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We demonstrate that the performance of a quantum annealer on hard random Ising optimization problems can
be substantially improved using quantum annealing correction (QAC). Our error correction strategy is tailored to
the D-Wave Two device. We find that QAC provides a statistically significant enhancement in the performance of
the device over a classical repetition code, improving as a function of problem size as well as hardness. Moreover,
QAC provides a mechanism for overcoming the precision limit of the device, in addition to correcting calibration
errors. Performance is robust even to missing qubits. We present evidence for a constructive role played by
quantum effects in our experiments by contrasting the experimental results with the predictions of a classical
model of the device. Our work demonstrates the importance of error correction in appropriately determining the
performance of quantum annealers.
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I. INTRODUCTION

It is widely accepted that no form of quantum infor-
mation processing can be scalable without some form of
quantum error prevention, suppression, or correction [1]. This
applies in particular to quantum annealing [2–7] and the
closely related quantum adiabatic algorithm [8], strategies
designed to take advantage of quantum mechanics in solving
classical optimization problems, such as finding the ground
state of a disordered Ising Hamiltonian, a well-known non-
deterministic polynomial (NP)-hard problem [9]. Interest in
quantum annealing has piqued in recent years since com-
mercial processors comprising hundreds of programmable
superconducting flux qubits have become available to the
research community [10,11], and a lively debate has erupted
concerning their quantumness [12–19] and the possibility of
observing a quantum speedup [20–22], for which there exists
theoretical evidence via specific examples [4,5,23].

While error mitigation strategies for quantum annealing
and, more generally, adiabatic quantum computing have
been proposed [24–33] and implemented [34], much less is
known compared to the relatively mature state of quantum
error correction in the circuit model [1,35]. In particular, an
accuracy threshold theorem [36–38] for fault-tolerant quantum
annealing remains elusive, in spite of some degree of inherent
robustness of adiabatic quantum computation to thermal
excitations and control errors [39–41]. Notwithstanding, we
recently proposed a practical error suppression and correction
strategy for quantum annealing and implemented it using
a D-Wave Two (DW2) quantum annealing processor [42]
on a toy problem of antiferromagnetic chains [34]. We
demonstrated that this quantum annealing correction (QAC)
scheme provided a substantial fidelity enhancement in the
presence of thermal excitation and control errors.

Here, we experimentally study the performance of QAC on
random Ising problems with quenched disorder using a DW2
processor, on up to 112 logical qubits comprising four physical
qubits each. In contrast to antiferromagnetic chains, these
are hard optimization problems, of the type studied in recent

benchmarking work probing for a quantum speedup [13,20]
against simulated annealing [43]. In this manner, we hope to
demonstrate the importance of including error correction in
future quantum annealing devices, and in particular the utility
of QAC in improving the performance of the current D-Wave
devices. However, rather than attempting to demonstrate a
speedup, which seems likely to be precluded in our setting for
the reasons discussed in Ref. [21], we focus on establishing a
performance improvement, i.e., an enhancement in the success
probability of finding the Ising spin glass ground state, when
using QAC. Moreover, we demonstrate that QAC is also
effective at extending the precision range of the D-Wave
device, thus in effect overcoming control errors. The price
to be paid for these improvements is a reduction in the number
of qubits and the degree of the qubit connectivity graph due to
the use of an encoding, but such tradeoffs seem inevitable if the
goal is to reach scalability of quantum information processing.

A key question raised by the performance gains of the
QAC strategy is to what extent it is a form of quantum error
correction. To address this, we compare our experimental
results for the ground-state probability to those we compute
numerically using a classical model of interacting spins. This
SSSV model [16] has been very successful in reproducing
the success probabilities of random Ising instances reported in
Ref. [13], and it has played a central role in the quantumness
discussion concerning the D-Wave devices [16–18]. We
demonstrate that for random Ising problems subject to QAC
encoding, there is a strong discrepancy between the SSSV
model and the experimental results. This conclusion is robust
to varying the parameters of the SSSV model, and it provides
indirect evidence that quantum effects play an important role
in the success of the QAC strategy in our experiments.

II. RESULTS

A. Quantum annealing and the D-Wave Two processor

These topics have been described in detail in a number of
publications (see, e.g., Refs. [13,20,42]), so here we give just
the details needed for our work.
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Quantum annealing (QA) is a method for finding the ground
state of an Ising spin Hamiltonian,

HIsing =
N∑

i=1

hiσ
z
i +

N∑
i<j

Jij σ
z
i σ z

j . (1)

The local fields hi and couplings Jij are given, and the
problem is to find the spin configuration {σ z

i }Ni=1 that minimizes
HIsing, where each spin variable σ z

i ∈ ±1. In QA, this is done
by adiabatic evolution from the ground state of an initial
transverse field, i.e., the time-dependent Hamiltonian is

H (t) = A(t)HX + B(t)HIsing, (2)

where HX = ∑N
i=1 σx

i and the σi’s are now the standard
Pauli spin-1/2 matrices acting on the ith qubit. The function
A(t) decreases monotonically to zero, while B(t) increases
monotonically from zero, with t ∈ [0,tf ]. For a closed system,
the adiabatic theorem guarantees that if the initial state is the
ground state, then the final state will be arbitrarily close to
the ground state provided tf is large enough compared to the
minimum energy gap of H (t) and provided the functions A(t)
and B(t) are sufficiently smooth [44,45].

The DW2 processor is a physical realization of the quantum
annealing algorithm. The system is initialized in the thermal
Gibbs state of A(0)HX, which has almost its entire weight on
the ground state since kT � A(0). The idealized conditions of
the adiabatic theorem can of course not be realized in a physical
device such as the DW2, which operates at a finite temperature
and suffers from programming control errors on the hi and
Jij terms. In such an open system, thermal processes can
depopulate the ground state, reducing the success probability
of the algorithm (though thermal relaxation can sometimes be
beneficial [46,47]). Control errors can unintentionally cause
the annealer to evolve according to the wrong Hamiltonian.

B. Quantum annealing correction

What can be done to mitigate the detrimental effect of thermal
excitation and control errors? While a variety of theoretical
proposals exist [24–33], we require one that is implementable
using the DW2 device. Toward that end, we employ two
strategies that were proposed and studied in Ref. [34]. The
first is a purely classical (C) repetition strategy, whereby we
evolve K independent copies of the problem, i.e.,

HC =
N∑

i=1

K∑
k=1

hiσ
z
ik

+
N∑

i<j

K∑
k=1

Jijσ
z
ik
σ z

jk
, (3)

where KN = N . This strategy runs the quantum annealing
algorithm K � 2 times in parallel to increase its chances of
finding the ground state. An example of how the C strategy is
embedded on the DW2 device is shown in Fig. 1(a), where
K = 4.

