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Stabilizing non-Hermitian systems by periodic driving
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The time evolution of a system with a time-dependent non-Hermitian Hamiltonian is in general unstable with
exponential growth or decay. A periodic driving field may stabilize the dynamics because the eigenphases of the
associated Floquet operator may become all real. This possibility can emerge for a continuous range of system
parameters with subtle domain boundaries. It is further shown that the issue of stability of a driven non-Hermitian
Rabi model can be mapped onto the band structure problem of a class of lattice Hamiltonians. As a straightforward
application, we show how to use the stability of driven non-Hermitian two-level systems (0 dimension in space)
to simulate a spectrum analogous to Hofstadter’s butterfly that has played a paradigmatic role in quantum Hall
physics. The simulation of the band structure of non-Hermitian superlattice potentials with parity–time reversal
symmetry is also briefly discussed.
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I. INTRODUCTION

A number of seminal results have been obtained from
studies of periodically driven quantum systems [1–3]. One
important example, many decades old and relevant to various
research areas (such as cavity quantum electrodynamics), is
the coherent Rabi oscillations induced by a driving field [4].
A recent example is the possibility of generating intriguing
topological phases by periodic driving [5]. Nonperturbative
periodic driving is now widely known to be useful in altering
symmetry, stability, and topology of a system. The flexibility in
applying a driving field also makes periodically driven systems
an attractive platform to realize quantum control and quantum
simulation.

Considerable theoretical activities have been devoted to
time-independent non-Hermitian systems [6–12] that are
relevant to optics and to quantum systems with both gain and
loss. In particular, time-independent non-Hermitian systems
with certain symmetries may still possess a real spectrum
before reaching symmetry-breaking points. Experiments on
many time-independent non-Hermitian systems were per-
formed [13–25]. Motivated by this progress, here we explore
periodically driven systems with non-Hermitian Hamiltonians.
Given the vast literature about driven Hermitian systems,
driven non-Hermitian systems are anticipated to be rich and
enlightening as well. In the specific context of light wave
propagation in waveguides, such periodic driving may be
realized by a periodic modulation of the refractive index
[26–28].

The dynamics of a periodically driven system is dictated
by its Floquet spectrum. If the Floquet spectrum of a driven
non-Hermitian system still falls on the unit circle, the Floquet
operator will be unitary up to a similarity transformation.
Then, upon an arbitrary number of driving periods, a Floquet
eigenstate only acquires pure phase factors and a general initial
state evolves via coherent phase oscillations. In this manner,
periodic driving helps to stabilize the dynamics. As shown
below via a non-Hermitian Rabi model, this is feasible (even
when the Hamiltonian has a complex spectrum during the
driving), not just for isolated points in the parameter space or
for certain high-frequency driving [28], but for a continuous

range of system parameters using a rather general driving
field. A type of coherent but norm-non-preserving oscillation,
termed “generalized Rabi oscillation,” is also found.

Our computational findings are explained through a map-
ping between a class of driven non-Hermitian two-level
systems and the band structure of a type of superlattice
Hamiltonian. Depending on the explicit form of the driving,
the mapped lattice Hamiltonian can be Hermitian or non-
Hermitian. On the one hand, the stability of a driven non-
Hermitian problem can now be connected with a conventional
quantum mechanics problem, thus laying a solid starting point
for studies of driven non-Hermitian systems. On the other
hand, we now have a nonconventional means to simulate
superlattice Hamiltonians, via a driven two-level system
only. Recognizing the fundamental importance of Hofstadter’s
butterfly spectrum (HBS) in condensed-matter physics [29],
we show how to simulate, in a straightforward manner, the
HBS-like spectrum of a class of superlattice Hamiltonians.
Compared with HBS realized in 2-dimensional solid-state
materials [30–32], 2-dimensional ultracold gases in optical
lattices [33,34], and HBS considered in 1-dimensional lattice
systems [35–38], the simulation strategy proposed here is
noteworthy because it is 0-dimensional in space.

