fiber [14]. The chirp φ̇ and the detuning �q are
constant in time. Parameters are listed in Table XII. Black lines are
the normalized modulated couplings, which are on top of each other.
Solid (dashed) blue line shows the population of the excited state of
the flux qubit A (B). Red line for the excitation of the antisymmetric
state of the cavity mode. The inset bar is the density matrix of the
flux qubit B at time κt = 9.35.

Because 
c varies in time, the chirp φ̇ and �q must also
be modulated in time while 
2

c/�1 is about few hundred
of MHz. We apply the sech-function time modulation of
the couplings with amplitude 
c,0 = √

Nḡc = 200κ and with
detuning �0 = �1 	 
c,0 [24]. For an easy implementation,

we fix the chirp φ̇ = �1 − �0 + 
2
c,0

�1
− δen − �SP and apply a

constant detuning �q . This arrangement only perfectly cancels
the ac Stark shift at the peak of the coupling. However, the
fidelity remains high, about 92.7% at κt = 9.35, as shown in
Fig. 16. We can further modulate the transition frequency ωq of
the flux qubits to tune �q . This allows complete cancellation
of the ac Stark shift over the whole optical driving period and
result in a higher fidelity of transfer F = 93%.

4. Parameter estimation

To predict the reasonable performance of our scheme, the
best available parameters are crucial. Now, we turn to estimate
the available optical coupling rates between the spins and the
qubit and the photon.

First, we address the coupling rates for the ensemble of NV−

centers. The cavity mode optically drives the zero-phonon
line of the NV− centers. Thus, the resonance wavelength of
a Fabry-Pérot cavity is about λc ∼ 637 nm corresponding
to the resonance frequency ωc = 4.7 × 1014 Hz and we
assume the mode volume Vc = 1000λ3

c . Thus, the zero-point
fluctuation of electric field in the cavity can be evaluated to

TABLE XII. Parameters for simulations in Fig. 16.

κ γ1,qb �q �1,en �∗
2,en σδ σ�

(MHz)
√

Nḡc 
c �0 = �1 σθ (kHz) γ ∗
2,qb (MHz)

√
Nḡf (MHz) (MHz) (MHz) (MHz) �SP

10 200κ 200κsech[−(0.43κt − 2)] 20
√

Nḡc 0.1π 20 0 700 10κ 12 0.9 14.4 10 20
√

Nḡf
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be E0 =
√

�ωc

ε0Vc
= 1.1677 × 104 V m−1. The electric dipole

moment of a NV− center is about μ = 3.0 × 10−29 C m [47]
yielding a single-photon coupling rate gc ≈ 0.53 GHz for a
single NV center. An ensemble of N = 3 × 106 NV− centers
(ρ = 8 × 1018 cm−3) can generate a collective coupling rate√

Ngc ≈ 2.9 THz, which is large enough for all investigation
in our work. This large coupling rate can relax the optical
experiment design. To achieve a uniform optical coupling to
the cavity mode, the physical thickness of diamond chip tchip

must be much smaller than the optical resonance wavelength of
the cavity. In our investigation, tchip < λc/8nchip where nchip is
the refractive index of the host crystal chip. Unlike the quantum
memory in [8], this thin diamond film limits the available
magnetic coupling rate. According to Eq. (A9), the collective
magnetic coupling rate is proportional to

√
NB ≈ Ip

√
tchipρ

with the concentration of spins ρ. For the persistent current
Ip = 800 mA RQ = 5.6 μm and tchip = 0.12λc/nchip with
nchip = 2 for diamond, the maximal coupling rate

√
Nḡf is

about 19 MHz. However, we can increase the magnetic field
by an order by using a flux focuser [26–28].

The relatively small magnetic coupling rate of the flux
qubit to the NV− centers embedded in a crystal chip of
the above dimension limits the performance of our quantum
interface for transferring quantum information. In contrast,
if we instead use a chip of rare-earth crystal, the rare-earth
ions enjoy a stronger coupling because they possess a much
larger g factor. Following, we look into the coupling of
rare-earth ions to the flux qubit. We assume that a cavity
mode with resonance wavelength λc ∼ 1536 nm and frequency
ωc = 1.95 × 1014 Hz drives the optical transition of Er3+. The
electric dipole moment of Er3+ is small, about 2.07 × 10−32

C m [48]. However, the concentration of rare-earth ions can
be large [36]. Assuming that nchip = 1.8 for Er3+ : Y2SiO5,
RQ = 5.6 μm, tchip ∼ 0.1λc/nchip, and ρ = 50 × 1018 cm−3

(0.25%) yielding N = 4 × 109 allows a collective optical
coupling rate of 2π × 4 GHz, while the magnetic cou-
pling rate can be 2π × 370 MHz for Ip = 800 mA and
RQ = 17 μm. In terms of the magnetic coupling, a rare-
earth chip is considerably better than a diamond crystal
chip.
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[24] T. M. Stace and C. H. W. Barnes, Phys. Rev. A 65, 062308
(2002).

[25] S. Probst, H. Rotzinger, S. Wünsch, P. Jung, M. Jerger, M.
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[35] Y. Sun, T. Böttger, C. W. Thiel, and R. L. Cone, Phys. Rev. B
77, 085124 (2008).
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Auffèves, Phys. Rev. A 84, 063810 (2011).

[39] K. Sandner, H. Ritsch, R. Amsüss, C. Koller, T. Nöbauer,
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