The second strategy, QAC, uses the same physical resources
as the C strategy, but it adds two important aspects to suppress
and correct bit-flip errors: (i) we encode our problem using a
K − 1 qubit repetition code, and (ii) we supplement HIsing with
energy penalty terms in the form of the stabilizer generators
of the repetition code. The former allows us to correct bit-flip
errors via decoding and to boost the energy scale, while the
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FIG. 1. (Color online) Embedding of the C and QAC strategies
on the D-Wave processor. (a) C strategy, (b) QAC strategy. The basic
unit cell of the D-Wave processor includes eight qubits (shown as
circles), with the qubits on the left side coupling to adjacent unit cells
up and down, and those on the right side coupling left and right. Panel
(a) shows how four parallel copies of the problem for the C strategy
are embedded, each with the same problem couplings Jij (black lines).
Panel (b) shows how two logical qubits (red and blue) for the QAC
strategy are embedded within a unit cell; the problem qubits i1,2,3 are
coupled using the same problem couplings Jij (black lines), and the
penalty qubit iP couples ferromagnetically to the problem qubits with
magnitude β (light blue lines).

latter allows us to suppress thermal excitations. The resulting
final Hamiltonian takes the form

HQAC = αH Ising − βHP, α > 0, β � 0,
(4)

H Ising =
N∑

i=1

hiσ
z
i +

N∑
i<j

Jij σ
z
i σ z

j , HP =
N∑

i=1

σ z
i σ z

iP
,

where σ z
i = ∑K−1

k=1 σ z
ik

(σ z
i σ z

j = ∑K−1
k=1 σ z

ik
σ z

jk
) are (scaled)

logical σ z
i and σ z

i σ z
j operators, respectively. The QAC strategy

treats K − 1 of the K qubits comprising the ith logical qubit
as “problem” qubits that encode the original problem into
a repetition code, while the remaining “penalty” qubit iP is
used to implement the energy penalty. This is illustrated in
Fig. 1(b) for the DW2. The parameter α is the problem scale
factor, through which we can control the effective noise level
on the logical Ising Hamiltonian H Ising. The penalty term HP

enforces a ferromagnetic coupling between the problem qubits
and their penalty qubit, thus aligning them in agreement and
forcing errors that do not commute with σ z to pay an energy
penalty. This compensates for the fact that the repetition code
can only be used to detect and correct bit-flip errors. However,
note that if the dominant dephasing is in the instantaneous
energy eigenbasis rather than the computational basis, then
the adiabatic algorithm is not adversely affected by phase
errors [39,41,49]. The parameter β is the penalty scale factor,
which we optimize to maximize the success probability for
each problem instance, balancing HP against H Ising [34]. We
note that we cannot at the same time encode HX since this
would require N -body interactions, and that α,β � 1 on the
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DW2, thus precluding energy penalty strategies of the type
suggested in Refs. [25,33].

If the copies are statistically independent in the C strategy
and each succeeds with probability p, then the probability
that at least one copy will succeed is 1 − (1 − p)K , which is
greater than p if 0 < p < 1 and K � 2, so C will improve
performance compared to a single copy of the same problem
instance. In Ref. [34], we established that the QAC strategy
outperforms the C strategy for sufficiently long antiferromag-
netic chains. The pertinent question, then, is whether QAC
will continue to outperform C for sufficiently large and hard
optimization problems.

C. Success probability for random Ising instances

Earlier work studied the performance of the D-Wave
processors on random Ising problem instances of increasing
size N without error correction [13,20] by embedding these
problems on the physical “Chimera” connectivity graph shown
in Fig. 2(a). We now present the results of our study of similar
problem instances, using the C and QAC strategies. When
the Chimera graph is contracted by replacing each set of four
physical qubits by the corresponding logical qubit, we obtain

the logical connectivity graph shown in Fig. 2(b). For each
problem size N , we generated 1000 instances in which all local
fields hi = 0 and the couplings Jij were specified by drawing
uniformly at random from the set ±{ 1

6 , . . . , 5
6 ,1}, slightly above

the �Jij ∼ 1
7 precision limit of the DW2 [50]. These instances

were embedded on the actual logical connectivity graph
shown in Fig. 2(c), comprising only perfect logical qubits,
defined as consisting of four physical qubits (in contrast, an
imperfect logical qubit consists of only the three problem
qubits, without the penalty qubit). We ran each instance
1000 times using different gauges to reduce systematic errors
(see Appendix A) and counted the number of times a state
with the correct logical ground-state energy was found, and
we defined this as the success probability for that instance
(see Appendix A for more details). Note that we distinguish
between the logical and physical ground states: the former is
the ground state corresponding to the Ising instance defined
in terms of the N logical qubits, while the latter is the ground
state over the N physical qubits. We also ran each instance
with β ∈ {0.1,0.2,0.3,0.4,0.5} and defined the optimal β as
the value βopt that maximized the success probability after
gauge-averaging (see Appendix A for more details).

FIG. 2. (Color online) Physical and logical qubit connectivity graphs. (a) The physical connectivity graph consists of 8 × 8 unit cells of
eight qubits (denoted by circles), connected by programmable inductive couplers (lines). The 503 green (red) circles denote functional (inactive)
qubits. In the ideal case, where all qubits are functional and all couplers are present, one obtains the nonplanar, degree-6 “Chimera” connectivity
graph. (b) The complete degree-3 logical connectivity graph, with perfect (imperfect) logical qubits and their couplers shown in green and
black (orange and red) respectively. (c) The actual logical connectivity graph. Imperfect qubits and their couplings are not shown as these were
not used. We generated random problems over each of the regions shown in the rectangles of increasing sizes N ∈ {46,66,86,112} in (c). These
problem sizes were chosen because they consist of square blocks of unit cells, and the tree width of a planar square lattice grows as a function
of the smallest dimension of any rectangular region chosen [48].
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FIG. 3. (Color online) Correlation plot of the success probability
for the QAC and C strategies for DW2. The case of N = 112 logical
qubits is shown. Above the diagonal line, QAC performs better, while
below it C performs better. The color scale indicates the optimal β for
each instance. The QAC strategy uses both problem group decoding
and logical group decoding, while the C strategy only uses problem
group decoding, as discussed in Appendix A. QAC outperforms C for
the overwhelming majority of instances. The few instances in which
C outperforms QAC are those with low-lying undecodable energy
states due to logical qubits with < 3 (and weak) problem couplings
to neighbors, arising from holes in the logical connectivity graph (see
Appendix B).