II. COMPUTATIONAL EXAMPLES

Let a non-Hermitian but time-periodic dimensionless
Hamiltonian be H (t) = H (t + T ), where T is the driving pe-
riod. Throughout we assume scaled and hence dimensionless
units (with � = 1). The initial time is t = 0. Unlike previous
treatment for time-dependent non-Hermitian systems [39],
here we stick to the normal form of the Schrödinger equation
and the conventional Dirac inner product structure. The time
propagator for the period of [0,t] is defined as U (t) and it
satisfies

iU̇ (t) = H (t)U (t), (1)

with the initial condition U (0) = 1. Note that the dynamics
yielded by Eq. (1) with a time-dependent and non-Hermitian
H (t) is nonunitary in general [39]. Indeed, the normalization of
a time-evolving state, initially set to be unity, may change with
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FIG. 1. (Color online) Phase diagrams for two non-Hermitian
extensions of the Rabi model, with Hamiltonians H1(t) (a) defined
in Eq. (5) and H2(t) (b) defined in Eq. (6). Shaded regimes
represent extended unitarity and hence stabilization afforded by
periodic driving. Here and in other figures, all plotted quantities are
dimensionless.

time due to gain and loss in the system. The Floquet operator
associated with H (t) is given by U (T ), with its spectrum
determined by the eigenvalue equation

U (T )|φn〉 = eiβn |φn〉, (2)

where the nth Floquet eigenstate is |φn〉 with the eigenvalue
eiβn . Of particular interest is the situation when all βn are
indeed real and hence eiβn are pure phase factors. If this is true,
then

U (T ) = SDS−1, (3)

where D is a diagonal unitary matrix with phase factors
eiβn on the diagonal and S is a similarity transformation. A
Floquet operator satisfying Eq. (3) is said to possess “extended
unitarity.” By the Floquet theorem, after N driving periods,

U (NT ) = UN (T ) = SDNS−1. (4)

Thus, if extended unitarity emerges, then only pure phase
factors eiNβn enter into the time evolution operator for
(arbitrary) N periods. The dynamics is hence stable over
an arbitrary number of driving periods because there is no
exponential growth or decay with N .

To make a driven non-Hermitian system as simple as
possible, one may introduce non-Hermitian terms to a two-
level Rabi model, which is very relevant to understanding
the evolution of two optical polarizations in a nontransparent
medium [9]. We discuss two specific examples, characterized
by two real parameters γ and μ with T = 1. In the first
example, we choose

H1(t) = γ σz + iμ[cos(2πt) + sin(4πt)]σx, (5)

where σx and σz are Pauli matrices. The driving term H1(t)
is anti-Hermitian, with two driving frequencies 2π and 4π

(indicating a rather arbitrary driving). Figure 1(a) depicts the
findings, with the shaded regimes representing the domains of
extended unitarity. Contrary to a naive intuition, the emergence
of extended unitarity is not accidental, but for a wide and
continuous range of γ and μ, with highly intricate domain
boundaries. It should also be stressed that the domain of
extended unitarity is not at all the domain for H1(t) to have a
real instantaneous spectrum.

FIG. 2. (Color online) Top panels depict the real part of the
eigenvalues of U (t), denoted λU , during one period of driving. Bottom
panels show generalized Rabi oscillations via populations of spin up
(blue lines) and spin down (orange dashed lines). The initial state is
up and the Hamiltonian is H1(t) defined in Eq. (5). In (a) and (c)
γ = 1 and μ = 2; in (b) and (d) γ = 0.1 and μ = 4.

Let us turn to the second example with the Hamiltonian

H2(t) = γ σz + iμ[sin(2πt) + i]σx. (6)

The static component of H2 now has a component parallel
to the non-Hermitian driving term. Extended unitarity also
emerges, with the phase diagram in Fig. 1(b) displaying again
subtle boundaries. Note that the instantaneous eigenvalues of
H2(t) are not real except t/T = 0, 1/2, 1. That is, stabilization
is possible, even when the instantaneous spectrum of H2(t) is
complex during almost the entire period of driving. One may
introduce and then scan over more system parameters other
than (μ,γ ) or scan (μ,γ ) in the complex domain. However,
it would be challenging to present a high-dimensional phase
diagram. Qualitatively similar stabilization is also observed in
many other non-Hermitian variants of the Rabi model.

