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Quantum metrology is a general term for methods to precisely estimate the value of an unknown parameter
by actively using quantum resources. In particular, some classes of entangled states can be used to significantly
suppress the estimation error. Here we derive a formula for rigorously evaluating an upper bound for the estimation
error in a general setting of quantum metrology with arbitrary finite data sets. Unlike in the standard approach,
where lower bounds for the error are evaluated in an ideal setting with almost infinite data, our method rigorously
guarantees the estimation precision in realistic settings with finite data. We also prove that our upper bound shows
the Heisenberg limit scaling whenever the linearized uncertainty, which is a popular benchmark in the standard
approach, shows it. As an example, we apply our result to a Ramsey interferometer, and numerically show that
the upper bound can exhibit the quantum enhancement of precision for finite data.
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I. INTRODUCTION

High-precision measurement is one of the most important
techniques for developing science and technology. Quantum
metrology is a general term for methods to precisely estimate
the value of an unknown parameter by actively using quantum
resources like entanglement and squeezing [1–3]. For example,
when we use a separable state on an N -partite system in
a Ramsey interferometer, an estimation error of phase δφ

scales as O(1/
√

N ) (the standard quantum limit, SQL).
On the other hand, when we use an entangled state like
a Greenberger-Horne-Zeilinger (GHZ) state with the same
number of particles, δφ scales as O(1/N ) (the Heisenberg
limit, HL). Such quantum enhancement of precision has
been experimentally achieved in several quantum systems like
quantum optics [4], ions [5], and atoms [6].

One of the main goal of quantum metrology theory is to
derive a fundamental lower bound on the estimation error. So
far many different benchmarks for the estimation error have
been proposed and analyzed [3]. The most popular benchmark
is the root mean squared error (RMSE), and there are two
standard approaches for analyzing the RMSE. One is to apply
a linear approximation of an estimation method to the RMSE.
The approximated RMSE is called a linearized uncertainty
(LU). The other is to analyze the classical and quantum
Cramér-Rao bounds (CRBs), which are lower bounds on the
RMSE for a class of estimation methods. LU and CRBs show
the SQL scaling for separable states and the HL scaling for
some entangled states.

From a theoretical viewpoint, LU and CRBs both are
interesting and important quantities. From an experimental
viewpoint, however, there are two problems with the use of
these quantities.

First problem is about their φ dependency. LU and CRB are
functions of the parameter to be estimated. The true value of
the parameter is unknown in experiments, which is the reason
why we try to estimate it. This means that we cannot know
the exact values of LU and CRB in experiments, although it is
possible to estimate their values from experimental data.
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Second problem is about their invalidity for finite data. In
experiments an amount of available data is finite. A linear
approximation is used in the derivation of the LU, while
many estimation methods used in quantum metrology like
a maximum-likelihood estimator are nonlinear functions of
data, and the nonlinearity is not negligible for finite data.

CRBs are lower bounds of the RMSE, and they are not
attainable when the amount of data is finite [7]. Unattainable
lower bounds on an estimation error cannot be used to
guarantee an estimation precision.

Because the final goal of quantum metrology experiments is
a highly precise estimation of an unknown parameter, it is best
to rigorously guarantee an estimation precision, if possible. In
order to do that, we need an upper bound on an estimation error
satisfying two conditions: (1) be independent of the unknown
parameter φ, and (2) be valid for finite data.

In this paper we derive an upper bound satisfying these
two conditions for a general setting in quantum metrology.
In Sec. II we explain the setting, notation, and our approach.
In Sec. III we introduce an estimation method called a least
squares estimator and give a theorem about the estimator.
The upper bound shown in the theorem makes it possible to
rigorously guarantee the estimation precision in experiments
with finite data, which is not possible by the standard approach
of quantum metrology theory. We sketch the proof, and the
details are given in Appendix B. In Sec. IV we prove that
the upper bound shows the scaling the same as the LU, which
means that the upper bound shows the HL scaling whenever the
LU shows it. As an example, we apply our method to a Ramsey
interferometer with N atoms, and perform Monte Carlo
simulations for N = 1–100. The numerical results indicate
that the upper bound can exhibit the quantum enhancement
of precision for finite data. In Sec. V we discuss how to treat
known and unknown systematic errors in our approach. We
summarize this paper in Sec. VI.