Since nine of the physical qubits are missing in the DW2
hardware graph [see Fig. 2(a)], the maximum problem size
we can study while implementing the full 4-copy C strategy
is N = 112. This maximal encoded graph has holes in the
regular structure due to the missing physical qubits that reduce
the number of couplings for some of the QAC logical qubits
[see Fig. 2(c)]. Figure 3 shows the performance of QAC versus
C in this case, where all N = 112 perfect logical qubits were
used. Answering our earlier question, we find that QAC is a
better strategy choice than C for the overwhelming majority of
problem instances. We discuss the reason for the appearance
of a small number of instances in which C outperforms QAC
in Appendix A.

D. Dependence on problem size

To quantify performance with respect to the hardness of
the Ising instances for DW2, we consider the dependence on
N of the expected number of annealing runs necessary to
observe a success (a logical ground state) at least once with
99% probability [13,20]:

R = ln(1 − 0.99)

ln(1 − pS)
, (5)

where pS is the probability of success. For the C strategy,
pS corresponds to observing a logical ground state in at least
one of the four copies (this is almost the same as running a
single copy four times, as discussed in Appendix D), which we
refer to as problem group decoding. For the QAC strategy, pS

corresponds to observing a logical ground state after decoding
using two complementary decoding strategies, problem group

decoding over the three problem qubits, and logical group
decoding. Details of the decoding strategies are discussed in
Appendix A.

R is a proxy for the time-to-solution taR, where ta is the
annealing time, set to 20 μs (the minimum possible with the
DW2) in all our experiments. This annealing time is certainly
suboptimal, i.e., too long to enable the extraction of meaningful
scaling behavior, as discussed in detail in Ref. [20]. Therefore,
R should not be interpreted as reflecting the true value of the
time-to-solution for the different strategies. Instead, we focus
on the increasing separation between the values of this quantity
for QAC and C as a function of problem size to establish the
relative performance of the different strategies.

Consider first the results for α = 1, in Fig. 4(a). Increasing
the problem size corresponds to harder problem instances and
requires more runs R, with a steeper rise occurring for the
higher percentiles. While for the three smallest problem sizes
R is similar for the C and QAC strategies, when the problem
size becomes sufficiently large there is a statistically significant
separation for every percentile between the two strategies. The
beneficial effect of QAC becomes much more prominent at
α = 0.5, as seen in Fig. 4(b), where the separation between
QAC and C is apparent already at the smallest problem size.
By reducing the problem energy scale α, we have increased the
effect of thermal noise, and by halving the values of the cou-
plings we operate the DW2 device in a regime well below the
aforementioned �Jij ∼ 1

7 precision limit. The susceptibility to
programming errors is therefore higher, yet QAC continues to
work. This is further visualized in Fig. 4(c), where we plot the
ratio of R values for α = 0.5 and 1. The ratio rises much more
rapidly as a function of problem size for the C case than for
the QAC case, demonstrating the relative (as well as absolute)
stability of the latter to both thermal and control errors.

E. Robustness of QAC to qubit loss

A good code should be robust, and to this end we next study the
effect of imperfect logical qubits, by systematically removing
penalty qubits from perfect logical qubits. We repeated our
QAC experiments on the same 1000 random problem instances
of each size, but we removed 30%, 60%, and 90% of the
penalty qubits from each instance at random while keeping all
problem couplings intact. We consider two cases: keeping βopt

fixed at its QAC value, as well as reoptimizing β for each new
fraction of removed penalty qubits.

In Fig. 5, we show that the separation between the C and
QAC strategies at the largest problem size persists even when
a significant number of penalty qubits are removed. If βopt

is held fixed [Fig. 5(a)], QAC improves on the C strategy
even when 30% of the penalty qubits are removed. When we
allow β to be adjusted, up to 60% of the penalty qubits can
be removed and QAC still shows an advantage over the C
strategy [Fig. 5(b)]. To achieve this, βopt must be increased
as more penalty qubits are removed [Fig. 5(c)]. With fewer
penalty qubits, the remaining penalty qubits must couple more
strongly to their respective problem qubits in order to maintain
the benefits of the QAC strategy. At the 30% level, βopt is
sharply peaked in Fig. 5(c), suggesting that the optimum is
determined by the number of available penalty qubits, not the
particular problem instance being solved. This is important
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FIG. 4. (Color online) Problem size dependence of the expected number of annealing runs R for the QAC and C strategies. (a) For α = 1.
(b) For α = 0.5. Various percentiles of problem hardness are included, as shown in the legend. The QAC strategy uses both problem group
decoding and logical group decoding, while the C strategy only uses problem group decoding, as discussed in Appendix A. We observe better
performance for the QAC strategy at all percentiles for the largest problem size. (c) Scaling of the ratio of R values for α = 0.5 and 1. The
performance of the QAC strategy decreases by a factor of less than 3 at the hardest percentile and the largest problem size, whereas the C
strategy’s performance decreases by a factor of close to 20. (d) Scaling of QAC for the SSSV model without coupling noise. Solid lines use an
optimized number of sweeps NSW for each problem instance, i.e., NSW is chosen to minimize the expected number of annealing runs NSWR,
while the dashed lines in the inset show the scaling for a fixed NSW = 105.

because the advantages provided by QAC would be diluted if
it were necessary to try several values of β to solve a relevant
problem. Instead, it suffices to pick a single β value to solve a
new problem.

III. DISCUSSION

We have demonstrated a substantial performance enhancement
using QAC over the classical C strategy. A natural question
is to what extent QAC is a truly quantum strategy. We now
discuss this from two different angles: a solvable analytical
model and a comparison to the classical SSSV model [16].