Next we take two sets of (μ,γ ) from the domain of extended
unitarity of H1 to further digest the dynamics. First, we
analyze in Fig. 2 the real part of the spectrum of U (t) for
t ∈ [0,T ]. Because H1 is traceless, it can be shown that if
and only if the two eigenvalues of U (t) have the same real
parts, then the eigenvalues of U (t) can be written as exp(±iβ)
with a real β [40]. The top two panels of Fig. 2 depict the
splitting of one common real part of the eigenvalues into two,
followed by a recombination of two into one. Such splitting and
recombination behavior may occur several times within one
period. This vividly shows that, at times not equal to multiple
periods of T , U (t) does not necessarily have real eigenphases.
Thus, yielding extended unitarity (at t = NT ) still allows for
rather complicated and potentially exotic dynamics within
one driving period. Second, let us examine the population
dynamics in the presence of extended unitarity. The initial
state is assumed to be the “up” state and the corresponding
results are shown in the bottom panels of Fig. 2. Stable and
coherent population oscillations are observed in Fig. 2(c) and
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Fig. 2(d), representing a type of generalized Rabi oscillation.
Interestingly, the total population on the two states may go
beyond unity, which reminds us that the system dynamics is
stable but not unitary. A careful check further shows that in the
two shown examples the population difference (rather than the
population sum) is unity at all times. This is because the driving
field happens to be perpendicular to the static field, whose
direction is also the direction of population measurement.

III. MAPPING STABILITY TO BAND
STRUCTURE PROBLEMS

To gain insights into why stability can be thus restored, we
now consider a class of traceless and non-Hermitian two-level
Hamiltonians subject to one-parameter periodic modulation:

H (t) = [an3 + ib(t)n1] · σ , (7)

where a is time-independent and b(t) = b(t + T ) is a complex
periodic function of t , σ = (σx,σy,σz), and {n1,n2,n3} is an
arbitrary but fixed set of vectors forming a right-handed basis
set. For reasons to be elaborated below, a2 is assumed to be
real. We next expand U (t) in the same representation, yielding

U (t) = u0(t) +
3∑

i=1

ui(t)ni · σ , (8)

with complex expansion coefficients ui(t) under the initial
conditions u0(0) = 1, and ui(0) = 0 for i = 1,2,3. The two
eigenvalues of U (T ) are hence given by e±iβ = u0(T ) ±
i
√

1 − u2
0(T ). Clearly then, for β to be a real phase (hence

extended unitarity), it is sufficient and necessary for u0(T ) to
be real, with −1 � u0(T ) � 1, such that β = arccos[u0(T )].
Because the eigenvalues of U (NT ) are simply e±iNβ , this
condition also leads to u0(NT ) = cos(Nβ) and hence −1 �
u0(NT ) � 1 for arbitrary N .

With the expansion in Eq. (8), the Schrödinger equation in
Eq. (1) yields

u̇0(t) = b(t)u1(t) − iau3(t),

u̇1(t) = b(t)u0(t) − au2(t),
(9)

u̇2(t) = au1(t) − ib(t)u3(t),

u̇3(t) = −iau0(t) + ib(t)u2(t).

Differentiating Eq. (9) again and canceling the first-order
derivatives, we obtain the equations satisfied by u0(t) and ui(t),⎡

⎢⎢⎣− d2

dt2
+

⎛
⎜⎜⎝

b2(t) ḃ(t) 0 0
ḃ(t) b2(t) 0 0

0 0 b2(t) −iḃ(t)
0 0 iḃ(t) b2(t)

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎛
⎜⎝

u0(t)
u1(t)
u2(t)
u3(t)

⎞
⎟⎠

= a2

⎛
⎜⎝

u0(t)
u1(t)
u2(t)
u3(t)

⎞
⎟⎠ . (10)

Now we map the time variable t to a space variable x and
assemble ui as components of a wave function,

�(x) ≡ N
(

u0(x)
u1(x)

)
, 	(x) ≡ N

(
u2(x)
u3(x)

)
, (11)

whereN is an arbitrary constant. Then Eq. (10) is seen to be the
eigenvalue equation associated with a band structure problem.
The mapped band structure problem is naturally decoupled to
two with identical spectra,[

