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There are different results in the literature for the interaction energy of two separated nonidentical atoms in
the case when one of the atoms is prepared in an excited state. Moreover, there are different ways to define this
interaction energy. If the interaction energy is defined as a shift in the energy of the initial state of the combined
atomic system, it is possible to carry out a time-dependent calculation that provides an unambiguous method for
obtaining this shift. The time-dependent calculations lead to an interaction energy that is an oscillatory function
of the interatomic separation, in contrast to the nonoscillatory behavior that is predicted using an alternative
theory based on time-independent perturbation theory.
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The calculation of the interaction energy between two
neutral, nonidentical atoms is considered by many to represent
a fundamental problem in atomic physics. If both atoms are in
their ground states, the calculation is straightforward, leading
to the well-known van der Waals or Casimir-Polder interaction
potentials. However, when one of the atoms (atom A) is
initially in an excited state and the other atom (atom B) in its
ground state, problems arise owing to the fact that this initial
state undergoes decay. To talk about an interaction energy
between an excited state atom and a ground state atom in a
meaningful way, two conditions must be met. First the system
must be in a quasistationary steady state; that is, an interaction
energy can be defined only for times t satisfying

γAt � 1, (1)

where γA is the decay rate of the initially excited atom. Second,
there must be sufficient time to establish communication
between the atoms to achieve this quasistationary state; that is,
we must require

t > R/c, (2)

where R is the separation of the atoms. For optical transitions,
it is easy to satisfy both inequalities (1) and (2), even for atoms
separated by distances much greater than a wavelength.

Exactly what constitutes the “interaction energy” is open to
interpretation. For two identical atoms [1], there is less room
for confusion. In that case, the symmetric and antisymmetric
states involving one atom excited and the other in its ground
state are each shifted in energy by the interaction. The shifts
depend on the atoms’ separation in an oscillatory fashion.
However, in the case of dissimilar atoms, there are two ways
to define the interaction energy for an initial condition in which
atom A is excited and atom B is in its ground state.

One possibility is to define the interaction energy as the
ac Stark shift experienced by atom B as a result of the field
emitted by atom A. With this definition, the interaction energy,
calculated in perturbation theory, is nonoscillatory since it
depends on the field intensity produced by atom A at the
position of atom B [2]. It seems to me that this is the definition
used by Rizzuto et al. [3], Sherkunov [4], and Haakh et al.
[5]. These authors all found an interaction energy that is
a nonoscillatory function of the interatomic separation [6].
Experimentally, it is not easy to measure such a shift, since
atom B must be probed using an external field to reveal the

shift; in addition the perturbation theory calculation remains
valid only for times in which the field from atom A is not
modified by the back action from atom B.

On the other hand, we can define the interaction energy as
the energy shift of the initial state obtained after adiabatically
eliminating the effects of atom B. It is this definition that
I adopt. With this definition, there are still contradictory
results for the interaction potential. Implicit in the results of
Berman and Milonni [7] and Fu and Berman [8] are interaction
energies that are an oscillatory function of the interatomic
separation. On the other hand, Power and Thirunamachandran
[9], hereafter referred to as PT, used stationary, fourth-order
nondegenerate perturbation theory to calculate the change in
energy of the initial state of the combined atomic system and
found no oscillatory behavior. PT argued that other authors
[10], who also used time-independent perturbation theory and
found an oscillatory dependence, did not properly account for
δ-function contributions associated with the poles that appear
in energy denominators. The PT results are in agreement
with the shift calculated using the ac Stark definition of the
interaction energy (see, also, another paper by Power and
Thirunamachandran [11] in which the ac Stark definition of
the interaction appears to be used).

In the PT calculation, there are 12 contributions to the
interaction energy, corresponding to diagrams i–xii in their
paper. The only energy-conserving contribution of the 12
is that associated with diagram x, described below. Other
non-energy-conserving terms assure that causality is preserved
with respect to physical observables and also lead to the
“normal” contributions to van der Waals interaction energy.
However, in the limit that the transition frequencies of the
two atoms are comparable, diagram x makes the dominant
contribution to the interaction energy. It is the only term
considered in this paper. The use of nondegenerate, time-
independent perturbation theory is problematic since some of
the intermediate states are degenerate with the initial state.
To deal with this problem, PT modify degenerate energy
denominators by the addition of a small imaginary term,
with the sign of the term chosen “depending on whether a
real photon can be emitted or absorbed.” In a time-dependent
approach, no such approximations are needed.