II. PRELIMINARIES

A. Procedures and assumptions

We consider the following procedure of quantum metrology
(Fig. 1).
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FIG. 1. (Color online) A procedure for quantum metrology: First,
we prepare a known quantum state ρ on a probe system. Second, the
state undergoes a dynamical process with an unknown parameter φ.
Third, we perform a known measurement on the probe system and
obtain an outcome. Fourth, we repeat the steps described above n

times. Then we obtain data consisting of n outcomes. Finally, we
calculate an estimate of φ from the data with an estimation method.

Step 1. Prepare a known quantum state ρ on a probe
system.

Step 2. The state undergoes a dynamical process κφ with
an unknown parameter φ. Our aim is to estimate φ ∈ � :=
[φmin,φmax], where φmin and φmax are upper and lower values
of possible φ and are assumed to be known.

Step 3. After the dynamical process, the state changes to a
state ρφ = κφ(ρ), which depends on φ. We perform a known
measurement on the state and obtain a measurement outcome.

Step 4. Repeat steps 1 to 3 a number n of times [8]. Then
we have data consisting of n outcomes, xn = {x1, . . . ,xn}.

Step 5. Calculate an estimate of the parameter φest
n (xn)

from the data by a data processing method φest. This function
from data to a real value is called an estimator.

The measurement performed in step 3 is described by a pos-
itive operator-valued measure (POVM) � = {�x}x∈X , which
is not necessarily a projective measurement. We assume that
the measurement outcomes are bounded, i.e., −∞ < a � x �
b < +∞. This assumption is valid in practice, because there
are technical cutoffs on observable values of measurement
outcomes in any experiment. The probability distribution is
given by p(x|ρφ,�) = Tr[ρφ�x]. Let E[�|ρφ] and V[�|ρφ]
denote the expectation and variance of the measurement
outcome of �, respectively. The expectation is a function
of φ, and let f denote the function, i.e., f (φ) := E[�|ρφ].
We assume that f is injective and that the derivative df

dφ
does

not take zero for any φ ∈ �. Let Rf denote the range of f ,
i.e., Rf := {f (φ)|φ ∈ �}. Then g := f −1 exists for Rf , and
we have φ = g(E[�|ρφ]). So, if we know the value of the
expectation, we can calculate the value of φ.

B. Estimators

For given data xn, we define the sample mean Sn :=
1
n

∑n
i=1 xi , where xi is the ith outcome in the n outcomes.

The sample mean converges to the expectation E[�|ρφ] in
the limit of n going to infinity (the law of large numbers).
It might seem natural to consider a direct inversion estimator
φDI

n (xn) := g(Sn). In general, however, the direct inversion
estimator does not work well, because the sample mean is a
random variable and can be out of Rf , which is caused by a
statistical fluctuation originated from the finiteness of n. The
inverse function g = f −1 may not exist outside Rf , and we

may not be able to calculate φDI
n (xn) there. Even if g exists,

φDI
n (xn) can be out of �.

One solution to avoid this problem of φDI mentioned
above is a maximum-likelihood estimator (MLE) φML

n (xn) :=
argminφ′∈�

∏n
i=1 p(xi |ρφ′,�). Unlike φDI

n , an estimate of the
MLE always exists and takes a value in �. The MLE has good
statistical properties, for example, it attains the Cramér-Rao
bound in the limit of n going to infinity [9]. The asymptotic
(n ∼ ∞) behavior of the MLE is well known in classical
statistics [10], but a rigorous analysis for finite n is an open
problem. Instead of the MLE, we consider a different estimator
relatively easier to be analyzed.

C. Standard benchmarks

Let us choose an estimator φest. The estimates φest
n (xn)

depend on data and probabilistically fluctuate. This means that
we can observe estimates deviated from the true parameter φ.
This difference is called an estimation error of the estimator. To
evaluate an estimation error is an important topic in quantum
metrology.

As explained in Sec. I, the most popular benchmark is the
root mean squared error (RMSE), which is defined as

(δφ)RMSE :=
√
E

[∣∣φest
n − φ

∣∣2]
. (1)

Generally speaking, a direct analysis of the RMSE itself is
difficult, since the RMSE is a function of the dynamics κφ

and our choice of the initial state ρ, measurement �, and
estimator φest. There are two approaches to reduce the degree
of this difficulty for analyzing the RMSE.