A. Analytically solvable model with an optimal β value

Consider the Ising Hamiltonian on a ring with local fields:

H1D = −h

d∑
i=1

σ z
i − β

d∑
i=1

σ z
i σ z

i+1, (6)

where σ z
d+1 ≡ σ z

1 . We can reinterpret this as a single-qubit
“problem Hamiltonian” −hσ z encoded into a distance d

repetition code with (scaled) logical operator σ z = ∑d
i=1 σ z

i .
The ground and excited states are encoded as |0〉 = |000 · · · 0〉
and |1〉 = |111 · · · 1〉, respectively. The spin-spin couplings
σ z

i σ z
i+1 are the stabilizer generators of this repetition code,

acting as penalty terms that energetically penalize bit flips.
Replacing HIsing by H1D in Eq. (2) and including a transverse
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FIG. 5. (Color online) Robustness of QAC to missing penalty qubits. Effect of missing penalty qubits for α = 1 on the 95th percentile for
(a) βopt held constant at its original QAC value, and (b) β optimized for the number of missing qubits. The C strategy (solid red) and QAC
strategy (solid yellow) lines are the same data that were displayed in Fig. 4(a). The new dash-dotted green, dotted blue, and dashed purple
series show the effects of randomly removing 30%, 60%, and 90% of the penalty qubits, respectively. For (a), QAC with 30% loss continues
to outperform C, but not at the higher percentages. For (b), performance at 30% and 60% loss tracks the original QAC closely, suggesting the
code is highly resilient to penalty qubit loss if the penalty magnitude is adjusted accordingly. (c) The histogram displays the optimized β values
from the trial set {0.1,0.2,0.3,0.4,0.5} for 1000 instances. The true optimal β for the perfect QAC scheme lies between 0.1 and 0.2, but for
30% of penalty qubits missing the optimum shifts to 0.2, for 60% missing between 0.2 and 0.3, and for 90% missing to the maximum allowed
value.

field HX with annealing schedules A(t) and B(t) gives rise to
a quantum annealing evolution designed to terminate in the
|0〉 state. The resulting solvable model is a special case of
the QAC encoding, without logical spin-spin coupling. It is
also known as the transverse field Ising model for a chain with
periodic boundary conditions, where it is commonly written as
H (t) ≡ −hX

∑
i σ

x
i − hZ

∑
i σ

z
i − J

∑
i σ

z
i σ z

i+1 [51], where
hX = A(t), hZ = hB(t), and J = βB(t). We can study this
model analytically in various limits. Here we present the main
results (details of the calculations can be found in Appendix E).

The β � h case: intuitively, in this case the penalty
term overwhelms the problem Hamiltonian, which should be
detrimental. More rigorously, in this case, corresponding to
J � hZ , it is well established that in the thermodynamic
limit (i.e., d → ∞), there is a critical point at hX = J , and
the energy gap at the critical point scales as � ∼ (hZ/J )8/15

[52,53]. Clearly, in this limit increasing the energy penalty
β makes the problem harder to solve at fixed tf since the
shrinking gap will increase the degree of nonadiabaticity and
increase thermal excitations. Furthermore, the state |1〉, which
represents a logical error, is actually the first excited state of
the Ising Hamiltonian. Any population lost to this state cannot
be decoded and recovered. Having β � h is thus undesirable.

The β � h case: in the opposite case, where J � hZ ,
the penalty term acts as a perturbation on the problem
Hamiltonian. We show analytically in Appendix E that
the introduction of the penalty term increases the gap and
shifts it to earlier in the evolution provided h <

√
2. An

increased gap means that the evolution is more adiabatic
and thermal excitations are suppressed at fixed tf , suggesting
that the introduction of a small β improves the adiabaticity
of the evolution. Furthermore, the low-energy excited states
of the Ising Hamiltonian correspond to a small number of spin
flips, which can be corrected via decoding.

There is thus clearly an optimal β > 0 value in the large-d
limit, a fact that helps to explain the observation of an optimal
β value in our experiments and in Ref. [34]. To address this in

a more realistic model, we performed numerical simulations
for finite d using an adiabatic Markovian master equation
of an open quantum system [49]. This master equation has
been used extensively in related work, where it was shown
to be a good model of the D-Wave device [12,17] (it is
briefly reviewed in the Methods section of Ref. [34]). We
use it here to model a qubit encoded into a distance d = 4
classical repetition code as given by Eq. (6). As shown in
Fig. 6, both the physical ground-state probability PGS and the
logical ground-state success probability PS exhibit a peak as a
function of β. The position of the PGS peak coincides with the
peak in the minimum energy gap, whereas PS also depends
on the decodability of the excited-state spectrum, to which a
significant amount of population is lost. The fact that PS � PGS

for all β shows that decoding is always beneficial.
These results of the closed and open system models thus

lead us to associate the improved performance of QAC with
β > 0 to both the enhancement of the energy gap and the
decodability of low-energy excited states.

B. QAC for a classical model of the D-Wave device

Although we have demonstrated that the QAC strategy pro-
vides a significant performance advantage over the C strategy,
and that quantum models exhibit an optimal penalty strength
just as observed in our experiments, it is difficult to establish
to what extent quantum effects are responsible for the overall
success of QAC. To further address this question, we tested the
efficacy of the same strategy on a classical model (SSSV) that
has been successfully used [16] to reproduce the D-Wave One
physical ground-state probabilities on random Ising instances
reported in Ref. [13]. The SSSV model replaces the qubits
by classical planar rotors whose dynamics are governed by
Eq. (2) with the replacements σx

i �→ sin θi and σ z
i �→ cos θi ,

with Monte Carlo updates for each angle θi . Though there
is evidence that the SSSV model does not correctly capture
experiments on specially designed Ising instances of up to
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FIG. 6. (Color online) Optimal β in an open quantum system
model. The main figure shows the final physical ground-state
probability PGS and the post-decoding (majority vote with random tie-
breaker) success probability PS of the logical ground state, computed
using the adiabatic master equation [49] for quantum annealing using
the Hamiltonian (6) with d = 4, with linear annealing schedules
A(t) = A0(1 − t/tf ) and B(t) = A0t/tf . Both probabilities exhibit
an optimal β value. The inset shows the numerically computed
minimum gap between the ground and first excited state as a function
of β. The peak in PS and the minimum gap align as expected since a
larger minimum gap means fewer transitions out of the ground state.
However, the peak in PGS occurs earlier, maximizing the population
in all decodable states and not just the ground state. Simulation
parameters are as follows: A0 = 33.84 GHz, tf = 100 ns, h = 0.01,
and system bath coupling g2η/�

2 = 1.2732 × 10−3 [see Eq. (15) in
Ref. [34]].