It is my contention that PT calculate the energy shift of
the initial state. Regardless of whether or not this is a correct
interpretation of their work, I want to stress that the shift to
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which I refer in this work is the energy shift of the initial state
of the A-B system resulting from the off-resonant interaction
between atoms A and B. This shift could be measured, in
principle, as a displacement of the line center of the radiation
emitted by atom A.

To investigate whether or not the sign convention used
by PT is correct, I first recall their stationary perturbation
calculation; this helps to establish the notation and show
that the PT result can be obtained using the Weisskopf-
Wigner approximation. I then reevaluate the interaction energy
using two time-dependent approaches, one based on coupled
equations for the state amplitudes and one based on fourth-
order, time-dependent perturbation theory. Both of these time-
dependent calculations yield identical results—the interaction
energy is an oscillatory function of interatomic separation.
Thus it appears that the PT convention for choosing the signs
of the imaginary terms may be unjustified.

I. FOURTH-ORDER STATIONARY-STATE
PERTURBATION THEORY

The physical system consists of two atoms and the radiation
field, which is initially in its vacuum state. Each atom is
modeled as having a J = 0 ground state and a J = 1 excited
state. The atoms are assumed to be stationary, with the nucleus
of atom A at the origin and that of atom B at position R. Atom
A has a transition frequency ωA and is excited initially to the
m = 0 sublevel of its excited state. Atom B has a transition
frequency ωB and is initially in its ground state. The initial
state for the atoms and the field is denoted by |A〉. The atoms
interact via the transverse radiation field, whose electric field
vector is given by

E(r) =i
∑
k,λ

√
2π�ωk

V ε
(λ)
k

(
akλe

ik·r − a
†
kλe

−ik·r), (3)

whereV is the quantization volume and akλ (a†
kλ) is an annihila-

tion (creation) operator for a photon having propagation vector
k, frequency ωk , and polarization ε

(λ)
k . The unit polarization

vectors are defined by

ε
(1)
k = cos θk cos φkx̂ + cos θk sin φkŷ − sin θkẑ, (4)

ε
(2)
k = − sin φkx̂ + cos φkŷ. (5)

In dipole approximation, the interaction Hamiltonian is

V = − [μA · E (0) + μB · E (R)] , (6)

where μA and μB are the dipole operators of atoms A and B,
respectively. The lowest-order contribution to the energy shift
of the initial state that is R-dependent occurs to fourth order
in V . In the limit that

|ωBA| = |ωB − ωA| � ωA, (7)

the dominant contribution to this energy shift, corresponding
to diagram x in PT, involves a chain of three intermediate
states denoted by |kλ〉 (corresponding to both atoms in their
ground states and a photon of type kλ in the field), |Bm〉
(corresponding to atom B in the m sublevel of its excited state,
atom A in its ground state, and no photons in the field), and

∣∣k′λ′〉 (corresponding to both atoms in their ground states and
a photon of type k′λ′ in the field).

Using stationary perturbation theory with these intermedi-
ate states, I find that the fourth-order contribution to the energy
shift of the initial state is given by

δE = − 1

�3

1∑
m=−1

∑
kλ,k′λ′

× 〈A| V ∣∣k′λ′〉 〈k′λ′∣∣V |Bm〉 〈Bm|V |kλ〉 〈kλ| V |A〉
(ωk′ − ωA) ωBA (ωk − ωA)

.