− d2

dx2
+ b2(x) + db(x)

dx
σx

]
�(x) = a2�(x), (12)

[
− d2

dx2
+ b2(x) + db(x)

dx
σy

]
	(x) = a2	(x). (13)

Equations (12) and (13) can be further simplified by defining

ψ±(x) ≡ N [u0(x) ± u1(x)] , (14)

φ±(x) ≡ N [u2(x) ∓ iu3(x)] . (15)

The one-dimensional wave functions ψ±(x) and φ±(x) thus
defined satisfy the following identical Schrödinger equations,[

− d2

dx2
+ V ±(x)

]
ψ±(x) = a2ψ±(x), (16)

[
− d2

dx2
+ V ±(x)

]
φ±(x) = a2φ±(x), (17)

which describe a particle of mass 1/2 moving in one of the
two periodic potentials

V ±(x) ≡ b2(x) ± db(x)

dx
(18)

of lattice constant T ; i.e., V ±(x + T ) = V ±(x). For example,
if b(t) is a time-periodic square function, then V ±(x) will
become a generalized Dirac-Kronig-Penney model as it com-
prises δ potentials with alternating signs. Interestingly, because
V +(x) and V −(x) naturally form a supersymmetric potential
pair, they yield identical spectrum [41]. As such, nontrivial
solutions to Eq. (16) [or Eq. (17)] with a common eigenvalue
a2 should exist for both ψ+(x) and ψ−(x) [or φ+(x) and
φ−(x)]. For simplicity, we may use ψ to represent one of ψ±
or φ±, and V for the corresponding V ±. Due to this mapping,
below we do not clearly distinguish between t and x variables
when the context is clear.

According to the Floquet theorem, the Bloch wave function
ψ(x) satisfies the twisted boundary conditions, i.e.,

ψ(x) = eikxψ̃k(x), (19)

where k is called the quasimomentum when it is real, and
ψ̃k(x) is a periodic function of x, of the same period T as the
mapped Hamiltonian in Eqs. (16) or (17).

The extended unitarity condition −1 � u0(NT ) � 1 can
now be better digested. Intuitively, if there is a complex
eigenphase β, then the condition −1 � u0(NT ) � 1 is vi-
olated because of an exponential growth of u0(NT ) vs
N . But if this exponential growth occurs, then ψ±(NT ) =
N [u0(NT ) ± u1(NT )] diverges with N and hence cannot
be a Bloch eigenfunction at energy a2 within a continuous
energy band [see Eq. (16)]. That is to say, in order to achieve
stabilization via periodic driving, the system parameters must
be chosen such that the driving field profile b(t) generates a
mapped potential V (x) that admits Bloch band wave functions
at energy eigenvalue a2. On the other hand, if ψ(x) is a Bloch
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FIG. 3. (Color online) Identical dispersion relations obtained by
direct band-structure calculations using V +

1 or V +
2 defined in

Eqs. (20) and (21) (blue lines) or by checking whether extended
unitarity occurs (red squares). Panel (a) is for H1 with μ = 2 and
panel (b) is for H2 with μ = 4. The negative γ 2 part in (b) is obtained
by scanning the parameter γ in the purely imaginary domain. Results
here confirm our theoretical mapping.

band wave function, then one can indeed construct from ψ(x)
a solution of u0(t) satisfying −1 � u0(NT ) � 1 and its initial
condition (see Appendix B for details). We have thus identified
a mapping between the band structure of V (x) and the stability
in a driven non-Hermitian system. More detailed analysis
shows that through this general mapping, the real eigenphase β

of U (T ) becomes the Bloch quasimomentum times the lattice
period in the band structure problem for ψ(x).