20 qubits [17], it remains an excellent classical model for
random Ising instances on larger numbers of qubits, setting
a high bar for genuine quantum effects. In particular, if the
D-Wave device is well described by the SSSV model, then
the QAC strategy applied to this model should give the same
performance enhancement as we observed experimentally. If,
on the other hand, quantum effects play an important role in
the performance of the QAC strategy on the D-Wave device,
then the SSSV model will not benefit from these effects.

To test this, we numerically solved the SSSV model applied
to the same set of instances as we used on the DW2, with
the same βopt values, and we compared the probability of
observing the physical ground state on each (details of the
algorithm used here can be found in Ref. [17]). As seen
in Fig. 7(a), we find that the SSSV physical ground-state
probabilities separate the instances into two sets according to
βopt, with a higher probability for those with large βopt values.
This is unlike the DW2 results, where the instances cluster
irrespective of the relevant βopt.

Since it is known that the D-Wave device is susceptible
to calibration noise and it is important to account for this
when comparing its results to the SSSV model [17,18], we
checked the robustness of this conclusion by including a
variable amount of Gaussian noise with standard deviation
σ in the range [0,0.085] (the range found to be relevant in
Ref. [17]) on the couplings Jij , and we also included local

fields hi ∼ N (0,σ ). As shown in Fig. 7(b), depending on the
amount of calibration noise introduced, we can only correlate
the SSSV results with the DW2 results for a subset of the
instances. We find that with no calibration noise, we can
correlate the βopt = 0.1 instances, while with calibration noise,
we can correlate those with βopt = 0.2. Since we know that
calibration noise is present [17], the latter case is the more
realistic fit. If we accept this conclusion, then Fig. 7(b) shows
that the SSSV model almost never finds the physical ground
state for the βopt = 0.1 instances, while the DW2 still has a
substantial probability of finding the physical ground state.
While increasing the number of sweeps helps to improve the
SSSV success probabilities for all quantities presented, this
conclusion is robust to varying the temperature and the number
of sweeps (Monte Carlo updates per spin) in the range [10 mK,
25 mK] and [50 k, 200 k], respectively.

Furthermore, Fig. 7(c) shows that the separation by βopt

does not appear when using the C strategy, suggesting that the
separation is an effect of the physical, rather than the logical,
Ising instance. Figure 7(d) shows that the separation vanishes
when we decode using the QAC strategy, suggesting that the
SSSV model suffers from many correctable errors for these
instances. While these results of course do not amount to a
proof of quantumness, they do support the notion that quantum
effects play a relevant role in separating the SSSV model from
the DW2 results observed in our QAC experiments.

The SSSV model is useful in another sense. In our earlier
discussion of the scaling results shown in Figs. 4(a) and 4(b),
we stressed that they do not exhibit the correct scaling curves
for the DW2 device, since the minimal possible annealing time
of 20 μs is too long and is hence suboptimal [20]. To illustrate
the importance of this point, we show in Fig. 4(d) the scaling
of the noise-free SSSV model with and without optimizing
the number of annealing sweeps. The scaling curves differ
substantially, and one would be misled about the true scaling
by the suboptimal curves. Finally, we note that the general
shape of the SSSV no-optimization curves is similar to the
experimental curves, indicating that the QAC strategy has
reduced the effect of control errors on the DW2 device.

IV. CONCLUSIONS

We have demonstrated that QAC substantially enhances the
performance of an experimental quantum annealer, boosting
its success probabilities on hard random Ising instances
well beyond a classical repetition code strategy using equal
hardware resources. Moreover, we have demonstrated that
quantum effects appear to play an operational role in the
success of the QAC strategy. These results demonstrate that
the encouraging conclusions concerning the beneficial role of
QAC based on antiferromagnetic chains reported in Ref. [34]
extend to hard computational problems as well, with increasing
benefit as problem instances grow in size and hardness.

While extrapolation of our DW2 scaling results to larger
problem sizes would be inappropriate due to the issue of
suboptimal annealing times, the improvement in performance
relative to a simple classical repetition strategy validates the
importance of QAC, especially for benchmarking studies. Fu-
ture studies will explore harder problem instances, both larger
and with a nonzero spin glass phase critical temperature [21],
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FIG. 7. (Color online) Quantumness test by comparison to the classical SSSV model. Shown are the success probability correlations for
the physical or logical ground state of the DW2 vs SSSV results for N = 448 physical or N̄ = 112 logical qubits. (a) QAC, physical, without
calibration noise on the couplings (σ = 0); (b) QAC, physical, with noise (σ = 0.085); (c) C, logical, with noise (σ = 0.085); (d) QAC, logical,
with noise (σ = 0.085). The instances are color-coded according to their βopt as used in the QAC strategy [note that in (c), there is no β but
we still color-coded the instances by their QAC-optimal β values]. For QAC with βopt = 0, the βopt value was shifted to 0.1 to differentiate
them from C. SSSV simulation parameters are as follows: temperature T = 10.56 mK and 1 × 105 Monte Carlo sweeps. Gaussian noise with
standard deviation σ was added to the Ising couplings and local fields.

where the optimal annealing time will be greater than the
minimum currently allowed by the D-Wave device, allowing
us to extract its true scaling under QAC. Our work reinforces
the importance of the inclusion of error correction in quantum
annealing, with the ultimate goal of demonstrating a quantum
speedup.
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APPENDIX A: METHODS

1. Experiment details

Our experiments were performed on the DW2 “Vesuvius”
processor at the Information Sciences Institute of the Univer-
sity of Southern California. The device has been described
in detail elsewhere [11,42]. The D-Wave processors are
organized into unit cells consisting of eight superconducting
flux qubits arranged in a complete, balanced bipartite graph,
with each side of the graph connecting to a neighboring unit
cell, as seen in Fig. 2(a). The annealing schedule is shown in
Fig. 8.

We ran a single copy of each problem instance 1000
times, and we repeated this for each gauge. A gauge is a
transformation of the couplings and fields that leaves the
Ising spectrum invariant: pick ai = ±1 at random for each
spin variable i and map Jij �→ aiajJij ,hi �→ aihi along with
σ z

i �→ aiσ
z
i [13]. For each problem instance, we selected the

lowest energy found among all runs and gauges, and we
declared this to be the ground-state energy. We are confident
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FIG. 8. (Color online) DW2 annealing schedule. The functions
A and B are the ones appearing in Eq. (2). The solid horizontal black
line is the operating temperature (17 mK).

that every problem instance was solved correctly at least once
since we never observed a lower energy using either the C
or QAC strategies. We then implemented the C and QAC
strategies as described in the main text.