(8)

Immediately, we run into a problem since the frequency
denominators (ωk′ − ωA) and (ωk − ωA) lead to divergent
results. To avoid these divergences, one often adds small
imaginary terms to these terms. A critical question then relates
to the choice of sign for these imaginary terms. It is my
contention that the appropriate signs must be chosen on the
basis of a time-dependent calculation (which I provide in
Secs. III and IV). However, in an attempt to reproduce the
results of PT, I replace Eq. (8) by

δE = − 1

�3
lim

ε→0+

1∑
m=−1

∑
kλ,k′λ′

× 〈A| V ∣∣k′λ′〉 〈k′λ′∣∣V |Bm〉 〈Bm|V |kλ〉 〈kλ| V |A〉
(ωk′ − ωA − iε) ωBA (ωk − ωA + iε)

,

(9)

using the sign choice made by PT. As we shall see, the use of
such a prescription does not appear to be justified.

Despite the fact that I believe Eq. (9) to be incorrect, I
evaluate it to establish some notation and to check that it
reproduces the PT result. Going to continuum field states and
carrying out the angular integrations in Eq. (9), I arrive at

δE = �
γAγB

ωAB (2πi)2 lim
ε→0+

1∑
m=−1

∫ ∞

0
dωk

∫ ∞

0
dωk′

ω3
k

ω3
A

ω3
k′

ω3
B

× fm(k′,R)f ∗
m(k,R)

(ωk′ − ωA − iε) (ωk − ωA + iε)
, (10)

where

γA = 4

3

|μA|2 ω3
A

�c3
and γB = 4

3

|μB |2 ω3
B

�c3
(11)

are the excited state decay rates of atoms A and B, μA (μB)
are matrix elements of the dipole moment operator between
the ground state and the m = 0 excited state of atom A (B),

f0(k,R) =
√

4π

[
j0(kR)Y00(θ,φ) + 1√

5
j2(kR)Y20(θ,φ)

]
,

(12a)

f±1(k,R) = −
√

4π
√

3/20j2(kR)Y2,±1(θ,φ), (12b)

jn is a spherical Bessel function, and Y
m is a spherical
harmonic.

The integrals over frequency can be carried out easily if a
Weisskopf-Wigner type approximation is made. That is, all k
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and k′s appearing in Eq. (10) are evaluated at kA = ωA/c and
all ωk and ωk′s are evaluated at ωA, except when they appear
in phases. Moreover the frequency integrals are extended to
−∞. Since the ωk pole is in the lower half plane and the
ωk′ pole is in the upper half plane, only terms varying as
exp(−ikR) exp(ik′R) contribute to the integral. In other words,

δE ∼ �
γAγB

ωAB

1∑
m=−1

|gm(kAR)|2 ω3
A

ω3
B

× lim
ε→0+

1∑
m=−1

1

(2πi)2

∫ ∞

−∞
dωk

×
∫ ∞

−∞
dωk′

eik′Re−ikR

(ωk′ − ωA − iε) (ωk − ωA + iε)

= �
γAγB

ωAB

ω3
A

ω3
B

1∑
m=−1

|gm(kAR)|2 , (13)

where

g0(x) =
√

4π

{
− i

2x
Y00(θ,φ)

+ 1√
5

[
− i

2

(
3

x3
− 1

x

)
− 3

2x2

]
Y20(θ,φ)

}
, (14a)

g±1(x) = −
√

4π
√

3/20Y2,±1(θ,φ)

[
− i

2

(
3

x3
− 1

x

)
− 3

2x2

]
.

(14b)

For example, if we take atom B to lie on the positive x axis,
then

δE = �
γAγB

ωAB

ω3
A

ω3
B

9

16

[
1 − (kAR)2 + (kAR)4

(kAR)6

]
. (15)

On the other hand, if we average over all orientations of atom
B, as do PT, we find

δE = �
γAγB

ωAB

ω3
A

ω3
B

3

8

[
3 + (kAR)2 + (kAR)4

(kAR)6

]
. (16)

The term in brackets is identical to that in the second term of
Eq. (2.17) in PT. To compare the coefficients, I use Eq. (11) to
write the coefficient appearing in Eq. (16) as

C = 3

8
�
γAγB

ωAB

ω3
A

ω3
B

= 2

3

|μA|2 |μB |2 k6
A

�ωAB

, (17)

whereas, in the limit (7), PT obtain

CPT = 2

9

|μ(A)|2 |μ(B)|2 k6
A

�ωAB

. (18)

In PT, |μ(A)|2 represents the average dipole moment of the
initial state; that is, |μ(A)|2 = |μA|2 for our initial conditions.
On the other hand |μ(B)|2 is a sum over all components; that
is, |μ(B)|2 = 3 |μB |2 for our J = 0 to J = 1 transition. Thus
the two results, Eqs. (17) and (18), are identical.