Returning to the case of H1(t), n1 = x̂, n3 = ẑ, we have a =
γ , b(t) = μ[cos(2πt) + sin(4πt)]. Then the mapped lattice
potential becomes

V ±
1 (x) = μ2[cos2(2πx) + sin2(4πx) + 2 cos(2πx) sin(4πx)]

±2πμ[− sin(2πx) + 2 cos(4πx)], (20)

a real superlattice potential. In the same manner, H2(t) is
mapped to a lattice potential

V ±
2 (x) = μ2[sin2(2πx) − 1 + 2i sin(2πx)]

±2πμ cos(2πx). (21)

The potential V2(x) is seen to be complex, but it is invariant
upon a joint time reversal and parity (PT ) operation, the so-
calledPT invariance. The possibility of having a real spectrum
(a2 is constructed to be real) under PT symmetry ensures
that we still possibly have Bloch wave functions for V2(x).
Therefore, for both examples of H1(t) and H2(t), the phase
diagrams in Fig. 1 can now be understood as the collection of
all possible real band energy eigenvalues a2 = γ 2 as a function
of a second system parameter μ. The origin of the boundaries
seen in Fig. 1 is hence identified as the presence of energy
gaps for the real potential V1(x) or thePT -symmetric complex
potential V2(x). To further check our understandings, for one
value of μ we record β when extended unitarity occurs and
then plot γ 2 vs β for H1 and H2 (red squares). The results
are then compared in Fig. 3 with band dispersion relations
obtained from direct band-structure calculations for V +

1 or
V +

2 . The agreement seen in Fig. 3 confirms our exact mapping
described above.

IV. QUANTUM SIMULATION

To motivate potential experimental interest, let us now
investigate two non-Hermitian Rabi models upon introducing

FIG. 4. (Color online) Simulation of a phase pattern analogous
to Hofstadter’s butterfly spectrum (HBS) (a) and an extension of
HBS for non-Hermitian but PT -symmetric Hamiltonians (b), using
driven non-Hermitian Hamiltonians H3(t) (a) and H4(t) (b) defined in
Eqs. (22) and (23) with both μ = 2. Blue dots represent extended
unitarity restored by periodic driving.

a parameter α that describes the period ratio of two commen-
surable driving periods. Consider first

H3(t) = γ σz + iμ[cos(2πt) + cos(2απt)]σx. (22)

If the parameter α is a rational number with α = p/q (p,q

two co-prime integers), the mapped superlattice potential
V ±

3 , comprising a base lattice of period unity and additional
superlattice components, still has a period q. The α parameter
hence resembles the role of the magnetic flux per plaque in
the HBS Hamiltonian of the original quantum Hall problem
[29]. For a fixed value of μ, we obtain the phase diagram
of extended unitarity in terms of γ 2 vs a varying rational
α. The results are shown in Fig. 4(a). The shown phase
diagram of extended unitarity is indeed highly similar to
HBS. In particular, many clear gaps and intriguing domain
boundary profiles are found. This is achieved without the
use of a magnetic field, a clean 2-dimensional material, or
even a 1-dimensional lattice potential. Given the paradigmatic
role of HBS in understanding quantum Hall physics [29], our
findings in Fig. 4(a) have paved a nonconventional way towards
the simulation of quantum Hall physics, including topological
phase transitions. For example, it will be valuable to examine
the topological characterizations and implications of the gaps
seen in Fig. 4(a).

Next we consider

H4(t) = γ σz + iμ[sin(2πt) + i cos(2απt)]σx. (23)

In this case, the associated superlattice potential V4(x) is
non-Hermitian but is apparentlyPT -symmetric. This situation
hence represents a complex extension of the original HBS
problem. Interestingly, the resulting phase diagram of H4

shown in Fig. 4(b) has many fewer gaps and is thus quite
different from a conventional HBS. Upon a careful inspection,
the lack of many gaps here is found to be connected with
PT -symmetry breaking in the mapped problem. That is, a gap
often closes at the critical quasimomentum value for which
the spectrum of a PT -symmetric lattice becomes complex
[see Fig. 3(b)].

