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Rotated quadratures carry the phase-dependent information of the electromagnetic field, so they are somehow
conjugate to the photon number. We analyze this noncanonical pair, finding an exact uncertainty relation, as
well as a couple of weaker inequalities obtained by relaxing some restrictions of the problem. We also find the
intelligent states saturating that relation and complete their characterization by considering extra constraints on

the second-order moments of the variables involved. Using these moments, we construct performance measures
tailored to diagnose photon-added and Schrodinger-cat-like states, among others.
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I. INTRODUCTION

Leaving aside interpretational issues [1-3], the quantum
state is an essential ingredient of quantum theory: once it
is known, the probabilities of the outcomes of any possible
measurement may be predicted. Unfortunately, this elusive
object cannot be directly determined and must be inferred from
a suitable set of measurements, which constitutes the province
of quantum tomography [4]. Although this might superficially
appear to be a mere statistical estimation, the positivity of the
reconstructed state imposes stringent quantum constraints.

Indeed, these constraints endow the set of admissible states
with a rich geometry, the boundaries of which somehow
establish the realm of the quantum world. Delimiting these
borders is, in general, a difficult conundrum. One way to ease
these complications is to look at the problem using moments
of the relevant quantities, with the hope that only a few of
them will be important enough. As a simple yet illustrative
example of this, let us examine a single-mode quantum field,
which will serve as a thread in this work. The complex
amplitude @ and the photon number A = afa for this system
must obey (/) > |(a)|?, which can be readily obtained by
a simple application of the Cauchy-Schwarz inequality [5].
The extremal states (i.e., those saturating the inequality) turn
out to be coherent states. Hence, the difference between the
average photon number and the square of the absolute value
of the complex amplitude, which must be always positive, can
be taken, up to second order, as a reliable indicator of the
“quality” of a coherent state.

In classical signal processing, intensity and phase are the
basic magnitudes specifying the field. At the quantum level,
they translate into photon number and phase. However, the
definition of a bona fide phase operator is beset by difficulties
that have been the object of a heated debate [6—10]. Here, we
choose a surrogate approach that considers the phase properly
encoded in the field quadratures, as is routinely done in
the theory of quantum nondemolition measurements [11-13].
While photon number lies at the heart of the discrete-variable
quantum information, quadratures are the primary tool in
the continuous-variable domain. Photon number and quadra-
tures bridge these two complementary worlds in a natural
way.
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Extremal states for these variables were investigated
some years ago, fueled by the search for noise minimum
states [14,15]. More recently, the quite similar question of
the uncertainty relation for the number and the annihilation
operator was addressed [16]. Our aim here is to push this
research further and explore how these extremal states can be
used for the diagnostics of nonclassicality.

The plan of this paper is as follows. In Sec. II we
revisit the uncertainty relations for photon number and
rotated quadratures, as well as loose approximations thereof.
Section III rounds off this discussion by looking at the extra
restrictions that quantum theory imposes on the second-
order moments of those variables and by looking at the
properties of intelligent states, which obey the equality in
the previous uncertainty relations. Based on those states, we
tailor performance measures especially germane to verify
photon-added and Schrodinger-cat-like states, among others.
Finally, our conclusions are summarized in Sec. IV.

II. UNCERTAINTY RELATIONS FOR PHOTON NUMBER
AND QUADRATURES

A. Tight uncertainty relations

The system we are interested in is a single-mode electro-
magnetic field, which can be formally deemed a harmonic
oscillator. Classically, it is characterized by a complex ampli-
tude that contains information about both the magnitude and
the phase of the field. In the quantum formalism, the mode
is specified by the action of annihilation (4) and creation
(a') operators satisfying the basic bosonic commutation

relation [17]
[a,af1=1. 2.1)

At optical frequencies, the common way of measuring the
field is with homodyne detection [18]. The readout in this
scheme involves moments of the rotated quadratures
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(2.2)

where 0 is the phase of the local oscillator that can be externally
varied. The reader should be careful about comparing results
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on quadrature, as there are a variety of normalizations used in
the literature. Notice that py = —X4,,/> and that, for 6 = 0,
they reduce to the canonical variables £ and p. They satisfy the
canonical commutation relation (in units i = 1 throughout)

[%6.po] = i1. (2.3)

Since %2 + p2 = it + 1/2, where i = a'a is the number
operator, precise knowledge of the eigenvalue of 7 restricts the
possible knowledge about the quadratures. This is quantified
by the commutation

[7,%0] = —i Py, (2.4)
which, in turn, implies the uncertainty relation
V(#) V(%e) = 11(Po)I (2.5)

Here, V(A) = (A%) — (A)? denotes the variance of A, and
the angular brackets (-) mean averaging over the state of the
system (either pure or mixed).