I should stress that the Weisskopf-Wigner approxima-
tion introduces negligibly small errors (of order ε/ωA or
γA,γB/ωA) in this and subsequent calculations in this paper.
The result given by Eq. (16) agrees with PT’s calculation of

the contribution of diagram x to the interaction energy. This
provides the dominant contribution to the interaction energy
when inequality (7) is satisfied.

II. COUPLED EQUATIONS

As I have indicated, there are four probability amplitudes,
bA, bBm, bkλ, and bk′λ′ which enter the calculation. By
eliminating the intermediate-state amplitudes bkλ and bk′λ′ ,
one can obtain the following coupled equations for the state
amplitudes bA and bBm [7,8]:

ḃA = −γA

2
bA − γA

2

μB

μA

eiωAB t

×
1∑

m=−1

∫ t

0
Gm(R,τ,ωB)bBm(t − τ )dτ, (19a)

ḃBm = −γB

2
bBm − γA

2

μB

μA

e−iωAB t

×
∫ t

0
Hm(R,τ,ωA)bA(t − τ )dτ, (19b)

where

Gm(R,τ,ωB) = π−1ω−3
B

∫ ∞

0
dωk ω3

ke
−i(ωk−ωB )τ fm(k,R),

(20a)

Hm(R,τ,ωA) = π−1ω−3
A

∫ ∞

0
dωk ω3

ke
−i(ωk−ωA)τ f ∗

m(k,R),

(20b)

and a standard interaction representation is used with the f ’s
given by Eqs. (12) [12]. Retardation is readily apparent in these
equations. If we set

bBm(t) = e−iωAB tdBm(t), (21)

then

ḃA = −γA

2
bA − γA

2

μB

μA

ω3
A

ω3
B

×
1∑

m=−1

∫ t

0
Gm(R,τ,ωA)dBm(t − τ )dτ, (22a)

ḋBm = −
(γB

2
− iωAB

)
dBm

− γA

2

μB

μA

∫ t

0
Hm(R,τ,ωA)bA(t − τ )dτ. (22b)

Note that both Gm and Hm are now evaluated at ωA.
The integrals over ωk in Eq. (20) can be carried out using

a Weisskopf-Wigner type approximation, as in the previous
section. In this manner, we find [7,8]

Gm(R,τ,ωB ) = [eikARδ (τ − R/c) Mm(kA,R)

+ e−ikARδ (τ + R/c) M∗
m(kA,R)], (23a)

Hm(R,τ,ωA) = [eikARδ (τ − R/c) Pm(kA,R)

+ e−ikARδ (τ + R/c) P ∗
m(kA,R)], (23b)
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where

M0(k,R)

= P0(k,R) = −
√

4π

{
i

ρ
Y00(θ,φ)

+ 1√
5

[
i

(
3

ρ3
− 1

ρ

)
+ 3

ρ2

]
Y20(θ,φ)

}
,

(24a)

M±1(k,R) =
√

4π
√

3/20

[
i

(
3

ρ3
− 1

ρ

)
+ 3

ρ2

]
Y2,±1(θ,φ),

(24b)

P±1(k,R) =
√

4π
√

3/20

[
i

(
3

ρ3
− 1

ρ

)
+ 3

ρ2

]
Y ∗

2,±1(θ,φ),

(24c)

and ρ = kR. For fixed R, the δ functions δ (τ + R/c) do not
contribute to the time integrals in Eq. (22). As a consequence,
we obtain

ḃA = −γA

2
bA − γA

2

μB

μA

ω3
A

ω3
B

eikAR

×
1∑

m=−1

Mm(kA,R)dBm(t − R/c), (25a)

ḋBm = −
(γB

2
− iωAB

)
dBm

− γA

2

μB

μA

eikARPm(kA,R)bA(t − R/c). (25b)