V. CONCLUSIONS

Stabilization of a non-Hermitian system by periodic driving
is feasible in general and thus does not need the instanta-
neous spectrum of the Hamiltonian to be real. This extends
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opportunities in studies of non-Hermitian systems. Stabiliza-
tion can be also achieved in other non-Hermitian systems
with more levels. Extended unitarity found here is useful for
quantum simulation. We also note a recent stimulating study
[42], where the emphasis is placed on how PT symmetry of
driven systems is broken by a close-to-resonance perturbation.
The mapping established here can be used to explain some
results in Ref. [42].
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APPENDIX A: QUASIMOMENTUM

In this Appendix, we show that regardless of the explicit
form of the periodic potential V (x), if there exists a Bloch wave
function eikxψ̃k(x) with quasimomentum k and the energy
eigenvalue a2, there must exist another Bloch wave function
e−ikxψ̃−k(x) with quasimomentum −k and the same energy
eigenvalue. To see this clearly, let us consider Eq. (16) in the
Fourier space of ψ̃k(x), namely,(

k + 2πm

T

)2

Ck,m +
∑

n

VmnCk,n = a2Ck,m, (A1)

where

Vmn ≡ T

2π

∫ 2π
T

0
exp

[
i
2π (n − m)x

T

]
V (x)dx (A2)

and Ck,m are the Fourier expansion coefficients of the periodic
function ψ̃k(x). Consider now a matrix transpose of the matrix
Vmn − (k + 2πm

T
)2δmn. Because the matrix transpose has the

same eigenvalues, we have(
k + 2πm

T

)2

Dk,m +
∑

n

[Vmn]� Dk,n = a2Dk,m, (A3)

where Dk,m is the eigenvector of the transpose matrix. By
definition of Vmn in Eq. (A2), we have

[Vmn]� = V−m,−n. (A4)

Thus, Eq. (A3) becomes(
k + 2πm

T

)2

Dk,m +
∑

n

V−m,−nDk,n = a2Dk,m. (A5)

Let m → −m, n → −n, and define D̄−k,m ≡ Dk,−m; one now
has(

−k + 2πm

T

)2

D̄−k,m +
∑

n

VmnD̄−k,n = a2D̄−k,m. (A6)

Equation (A6) indicates the following: for the periodic
potential V (x) with Fourier components Vmn, there also exists
an eigenvector with eigenvalue of a2 and quasimomentum −k.

Note that for the special case of pure anti-Hermitian driving,
b(t) and hence V ±(x) are real functions; the differential
equations (16) and (17) are real. We may choose ψ̃−k(x) =
[ψ̃k(x)]∗, where ∗ stands for complex conjugate. In general,

ψ̃k(x) and ψ̃−k(x) are not simply related. In any case, eikxψ̃k(x)
and e−ikxψ̃−k(x) are two linearly independent solutions to
Eq. (16) [or Eq. (17)].

APPENDIX B: EXTENDED UNITARITY AND BLOCH
BAND SOLUTIONS

Now let us discuss more the equivalence between ex-
tended unitarity defined in the main text and the ex-
istence of Bloch band wave functions. Mathematically,
both [u0(t),u1(t),u2(t),u3(t)] defined in the main text and
the above-mentioned Bloch eigenfunctions are solutions of
Eq. (3) of the main text, but with different boundary condi-
tions. In particular, in our periodic-driving problem, the time
evolution operator must satisfy the initial condition U (0) = 1,
namely, ⎛

⎜⎝
u0(0)
u1(0)
u2(0)
u3(0)

⎞
⎟⎠ =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ . (B1)

However, Bloch eigenfunctions satisfy the twisted boundary
conditions defined in Eq. (19) (see the main text), and they
represent stable energy band solutions only when the exponent
k in the twisted boundary condition is real.

For a four-component system depicted by Eq. (10), in total
we have four linearly independent solutions associated with
a2. A simple observation of Eqs. (12) and (13) indicates that
for a fixed energy eigenvalue a2 and a fixed exponent k in the
twisted boundary condition, Eq. (10) can yield two solutions.
Hence, for a given Hamiltonian in Eq. (1) in the main text, i.e.,
with a and all the parameters in b(t) fixed, a general solution of
the time propagator can be expressed as a linear combination of
the four Bloch eigenfunctions characterized by two exponents
k1 and k2,

⎛
⎜⎜⎝

u0(t)
u1(t)
u2(t)
u3(t)

⎞
⎟⎟⎠ = Aeik1t

⎛
⎜⎜⎜⎝

u
(1)
0 (t)

u
(1)
1 (t)

u
(1)
2 (t)

u
(1)
3 (t)

⎞
⎟⎟⎟⎠ + Beik2t

⎛
⎜⎜⎜⎝

u
(2)
0 (t)

u
(2)
1 (t)

u
(2)
2 (t)

u
(2)
3 (t)