Equation (2.5) is an exact relation but depends on the local
oscillator phase. Differentiation with respect to 6 leads to the
extremal values Ay of V(Xy); they can be written as [19]

A2 =C@a) £ V@), (2.6)

whAerg the (AsyrrAlmetrized) covariance is C (A,E) =
({A,B}/2) — (A)(B). It is convenient to introduce the
quantity A by

A(p) = Ai sin? ¢ + A2 cos’ ¢, 2.7)

with ¢ = arg[V(a)/2] — arg[(a)], in terms of which Eq. (2.5)

takes the form
Aal TP
wm[* }>umﬁ
Ap)

Apart from the invariant parameters A, this expression also
depends on the phase ¢. However, this alternative presentation
will allow us in the following to devise remarkable simplifi-
cations. In addition, it is closely related to the customary ball-
and-stick representation of quantum states in phase space [20],
where the quadratures £ and p are taken as coordinates. In
this picture, sketched in Fig. 1, the stick corresponds to the
average value of the field (a), and the ball corresponds to
the fluctuations around the mean value. We display this area
as a noise ellipse whose semiaxes are precisely the invariant
parameters Ay. In this way, Ay, which are eigenvalues of
the covariance matrix and related to the universal quantum
invariants [21], play a key role in picturing the noise properties
of the state [22,23]. The meaning of A(¢) can be gathered at
once from Fig. 1.

As a final remark, we mention that inequality (2.8) formally
makes it possible to introduce a quantity like phase variance
V(d), fulfilling a standard uncertainty relation with V (1),
namely,

2.8)

2
A+A‘} ! (2.9)

AMe) | K@y
Interestingly enough, an explicit calculation shows that this

variance of the putative operator ¢ tallies with the small-
est possible phase resolution in the Shapiro-Wagner phase

w@=[
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FIG. 1. (Color online) Ball-and-stick diagram in phase space. (a)
is the complex amplitude of the field, and A, are the semiaxes of the
uncertainty ellipse. The variable A(¢) has been defined in Eq. (2.7).

concept [24] if both quadrature operators are measured
simultaneously.

B. Relaxing the bounds

The tight uncertainty relation (2.5) and its equivalent (2.8)
convey complete information, but they provide phase-
dependent bounds. It might be interesting to work out weaker
inequalities, which are independent of the orientation of the
noise ellipse.

A first option stems from the trivial observation that,
according to (2.7), inf, A(¢) = A_, so (2.8) can be relaxed to

V()AL = @), (2.10)
or, using C(&T,&),
V@) [C@'a) + V@Il > [a)*. (2.11)

The second possibility comes from the estimate
Doy /A(@)]* < A2 4 2% Now, we can write down

V@A) A2 +22) = @), (2.12)
which, using again C (&WL,&), reads as
V(ﬁ)C(&T,&) > |(€1)|2. (2.13)

This coincides with the expression obtained in Ref. [16].
In spite of its simplicity, this inequality has a drawback: it
cannot be exactly saturated (but see the solution worked out in
Ref. [25]). This can be confirmed by noticing that Eq. (2.13)
is just the sum of

V@) V(R) = 1P, V@) V(D) = 11(%)1

since |(£)|% 4+ |(p)]|* = 2|(a)|*. But these two relations cannot
be saturated simultaneously [26,27], and as consequence,
Eq. (2.13) is not tight.

In Fig. 2 we have plotted both approximate inequali-
ties (2.11) and (2.13) in a three-dimensional space, with the
moments V(a), C(af,a), and V(#) as axes. The region above

(2.14)
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FIG. 2. (Color online) Uncertainty relations (2.8) and (2.11) as
a function of the second-order moments of the variables involved.
The plane along the diagonal corresponds to the constraint (3.2). In
the right panel, we plot sections of the previous figure for several
values of |V (a)| [up to the value permitted by (3.3)]. The solid line
represents the bound (2.13), and the shaded region designates the
forbidden states.

these surfaces is the allowed states. We have also plotted
several two-dimensional sections for different values of | V (&)|.
It is evident that (2.11) is tighter than (2.13), which actually is
independent of |V (a)].