The atoms are dissimilar; in other words the frequency
difference |ωBA| is assumed to be much greater than γA + γB

so there cannot be resonant exchange of excitation between
the two atoms. In the limit |ωAB | � γA,γB , the solution of
Eq. (25b) is approximately

dBm ≈ −i
γA

2ωAB

μB

μA

eikARPm(kA,R)bA(t − R/c), (26)

which implies that

ḃA = −γA

2
bA + i

γAγB

4ωAB

× e2ikARMm(kA,R)Pm(kA,R)bA(t − 2R/c). (27)

When inequality (1) holds, we can set bA(t − 2R/c) ≈ bA(t).
It then follows that the energy shift is simply

δE = −�
γAγB

4ωAB

ω3
A

ω3
B

Re

[
e2ikAR

1∑
m=−1

Mm(kA,R)Pm(kA,R)

]
,

(28)
an oscillatory function of kAR. For atom B on the x axis
(θ = π/2, φ = 0),

δE = −�
γAγB

4ωAB

ω3
A

ω3
B

× Re

(
e2iρA

{
−3

2

[
i

(
1

ρ3
A

− 1

ρA

)
+ 1

ρ2
A

]}2
)

, (29)

where

ρA = kAR.

If we average over all orientations of atom B, we find

δE = −�
γAγB

4ωBA

ω3
A

ω3
B

Re

(
e2iρA

{(
1

ρA

)2

× +
(

1

2

) [(
3

ρ3
A

− 1

ρA

)
− 3i

ρ2
A

]2
})

. (30)

III. FOURTH-ORDER TIME-DEPENDENT
PERTURBATION THEORY

To make a closer connection with the PT result, I use
time-dependent perturbation theory, holding off evaluating the
integrals over frequency until the end of the calculation. The
appropriate equations for the field amplitudes (in an interaction
representation) are

ḃA(t) = −γA

2
bA(t) + 1

i�

∑
kλ

〈A| V |kλ〉 eiωAkt bkλ(t),

(31a)

ḃkλ(t) = 1

i�

∑
kλ

〈kλ| V |A〉 e−iωAkt bA(t)

+ 1

i�

1∑
m=−1

∑
kλ

〈kλ| V |Bm〉 e−iωBkt bBm(t), (31b)

ḃBm(t) = −γB

2
bBm(t) + 1

i�

∑
kλ

〈Bm| V |kλ〉 eiωBkt bkλ(t),

(31c)

where

ωαk = ωα − ωk , α = A,B. (32)

At this point it is appropriate to say something about the
initial conditions. Up to this point and in this section, it is
assumed implicitly that atom A is excited suddenly at time
t = 0. By “suddenly,” I mean that the excitation time is short
compared with R/c and |ωBA|−1. There are some who might
argue that this sudden excitation introduces spurious terms
into the calculation. To alleviate such fears, I show in the
Appendix that the results are unchanged even if we excite
atom A adiabatically, that is, in a time interval T satisfying the
inequalities γ −1

A � T > |ωBA|−1.
To fourth order in perturbation theory, assuming that, to

zeroth order in V , bA(t) ≈ e−γAt/2,

i�ḃA(t) = i�

(
1

i�

)4 1∑
m=−1

∑
kλ,k′λ′

〈A| V ∣∣k′λ′〉
× 〈

k′λ′∣∣V |Bm〉 〈Bm| V |kλ〉 〈kλ| V |A〉 eiωAk′ t

×
∫ t

0
dt ′eiωk′B t ′

∫ t ′

0
dt ′′eiωBkt

′′
e−γB(t ′−t ′′)/2

×
∫ t ′′

0
dt

′′′
eiωkAt ′′′e−γAt ′′′/2. (33)
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The real part of the term on the right-hand side can be identified
as δE for γAt � 1. After carrying out the angular averages, I
obtain

δE = Re

{
i�

γAγB

4 (2πi)2

∫ ∞

0
dωk

∫ ∞

0
dωk′

ω3
k

ω3
A

ω3
k′

ω3
B

I (k,k′)

×
1∑

m=−1

[
Mm(k,R)eikR + M∗

m(k,R)e−ikR
]