⎞
⎟⎟⎟⎠

+Ceik1t

⎛
⎜⎜⎜⎝

u
(3)
0 (t)

u
(3)
1 (t)

u
(3)
2 (t)

u
(3)
3 (t)

⎞
⎟⎟⎟⎠ + Deik2t

⎛
⎜⎜⎜⎝

u
(4)
0 (t)

u
(4)
1 (t)

u
(4)
2 (t)

u
(4)
3 (t)

⎞
⎟⎟⎟⎠, (B2)

where we mapped x back to t for comparison. Now, to switch
between a solution representing the time propagator and the
Bloch wave functions, we only need to find a set of parameters
A, B, C, and D such that the left-hand side of Eq. (B2) at t = 0
satisfies the initial condition defined in Eq. (B1). By Cramer’s
rule, this can be done so long as there is a nonvanishing
Wronskian (at t = 0) of the four Bloch wave functions, with
the Wronskian given by

W (t) ≡

∣∣∣∣∣∣∣∣∣

u
(1)
0 (t) u

(2)
0 (t) u

(3)
0 (t) u

(4)
0 (t)

u
(1)
1 (t) u

(2)
1 (t) u

(3)
1 (t) u

(4)
1 (t)

u
(1)
2 (t) u

(2)
2 (t) u

(3)
2 (t) u

(4)
2 (t)

u
(1)
3 (t) u

(2)
3 (t) u

(3)
3 (t) u

(4)
3 (t)

∣∣∣∣∣∣∣∣∣
. (B3)
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Such a Wronskian can be computed from Abel’s formula.
Since the Hamiltonian is not singular at any time, the
Wronskian never vanishes. That is, regardless of the nature
of the solution [u0(t),u1(t),u2(t),u3(t)], it can be always
expanded by four linearly independent solutions with different
exponent k (real or complex).

When both exponents k1 and k2 are real, that is,
when the corresponding solutions are the Bloch band wave
functions, then we have k1 = −k2 based on our analy-
sis in Appendix A. The existence of such Bloch band

wave functions suffices to yield a time propagator solution
[u0(NT ),u1(NT ),u2(NT ),u3(NT )] satisfying its initial con-
dition. More importantly, in this case, u0(NT ) constructed via
Eq. (B2) must be stable with time and hence extended unitarity
emerges. On the other hand, if there is extended unitarity and
hence u0(NT ) does not blow up with N , then the exponents
k1, k2 must be real, and as such the expansion in Eq. (B2) must
hold again with k1 = −k2. Furthermore, if u0(T ) = cos(β),
then u0(NT ) = cos(Nβ). From Eq. (B2) one directly observes
that the quasimomentum k1 = −k2 must be given by ±β/T .

[1] G. Casati and B. V. Chirikov, Quantum Chaos: Between Order
and Disorder (Cambridge University Press, New York, 1995).

[2] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
[3] S. Kohler, J. Lehmann, and P. Hänggi, Phys. Rep. 406, 379

(2005).
[4] I. I. Rabi, Phys. Rev. 49, 324 (1937); ,51, 652 (1937).
[5] See, e.g., D. Y. H. Ho and J. B. Gong, Phys. Rev. B 90, 195419

(2014).
[6] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
[7] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89,

270401 (2002).
[8] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[9] M. V. Berry, J. Opt. 13, 115701 (2011).

[10] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
[11] C. T. West, T. Kottos, and T. Prosen, Phys. Rev. Lett. 104, 054102

(2010).
[12] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); ,43, 2814

(2002).
[13] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.

Christodoulides, Phys. Rev. Lett. 100, 030402 (2008).
[14] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.

Musslimani, Phys. Rev. Lett. 100, 103904 (2008).
[15] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-

Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Phys. Rev. Lett. 103, 093902 (2009).
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H. E. Türeci, G. Strasser, K. Unterrainer, and S. Rotter,
Nat. Commun. 5, 4034 (2014).

[21] B. Peng, S. K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F.
Monifi, C. M. Bender, F. Nori, and L. Yang, Science 346, 328
(2014).

[22] B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys.
10, 394 (2014).
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