In summary, the exact uncertainty relation (2.8) and its
two weaker approximations (2.10) and (2.13) fully specify
the complementary nature of photon number and quadratures.
They can be regarded as a sensible alternative to the more
controversial uncertainty relations for number-phase observ-
ables [28,29] and their entropic counterparts [30-32].

III. EXTREMAL STATES
A. Additional restrictions on the moments

The discussion thus far has capitalized on the variances as
the proper estimator of quantum uncertainties, as is generally
accepted. To have a complete grasp of the problem, we have to
assess also the constraints arising in the second-order moments
involved in the problem, as they are not independent.

As heralded in the Introduction, an appropriate tool to
delimit these moments is the generalized Cauchy-Schwarz
inequality, which can be jotted down as [14]

(ATB)* <

The equality occurs only for states where (AT A) = 0, (BTB) =
0, or (A —1 ré) p = 0 for some real scalar » and with p being
the density operator of the state.

A first application of Eq. (3.1), with A=aandB =1,
gives (afa) > (a')(a). As a result, from its very definition,
the covariance fulfills

(ATA) (B'B). (3.1)

c@ha) >3, (3.2)

which is saturated by the coherent states. Repeating the same
procedure, but now with AT = B = a — (a), we get

c@hay -1

V@) < L (3.3)
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FIG. 3. (Color online) Three-dimensional subspace of all the
possible second-order moments for a fixed value of (@), ranged by
the red hyperboloid. The blue cone is the boundary for moments
representing squeezed light. On the right, we present a section of that
plot; the red (light gray) shaded region represents the forbidden states,
while the blue (dark gray) shaded one gives the squeezed states.

This condition is equivalent to requiring )ﬁr}& > 1/4, which
has a direct physical interpretation in the ball-and-stick
diagram analyzed before: for any physical state, the uncertainty
area (in quadrature units) must be greater than or equal
to 1/4. For coherent states the noise is equally distributed
in both quadratures, A2 = A3 = 1/2, so they are depicted
by a minimal circle. In squeezed states, the fluctuations in
one quadrature are reduced below the value 1/2, at the
expense of the corresponding increased fluctuations in the
other quadrature, such that they preserve the minimum area.
Consequently, (3.3) is saturated by squeezed states.

In this regard, the condition of squeezing is just A2 < 1/2,
which translates into

V@) > c@a —1/2, (3.4)

which completes (3.3).

Inequalities (3.3) and (3.4) can be represented in a very
appealing way if we plot C(af,a) as a function of the real and
imaginary parts of V (&), as done in Fig. 3. In these variables,
the equality in (3.3) defines a hyperboloid with the vertex in the
point (0,0,1/2), and all the moments about that hyperboloid
are then possible. On the other hand, (3.4) defines a cone with
the vertex in the same point (0,0,1/2): all points below the
cone are squeezed.

Finally, we use once more Eq. (3.1), with A = 4%and B =
1, to get (af2a%) > (a'?)(a?). Assuming further the condition
of zero complex amplitude, (a) = 0, we have

c@at*ay =2@'a) +1, (3.5)

which is saturated by the states spanned on the Hilbert
subspace of the superposition of coherent states |+«), a general
solution of the eigenvalue problem a?|y) = a?|r).

B. Intelligent states

We have been using the term extremal to loosely refer to
those states for which the inequalities analyzed so far hold as
equalities.

If the lower bound in an uncertainty relation is state
dependent, states satisfying the equality in the uncertainty
relation need not give a minimum in the uncertainty product.
This is the case with our fundamental relation (2.4), so
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it requires a distinction between intelligent states [33] and
minimum uncertainty product states [34].

The intelligent states are solutions of the non-Hermitian
eigenvalue problem [35]

(A —ir %)W) =Q¥,), reR, (3.6)

where €2 is the eigenvalue. Although the solution to this
equation has already been discussed in Ref. [15], we provide
here a simplified alternative derivation. By introducing the
complex parameter o = —ir/~/2 exp(—if), where 6 is the
phase of the quadrature %y, (3.6) reads

@' +a@—-olV) = (@~ laP)¥).  (7)

Since [a@ — o, (@' + )] = M(@a" + «*)”~! for every inte-
ger M, one quickly guesses that the intelligent states we are
looking for are

W) = A (a +a")M|a), (3.8)

where ./ is a normalization constant and |«) is a coherent
state. We can also expand this expression in the Fock basis:
using the generating function of the generalized Laguerre
polynomials L (x) [36],

o0 "