2. Data analysis methodology

The following method was used to generate the number of
annealing runs (R) data with their associated error bars, shown
in Figs. 4 and 5. Each instance i for N = 112 (86,66,46) was
run for G = 16 (8) gauges, and each gauge was run M =
1000 times. For each gauge g, the success probability pi,g

for QAC or C between runs may be correlated, so a binning
test was performed to determine the uncertainty in pi,g due
to the possible correlations as well as the finite number of
samples. The length M sequence of successes/failures was
binned into B subsequences of length L = M/B. The success
probability pi,g,l of each sequence l was calculated, and the
error associated with this binning was determined by

�pi,g(L) = 1√
L

√∑L
l=1(pi,g,l − pi,g)2

L − 1
. (A1)

If �pi,g(L) converges as B is increased, then the converged
value is taken to be the error �pi,g associated with the success
probability pi,g . If a gauge did not yield a converged value for
the error, then this gauge was discarded.

Next, we determined the gauge-averaged number of repeti-
tions. We performed 1000 bootstraps over the gauges, where
for each gauge in each bootstrap we calculated the number
of repetitions using N (pi,g,�pi,g) instead of simply pi,g . For
each bootstrap, we calculated the mean number of repetitions,
then took the mean over the bootstraps to determine the
gauge-averaged number of repetitions Ri , with the standard
deviation over the bootstraps giving the error �Ri .

Finally for Figs. 4 and 5, we performed a bootstrap over the
instances at a given N , where for each instance in the bootstrap
we used N (Ri,�Ri). For each bootstrap, we calculated the

different percentiles for the number of repetitions. Then the
mean of the percentiles over the bootstraps is the number of
repetitions at size N with the error bar given by the standard
deviation of the percentiles over the bootstraps.

3. Decoding strategies

To recover the correct solution to the encoded problem as
part of the QAC strategy, we used two post-readout classical
decoding methods. The methods are complementary and each
has complexity linear in problem size. The first method,
logical group decoding, is the standard scheme for decoding
a repetition code. It consists of taking a majority vote over the
three problem qubits within each logical qubit, which yields a
single value for each logical qubit in the original problem we
seek to solve. The second method, problem group decoding, is
equivalent to the interpretation of the results of the C method
but applied only to the three copies of the problem embodied
by the problem qubits, disregarding the penalty qubits. Further
details of the decoding methods are discussed in Appendix B.

To illustrate the role of decoding, Fig. 9 shows all the states
that were observed in 1000 annealing cycles of a particular
problem instance. We observe that successful decoding de-
pends strongly on the errors having low Hamming weight, but
that a significant tolerance to excitations is permissible. This
illustrates that under QAC, the standard adiabatic criterion
of remaining in the ground state is relaxed and replaced by
maintaining correctability.
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FIG. 9. (Color online) Decodability of observed states. Shown
are the energy and Hamming distance relative to the ground state of
all observed states in 1000 annealing cycles of one problem instance
with N = 112 that lies near the 95th percentile in terms of the time
to solution. States colored red are decodable by both logical group
and problem group decoding, and they tend to be low in Hamming
distance. States colored light blue (yellow) are decodable by logical
(problem) group only, and they occupy higher Hamming distances,
with logical group decodable states generally higher in energy than
problem group decodable states. Dark blue states are undecodable,
and they cluster in groups that represent sets of logical qubits flipping
together (see Appendix B).
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FIG. 10. (Color online) Decodability of observed states for a
problem instance in which C outperforms QAC. States are colored by
decodability as in Fig. 9. Note the large cluster of undecodable (dark
blue) states at relatively low energy but at high Hamming distance
from the ground state. Here βopt = 0.1.

4. Explanation for cases in which C outperforms QAC

As shown in Fig. 3, there is a small subset of instances in
which the C strategy outperforms the QAC strategy. Of this
subset, only five instances have βopt = 0. For these instances,
C outperforms QAC simply because it actually contains four
copies of the encoded problem versus three copies for QAC.
For the remainder of the instances in this subset, having βopt >

0, the QAC strategy improves the success probability relative
to simply using three copies of the encoded problem.

Why then does QAC not provide a sufficient improvement
to outperform C in these cases? As seen in Fig. 2(c), there
are holes in the logical connectivity graph due to the fact
that we used only perfect logical qubits in our experiments.
Qubits around these holes have fewer couplings and therefore
the energy penalty is lower for violated couplings than for
qubits in the intact areas of the graph. This is exacerbated
when these couplings are weak, causing the energy cost for
a logical error to be small, especially if the physical qubits
are tied together by a finite βopt, as in the case of the QAC
strategy. This leads to a pronounced increase in undecodable,
low-energy eigenstates, as depicted in Fig. 10. It turns out that
this is typical, i.e., instances in which C outperforms QAC are
dominated by undecodable, low-energy excited states, arising
from the flipping of large clusters of logical qubits that are
weakly tied to the rest. This can be compared to what happens
in the more common case, in which QAC outperforms C, as
shown in Fig. 9.

APPENDIX B: ERROR TYPES AND DECODABILITY

To more closely examine the effects of the QAC encoding
and the capabilities of the problem group and logical group
decoding methods, it is instructive to consider a representative
problem instance. Figure 9 shows all of the states that were
observed in 1000 annealing cycles of an N = 112 problem
instance that lies near the 95th percentile in terms of the time

to solution, colored by the decoding method to which they
yielded. Looking deeper, Fig. 11 shows sample states from the
decodability categories of Fig. 9, illuminating the error mech-
anisms for which each type of decoding is particularly suited.

Overall, we see that both decoding methods succeed for
low Hamming weight thermal errors. While logical group
decoding performs well for excited states consisting of a
large number of random errors, problem group decoding is
better equipped to address errors that are correlated through
the problem coupling terms present in the QAC Hamiltonian.
Although logical (rather than physical) errors are not expected
to yield to any trivial-complexity postprocessing decoding
method such as the ones examined here, it is possible that
a strategy involving some kind of local classical optimization
may allow even these states to be recovered.