× [
Pm(k′,R)eik′R + P ∗

m(k′,R)e−ik′R]}
, (34)

where

I (k,k′) = e−γAt/2

(ωkA+iγA/2) (ωk′A+iγA/2) (iωAB +γA/2−γB/2)

− e−γB t+iωAB t

(ωkB+iγB/2) (ωk′B +iγB/2) (iωAB+γA/2−γB/2)

− ie−iωkAt

ωkk′ (ωkA + iγA/2) (ωkB + iγB/2)

+ ie−iωk′At

ωkk′ (ωk′A + iγA/2) (ωk′B + iγB/2)
. (35)

I neglect the second term in I (k,k′) since it is rapidly varying
in time. Moreover, I set e−γAt/2 ≈ 1 and replace (ωkB + iγB)
[and (ωk′B + iγB)] by ωAB and (iωAB + γA − γB) by iωAB ,
since this leads to corrections of order γA,B/ωAB [13]. As a
consequence,

I (k,k′) ≈ 1

iωAB (ωkA + iγA/2) (ωk′A + iγA/2)

− ie−iωkAt

ωkk′ωAB (ωkA + iγA/2)

+ ie−iωk′At

ωkk′ωAB (ωk′A + iγA/2)
. (36)

The sum of the second and third terms in Eq. (36) does not
diverge at ωkk′ = 0. As a consequence, we can set

1

ωkk′
= 1

2
lim

ε→0+

(
1

ωkk′ + iε
+ 1

ωkk′ − iε

)

= lim
ε→0+

ωkk′

(ωkk′)2 + ε2
= P

(
1

ωkk′

)
, (37)

since excluding the nondivergent point ωkk′ = 0 does not
change the value of the integral expression (34). Once this
substitution is made, we can neglect any terms varying as
γAt or γAR/c in what follows based on inequalities (1), (2),
and (7). By substituting Eqs. (36) and (37) into Eq. (34)
and interchanging k and k′ in the last term [that is, the term
multiplied by the last line in Eq. (36)], I find

δE = �
γAγB

4ωAB

1

(2πi)2

1∑
m=−1

Re
∫ ∞

0
dωk

∫ ∞

0
dωk′

ω3
k

ω3
A

ω3
k′

ω3
B

×
[

Am(k,k′)
(ωkA + iγA) (ωk′A + iγA)

+ Bm(k,k′) + Cm(k,k′) + Dm(k,k′) + Em(k,k′)
(ωkA + iγA)

× e−iωkAtP

(
1

ωkk′

)]
, (38)

where

Am(k,k′) = [Mm(k,R)eikR + M∗
m(k,R)e−ikR]

× [Pm(k′,R)eik′R + P ∗
m(k′,R)e−ik′R], (39a)

Bm(k,k′) = [Mm(k,R)Pm(k′,R)

+Mm(k′,R)Pm(k,R)]ei(k+k′)R, (39b)

Cm(k,k′) = [Mm(k,R)Pm(k′,R)

+Mm(k′,R)Pm(k,R)]∗e−i(k+k′)R, (39c)

Dm(k,k′) = [Mm(k,R)P ∗
m(k′,R)

+M∗
m(k′,R)Pm(k,R)]ei(k−k′)R, (39d)

Em(k,k′) = [Mm(k,R)P ∗
m(k′,R)

+M∗
m(k′,R)Pm(k,R)]∗e−i(k−k′)R. (39e)

I have carried out the integrations in the radiation zone without
making the Weisskopf-Wigner approximation and verified
that they reproduce the same results that I obtain using the
Weisskopf-Wigner approximation. In the Weisskopf-Wigner
approximation, it is a simple matter to carry out the contour
integrations. The first term in Eq. (38), arising from Eq. (39a),
yields

δE1 = �
γAγB

4ωAB

ω3
A

ω3
B

Re
1∑

m=−1

M∗
m(kA,R)P ∗

m(kA,R)e−2ikAR.