A +0)Me™ = LY "(x), (3.9
; ra+m
we get
|%,) = A exp(—al /2>Z QML () [n)
(3.10)

These states were found in a different context by Yuen [37],
who called them near-photon-number eigenstates. They are
also called crescent states [38] because the contours of
their Wigner function are sheared due typically to a Kerr
nonlinearity [39,40]. It is worth stressing the close similarity
of these states, written as in Eq. (3.10), with the expansion
for Fock-displaced states [41], although their arguments differ
in the sign, which introduces remarkable differences in the
photon-number distribution.

For weak fields |a| < 1, the crescent states reduce to the
so-called M-photon-added coherent states [42]

|W,) ~ A aM|a), (3.11)

while in the strong-field limit || > 1 they can be well
approximated by the superposition of coherent and single-
photon-added coherent states

[Wo) =~ A (Ja) + yaTla)), (3.12)
with y = M /a*. For this particular case, we get
(@) =a+ 4y +lyPa),
(3.13)

(A) = 1+l + A (IyPlaf® = 1),

and the normalization constant is A4 ~! = 1+ y*a + ya* +
[y 12(1 + |e|?). The second-order moments can be analytically
computed, although the expression is a bit involved and of
no interest for our purposes here. In Fig. 4 we have plotted
V(#) versus C(a',a), as we did in Fig. 2, for these states with
varying values of y. For comparison, we have included also
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FIG. 4. (Color online) Same plot as in the right panel of Fig. 2.
The solid line indicates the weak bound (2.13), while the crosses
represent the approximate intelligent states (3.12) for several values
of y.

the bound imposed by the weak uncertainty relation (2.13). As
we can appreciate, the intelligent states are always very close
to that bound.

The final idea we wish to stress is that all these extremal
states can be used as powerful tools to pinpoint important
classes of states. Let us look at the crescent states (or the
approximation of M -photon-added coherent states treated be-
fore). Since they are intelligent states for (2.4), the coefficient

A~ 2
V@) [M)‘] (3.14)

~ @)l [ M)

quantifies how far a given state is from being intelligent.
Inequality (2.8) becomes trivial in the case of zero am-
plitude. In that case, however, inequality (3.5) provides a
saturable bound. As discussed before, the extremal states
are given by the linear superposition of coherent states
|+a), including Schrodinger-cat-like states |«) + |—a). The
performance measure suitable to check these states is

_c@Pa’ V@) 4402 —1/2)02 +1/2) |
T2+ () Z 5
(3.15)

which again provides a robust and simple alternative to more
sophisticated methods. It is obvious that equivalent measures
can be employed for the other extremal states explored here.

Although the inequalities reported above are fairly simple,
they have interesting and not-yet-recognized consequences
for quantum information processing. Actually, photon-added
and catlike states are archetypes of non-Gaussian nonclassical
feasible states [43,44]. Homodyne detection has been the only
tool employed thus far to certify these states. However, the
dimension of the reconstruction subspace predetermines the
accuracy of the result.

The inequalities for G| and G, offer an intriguing alter-
native free from any assumptions of this kind: measuring
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the lower-order moments suffices to quantify how far the
experimental data are from the ideal prediction. We emphasize
that this really makes sense from an experimental viewpoint
and concurs with previous achievements in quantum optics:
photon-number states were characterized by sub-Poissonian
noise, and squeezed states were characterized by quadrature-
noise reduction.

The proposed benchmarking for photon-added and catlike
states is more demanding, for it requires the control of both
photon number and quadrature variances. It is probably not by
chance that all interesting and feasible quantum states are in
some sense extremal.

Finally, we mention that a complete test along these lines
would require addressing all the moments [45], which is much
more demanding than our simple procedure.

IV. CONCLUDING REMARKS

In short, we have formulated a tight uncertainty relation
for photon number and rotated quadratures, which can be

PHYSICAL REVIEW A 91, 042128 (2015)

considered a sensible and timely approach to the canonical pair
number phase. We have also constructed intelligent states for
this uncertainty relation, retrieving the well-known crescent
states. This saturable inequality, along with some other
obtained from a systematic application of the Cauchy-Schwarz
inequalities to all the second-order moments of the variables
involved, can serve as a handy toolbox for nonclassical state
diagnosis, an alternative to the more onerous and laborious
quantum tomography.
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