APPENDIX C: ROBUSTNESS TO PHYSICAL QUBIT LOSS

In the main text, we presented results demonstrating the
robustness of QAC to physical qubit loss. Specifically, we
investigated the case in which the missing physical qubits
are few enough to be embedded as the penalty qubits within
logical qubits, so that all problem couplings would remain
intact. Toward that end, we performed quantum annealing on
the 1000 random problem instances of each size again, but
this time we removed 30%, 60%, and then finally 90% of the
penalty qubits from each instance at random.

Figure 12 shows additional percentiles (median and 75th)
supplementing Fig. 5 of the main text (95th). We observe
that the separation between the C and QAC strategies at
N = 112 persists even when up to 60% of the penalty qubits
are removed.

APPENDIX D: CORRELATION TESTS

Since our data collection lasted several weeks, we checked
the stability of our results by performing two separate sets
of experiments for α = 0.5 and N = 86, separated by 25
days. We computed the Pearson correlation coefficient, ρXY =
cov(X,Y )

σXσY
(the covariance of the two variables X and Y divided

by the product of their standard deviations), for X and Y being
the first and second data set, respectively. The results are shown
in Fig. 13, confirming that our data collection procedure was
stable over time.

In a separate test, we checked the correlation between
the C success probability obtained by actually running four
copies of perfect logical qubits in parallel and the theoretical
C success probability obtained by running a single copy, and
using it in the binomial expression for the success probability
of four independent copies, i.e., 1 − (1 − pU,i)4, where pU,i

is the single copy success probability for instance i. In
more detail, to account for gauge averaging, we used the
following procedure. Let pU,g,i denote the experimentally
observed success probability within the U case for a given
instance i and gauge g. Then pU,i = 1

G

∑G
g=1 1 − (1 − pU,g,i)4

is the theoretical value of C from the U case, where we
gauge-average the success probabilities. The result is shown
in Fig. 14 and the correlation is high, confirming that the
four copies in the actual C strategy are to a large degree
independent. Deviations are likely due to residual cross-talk
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FIG. 11. (Color online) Examples of error types and decodability. All states shown are experimentally observed examples. Green circles
are correct logical qubits, i.e., with all their physical qubits aligned with the ground state; blue, orange, and red circles are logical qubits with,
respectively, one, two, and three bit flip errors. The magnitude (though not the sign) of the problem couplings is color-coded: pink lines indicate
|Jij | = 1

6 , and the shade of the line darkens through gradations to indigo for |Jij | = 1. (a) A state decodable by both logical group decoding
and problem group decoding. In this typical example, we observe two logical qubits with a single bit flip error each (blue circles) among
otherwise correct logical qubits (green circles). The state is logical group decodable because single bit flips are majority-vote correctable. It
is also problem group decodable because there are only two bit flips, which is not enough to ruin all three copies of the problem embedded
within the QAC scheme. (b) A logical group decodable state. The six single bit flips are all decodable via majority vote, so the state is logical
group decodable, but the state is not problem group decodable because each problem group is corrupted by at least one bit flip. (c) A problem
group decodable state. This state has two logical qubits in the upper right-hand corner (orange circles) that are loosely coupled to the rest of
the problem (pink line, |Jij | = 1

6 ) and which each have two physical problem qubits flipped from the ground-state values. The problem qubits
that flipped are correlated between the two logical qubits; they belong to the same copy of the problem because the problem coupling is strong
between counterpart problem qubits (purple line). This leaves one copy of the problem fully intact, and the state can be decoded using problem
group decoding. (d) An undecodable state. There is a cluster of logical qubit flips (red circles) in the lower right-hand corner. That region is
loosely coupled to the rest of the problem; all links going out of it are weak (pink) couplings. This means that the state with these logical
qubits flipped together is a low-lying final excited state of the logical Ising problem, which has been suppressed via the repetition energy scale
enhancement portion of QAC but is still observable in the problem instance’s output statistics. This state belongs to the cluster observable near
Hamming weight 20 in Fig. 9 in the main text.

effects [17]. In the main text, we used pC,i in our comparisons
of the C and QAC strategy, rather than pU,i . Since as can
be seen in Fig. 14 for most instances pC,i > pU,i , this is a
more stringent test of the QAC strategy. The procedure for
computing pC,i is the same as outlined in Appendix A for the
gauge-averaged number of repetitions Ri .

APPENDIX E: ENERGY GAP ENHANCEMENT IN A
SOLVABLE TRANSVERSE FIELD ISING

MODEL ON A RING

Here we provide details supporting the discussion of the
Ising Hamiltonian on a ring with local fields presented in the
main text. We first briefly review the model.

Let Pd be the Pauli group over d qubits, and consider an
Abelian subgroup S ∈ Pd with d − 1 generators gi given by

gi = σ z
i σ z

i+1, i ∈ {1, . . . ,d − 1}. (E1)

This defines a distance d repetition stabilizer code that detects
all bit flips σx

i since they anticommute with at least one of
the stabilizer generators in Eq. (E1). The code comprises a
single logical qubit with code space spanned by |0〉 = |0 · · · 0〉
and |1〉 = |1 · · · 1〉. We can choose the logical operators as
X = ⊗d

i=1σ
x
i and Z = 1

d

∑d
i=1 σ z

i .
Consider a single-qubit Hamiltonian HIsing = −hσ z (with

the ground state denoted by |0〉 and the excited state given by
|1〉) and encode it using the above repetition code. Rather than
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FIG. 12. (Color online) Additional percentiles supplementing Fig. 5 of the main text showing the effect of missing penalty qubits. Effect of
missing penalty qubits for α = 1 on the 50th and 75th percentiles for β optimized for the number of missing qubits. The C strategy (solid red)
and QAC strategy (solid yellow) lines are the same data that were displayed in Fig. 4(a). The dash-dotted green, dotted blue, and dashed purple
series show the effects of randomly removing 30%, 60%, and 90% of the penalty qubits, respectively. The performance at 30% and 60% loss
tracks the original QAC closely, suggesting the code is highly resilient to penalty qubit loss if the penalty magnitude is adjusted accordingly.

replacing σ z by Z, we use σ z ≡ dZ:

H Ising =−h

d∑
i=1

σ z
i . (E2)

We can add to this Hamiltonian a penalty that is the sum over
the generators gi and their product

∏d−1
i=1 gi = σ z

1 σ z
d . With the

convention σ z
d+1 = σ z

1 , the penalty term is then

HP =−β

d∑
i=1

σ z
i σ z

i+1, (E3)

which describes a one-dimensional Ising chain with periodic
boundary conditions, and penalizes all single bit flip errors.
We use this as the final Hamiltonian of our quantum annealing
algorithm. The total time-dependent Hamiltonian is that of a

transverse field Ising model on a ring with a local field:

H (s) = −A(s)
d∑

i=1

σx
i + B(s)(H Ising + HP ). (E4)

For convenience, we use the dimensionless time variable s =
t/tf . Note that A(s) and B(s) have dimensions of energy while
h and β are both dimensionless. Also note that in order to
encode the entire quantum annealing algorithm [25], we would
have had to replace the transverse field term by X. However,
the X operator is a d-weight operator, which is not physically
available.