(40)

The fourth and fifth terms, arising from Eqs. (39d) and (39e)
cancel one another, while the second and third terms, arising
from Eqs. (39b) and (39c), contribute

δE2 = −�
γAγB

4ωAB

ω3
A

ω3
B

× Re
1∑

m=−1

[M∗
m(kA,R)P ∗

m(kA,R)e−2ikAR

+Mm(kA,R)Pm(kA,R)e2ikAR�(t − 2R/c)], (41)

where � is a Heaviside function. The first term Eq. (41)
cancels the δE1 contribution to δE given in Eq. (40), while the
remaining term in Eq. (41) provides the correct retardation.
For t > 2R/c, we find

δE = −�
γAγB

4ωAB

ω3
A

ω3
B

Re
1∑

m=−1

Mm(kA,R)Pm(kA,R)e2ikAR,

(42)
in agreement with Eq. (28).

IV. DISCUSSION

I have shown that the interaction energy between an
initially excited atom and a ground state atom is an oscillatory
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function of their separation if only energy-conserving terms are
included, that is, terms that dominant the interaction energy
when |ωBA| � ωA. My results do not agree with those of PT,
who found a nonoscillatory dependence. I have argued that the
choice of the signs of the ε’s used in such a calculation must be
justified on the basis of a time-dependent calculation, which I
have carried out. Had PT used the prescription

1

(ωk′A − iε) ωBA (ωkA − iε)
(43)

instead of

1

(ωk′A − iε) ωBA (ωkA + iε)
, (44)

they would have obtained our result, Eq. (42), in the limit
that t > 2R/c (note that prescription (43) is the one used by
Philpott [10]). On a physical basis, the oscillatory dependence
is to be expected. Atom A emits radiation whose frequency is
centered at ωA and this radiation is scattered back to atom A

by atom B; in other words there is not an integral over a large
range of frequencies as there is for non-energy-conserving
transitions. As a consequence, we would expect that the spatial
phase factor e2ikAR associated with this scattering process
should enter into the expression for the interaction energy.
As a reminder, I am defining the interaction energy as the shift
in energy of the initial state resulting from the interatomic
interaction.

ACKNOWLEDGMENTS

I am pleased to acknowledge extensive and intensive
discussions of this problem with Peter Milonni. I also benefited
from discussions with G. W. Ford, R. Merlin, and D. G. Steel.

APPENDIX: ADIABATIC EXCITATION OF ATOM A

It may be argued that the sudden excitation of atom A

leads to spurious terms in the interaction energy. In this
appendix, I show that the only spurious term of this nature that
could be attributed to a sudden excitation of atom A actually
corresponds to the second term of Eq. (35), a term that was
neglected in any event since it was rapidly varying on a time
scale of order 1/ |ωAB |.

In trying to ascertain the effect of a sudden turn-on of an
excitation field, it is good practice to begin with all atoms in
their ground states. That is the procedure I follow. I denote by
|g〉 the state in which both atoms are in their ground states. The
atoms are subjected to a field pulse whose carrier frequency is
resonant with ωA; this field acts only on atom A. As such, in
the absence of any interatomic interactions [that is, to zeroth
order in the interaction potential V appearing in Eqs. (31)], the
amplitude equations are

ḃg(t) = −χ (t)bA(t), (A1a)

ḃA(t) = −γA

2
bA(t) + χ (t)bg(t), (A1b)

where χ (t) is one-half the Rabi frequency associated with the
pulsed field excitation of atom A. It is assumed that the field
is turned on adiabatically (with respect to 1/ |ωAB |) in a time
interval T > 1/ |ωAB | centered at t = 0 and I consider only

times t satisfying

1

|ωAB | < T � t � 1

γA

(A2)

(the only time range that makes sense for an adiabatic field
turn-on and one for which we can define an interaction energy).
In the limit that inequality (A2) holds, the approximate solution
of Eqs. (A1) is

b
(0)
A (t) ≈ A(t)e−γAt/2, (A3)

where

A(t) = sin
∫ t

−∞
χ (t ′)dt ′. (A4)

Under these conditions, A(t) ≈ 0 for t < −T/2 and A(t) ≈ 1
for t > T/2 (assuming a π pulse).

Thus the expression

eiωAk′ t
∫ t

0
dt ′eiωk′B t ′

∫ t ′

0
dt ′′eiωBkt

′′
e−γB(t ′−t ′′)/2

×
∫ t ′′

0
dt

′′′
eiωkAt ′′′e−γAt ′′′/2 (A5)

appearing in Eq. (33) should be replaced by

G = eiωAk′ t
∫ t

0
dt ′eiωk′B t ′

∫ t ′

0
dt ′′eiωBkt

′′

×
∫ t ′′

0
dt

′′′
eiωkAt ′′′e−γAt ′′′/2A(t ′′′)

= eiωAk′ t
∫ t

−∞
dt1e

iωk′B t1

∫ t1

−∞
dt2e

iωBAt2

×
∫ t2

−∞
dt3e

iωkA(t3−t2)e−γAt3/2A(t3), (A6)

where I set γB = 0 as it is unimportant in this calculation.
Since the function

f (t2) =
∫ t2

−∞
dt3e

iωkA(t3−t2)e−γAt3/2A(t3) (A7)

is slowly varying with respect to eiωBAt2 , we can do the integral
over t2 in Eq. (A6) by parts to arrive at

G ≈ − 1

iωAB

e−iωk′At

∫ t

−∞
dt1e

iωk′B t1eiωBAt1f (t1)

= − 1

iωAB

e−iωk′At

∫ t

−∞
dt1e

iωk′At1

×
∫ t1

−∞
dt2e

iωkA(t2−t1)e−γAt2/2A(t2)

= − 1

iωAB

e−iωk′At

∫ t

−∞
dt1e

iωk′k t1

×
∫ t1

−∞
dt2e

iωkAt2e−γAt2/2A(t2). (A8)
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I now switch the order of integration and find

G = − 1

iωAB

e−iωk′At

∫ t

−∞
dt2e

iωkAt2e−γAt2/2A(t2)

×
∫ t

t2

dt1e
iωk′k t1dt1

= −1

ωABωkk′
e−iωk′At

∫ t

−∞
dt2e

iωkAt2e−γAt2/2A(t2)

× (eiωk′k t − eiωk′k t2 )

= 1

ωABωkk′

∫ t

−∞
dt2e

−γAt2/2A(t2)
(
eiωk′A(t2−t) − eiωkA(t2−t)) .

(A9)

Note that this expression is well defined in the limit that
ωkk′ ∼ 0.

What is important to note is that A(t2) varies from 0 to 1 in
a time interval T centered about t = 0. Thus we have

G ≈ 1

ωABωkk′

∫ T/2

−T/2
dt2A(t2)

(
eiωk′A(t2−t) − eiωkA(t2−t)

)

+ 1

ωABωkk′

∫ t

T /2
dt2e

−γAt2/2
(
eiωk′A(t2−t) − eiωkA(t2−t)

)
.

(A10)

The first term is of order T/t � 1 times the second so we can
replace the entire expression by

G ≈ 1

ωABωkk′

∫ t

T /2
dt2e

−γAt2/2 (
eiωk′A(t2−t) − eiωkA(t2−t))

≈ 1

ωABωkk′

∫ t

0
dt2e

−γAt2/2 (
eiωk′A(t2−t) − eiωkA(t2−t)) ,

(A11)

where I used the fact that |ωk′A| T , |ωkA| T , and γAT are much
less than unity.

Carrying out the integration, I find

G ≈ 1

iωAB (ωk′A + iγA/2) (ωkA + iγA/2)

− ie−iωkAt

ωABωkk′ (ωkA + iγA/2)
+ ie−iωk′At

ωABωkk′ (ωk′A + iγA/2)
,

(A12)

which reproduces Eq. (36). Thus, whether we excite atom A

suddenly or adiabatically (with respect to 1/ |ωBA|) from an
initial condition in which both atoms are in their ground states,
we get an oscillatory interaction energy. The “spurious” term
introduced by a sudden turn-on of the field, represented by
the second term in Eq. (35), does not appear in the adiabatic
calculation; however, this term contributed negligibly to the
final result given by Eq. (36), under the assumption that it is
rapidly oscillating and averages to zero on a time scale greater
than 1/ |ωAB |.
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