We proceed to analyze H (s) by treating the penalty term as
a perturbation that is switched on at the end of the annealing
evolution, with time going backward. Thus both β and s are
considered small parameters.
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FIG. 13. (Color online) Correlation of different α = 0.5, N = 86 data sets. (a) The U case, i.e., a single copy of the problem without any
error correction. (b) The C strategy. (c) The QAC strategy. In all cases, the correlation is excellent, with the corresponding Pearson correlation
coefficients being ρ = 0.942 for U, ρ = 0.969 for C, and ρ = 0.941 for QAC.
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FIG. 14. (Color online) Correlation between actual C and theo-
retical C. The plot shows the probabilities for 1000 random Ising
instances with N = 112 perfect logical qubits, computed using the
C strategy and from a single unprotected copy (U), i.e., pC,i vs pU,i

for each instance i. A strong correlation is observed, with Pearson
correlation coefficient of 0.968.

1. Unperturbed Hamiltonian

Consider first the d = 1 case (single-qubit Hamiltonian)

H (s) = −A0(1 − s)σx − A0shσ z, (E5)

where for simplicity we have additionally set A(s) = A0(1 −
s) and B(s) = A0s. This can be easily diagonalized to yield
the (dimensionless) eigenenergies

ε±/A0 = ±
√

(1 − s)2 + h2s2 ≡ ±λ(s), (E6)

with respective orthonormal eigenstates

|ε+(s)〉 = 1

c+(s)

[
hs − λ(s)

1 − s
|0〉 + |1〉

]
, (E7a)

|ε−(s)〉 = 1

c−(s)
{[hs + λ(s)]|0〉 + (1 − s)|1〉}, (E7b)

where c±(s) are normalization constants. When we make d

copies of this system,

H (s) = −A0(1 − s)
d∑

i=1

σx
i − A0sh

d∑
i=1

σ z
i , (E8)

the ground state is given by |εGS(s)〉 = ⊗d
i=1|ε−(s)〉 with

energy ε
(0)
GS(s) = −A0dλ(s), and the d-fold degenerate

first excited states are given by |εk(s)〉 = ⊗k−1
i=1 |ε−(s)〉i ⊗

|ε+(s)〉 ⊗d
i=k+1 |ε−(s)〉i , i.e., k labels which qubit is in the

excited state. These first excited states have energy −(d −
2)A0λ(s), so the unperturbed gap is �(0)(s) = 2A0λ(s). This
gap is minimized at

s(0)
min = 1

1 + h2
, (E9)

where

�(0)
min ≡ �(0)(s(0)

min) = 2A0
|h|√

1 + h2
. (E10)

2. Perturbation

We now introduce the penalty term HP = −βsV as a
perturbation in βs, with V = ∑d

i=1 σ z
i σ z

i+1. From first-order
perturbation theory, the corrected dimensionless ground-state
energy is

εGS(s)/A0 = ε
(0)
GS(s)/A0 − βs〈εGS(s)|V |εGS(s)〉

= −dλ(s) − dβs〈ε−(s)|σ z|ε−(s)〉2. (E11)

For the first excited states, we employ first-order degenerate
perturbation theory, whereby we need to calculate the pro-
jected perturbation PV P , where P = ∑

k |εk〉 projects on the
ground state, i.e., the matrix elements

∑
i〈εk|σ z

i σ z
i+1|εk′ 〉. The

only nonzero matrix elements are∑
i

〈εk|σ z
i σ z

i+1|εk〉 = (d − 2)〈ε−|σ z|ε−〉2

+ 2〈ε+|σ z|ε+〉〈ε−|σ z|ε−〉 ≡ a,

(E12a)∑
i

〈εk|σ z
i σ z

i+1|εk+1〉 =
∑

i

〈εk−1|σ z
i σ z

i+1|εk〉

= 〈ε−|σ z|ε+〉2 ≡ b. (E12b)

This defines a translationally invariant d × d tridiagonal
matrix (with corner terms):⎛

⎜⎜⎜⎜⎝
a b 0 0 · · · b

b a b 0 · · · 0
0 b a b · · · 0
...

. . .
. . .

. . .
b 0 · · · 0 b a

⎞
⎟⎟⎟⎟⎠ . (E13)

The eigenvalues of this matrix can be found analytically and
are given by [54]

λn = a + 2|b| cos

(
2πn

d

)
, n = 0, . . . ,d − 1. (E14)

Thus the corrected dimensionless first excited-state en-
ergy is ε1(s)/A0 = −(d − 2)λ(s) − βs maxn λn = −(d −
2)λ(s) − βs(a + 2|b|). Therefore, to first order in perturbation
theory the dimensionless gap �(s)/A0 = [ε1(s) − εGS(s)]/A0

to the first excited state is given, after some algebra, by

�(s)/A0 = 2λ(s) − 2βs
(1 − s)2 − 2(hs)2

λ(s)2
. (E15)

To find the minimum of this function, we expand smin (the
location of the minimum) to first order in β, keeping in mind
that we are interested in the end of the evolution (near s = 0)
and the limit where β � h. Thus, writing smin = s0 + s1β +
O(β2), we find that d�(s)/ds = 0 to first order in β at

smin = s(0)
min − βs1 + O(β2), (E16a)

s1 = |h|(8 − h2)

(1 + h2)5/2
, (E16b)
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where s(0)
min is the unperturbed value. At this smin, we have

�min ≡ �(smin) = �(0)
min + �(1)

min + O(β2), (E17a)

�(1)
min = A0β

2(2 − h2)

(1 + h2)2
, (E17b)

where likewise �(0)
min is the unperturbed value. Since �(1)

min >

0 if h <
√

2, and likewise then s1 > 0, we find that for
sufficiently small h a perturbative β has the effect of both
increasing the minimum gap as well as shifting it to earlier in
the evolution.
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