The first approach is to approximate the RMSE for the
DI estimator. When the number of repetition n is sufficiently
large, we can approximate the RMSE of the DI estimator as
follows:

(δφ)RMSE(ρ,κφ,�,φest = φDI,n) ≈ (δφ)LU := BLU√
n

, (2)

where

BLU :=
√
V[�|ρφ]∣∣ d

dφ
E[�|ρφ]

∣∣ . (3)

In this approximation the nonlinearity of the DI estimator
is ignored. In other words, the right-hand side of Eq. (2) is
the RMSE of the linearized DI estimator, and it is called the
linearized uncertainty (LU). The details of this approximation
are given in Appendix A 2.

An advantage of the LU is that the analysis is easy, because
it consists of the variance and derivative of expectation with
respect to a single outcome. Estimates of BLU such as√

V[�|ρφ]∣∣ d
dφ
E[�|ρφ]

∣∣
∣∣∣∣
φ=φDI

n (xn)

(4)

are calculated in some experiments [11–13].
The second approach is to analyze an asymptotic lower

bound of the RMSE, which is independent of our choice
of estimator. Let us introduce two classes of estimators in
statistical estimation theory. When the expectation of an
estimator with respect to n equals the true parameter, the
estimator is called unbiased for n. When the derivative of
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the expectation converges to one in the limit of n going
to infinity, the estimator is called asymptotically unbiased.
For any unbiased estimator with respect to n, the following
inequality holds under certain normal conditions [9,14,15]:

(δφ)RMSE(ρ,κφ,�,φest,n) � 1/
√

nFC(φ,ρ,�) (5)

� 1/
√

nFQ(φ,ρ), (6)

where FC and FQ are quantities called the classical and quan-
tum Fisher information, respectively. Equations (5) and (6)
are called the classical and quantum Cramér-Rao inequality
for finite n, respectively. Most of the estimators in quantum
metrology, which include DI an MLE, are biased for finite
n, which originated from the nonlinear parametrization of
probability distributions. This means that the Cramér-Rao in-
equalities for finite n is not applicable for quantum metrology.
However, most “natural” estimators in quantum metrology,
which includes DI and MLE again, are asymptotically unbi-
ased. For any asymptotically unbiased estimator, the following
inequality holds under certain normal conditions [9,14,15]:

lim
n→∞

√
n(δφ)RMSE(ρ,κφ,�,φest,n) � 1/

√
FC(φ,ρ,�) (7)

� 1/
√

FQ(φ,ρ). (8)

where Eqs. (7) and (8) are called classical and quantum
Cramér-Rao inequalities for asymptotic n, respectively. The
MLE attains the classical Cramér-Rao bound (CRB) for
asymptotic n [9]. An advantage of the CRBs is their generality
for our choice of estimator and measurement. The classical
CRB is independent of estimators, and the quantum CRB is
independent of measurement. So, classical and quantum CRBs
are used for evaluating ultimate performances of a combination
of ρ and � or ρ, respectively.

From a theoretical viewpoint, LU and CRBs are interesting
and important quantities. However, they are not suitable for
rigorously evaluating an estimation error in experiments with
finite n because of the following two reasons. (1) LU and
CRBs are functions of the unknown parameter φ, and we
cannot know their exact values in experiments. Of course we
can estimate their values by calculating quantities like Eq. (4),
but the calculated values are estimates that can be different
from the exact value. (2) LU and CRBs are not valid for finite
n as explained in this subsection. When n is sufficiently large,
we may be able to validate the use of them, but it is unclear
which n can be interpreted as sufficiently large. In order to
rigorously evaluate an estimation error for finite n, we need
another benchmark.

D. Confidence intervals

Roughly speaking, confidence intervals are intervals in-
cluding the true parameter with high probability. We propose
the size of an confidence interval as a new benchmark in
quantum metrology. When an interval I is a function of data
and is independent of φ, the function is called an interval
estimator. We would like to find an interval estimator such that
the interval estimates I (xn) include φ with high probability.
When I (xn) 	 φ holds with probability at least 1 − ε for
any φ ∈ �, the interval estimator is called a confidence
interval with (1 − ε)-confidence level. For example, I = � is

a confidence interval with 1-confidence level. This example is
trivial and useless. We need a nontrivial and useful confidence
interval. The following two properties are required for a
“nontrivial” and “useful” confidence interval in quantum
metrology experiments.

Property 1. Its size converges to zero in the limit of n going
to infinity.

Property 2. Its size can show a quantum enhancement
when we use a quantum resource in quantum metrology
experiments.
In this paper we propose a new confidence interval and prove
that it has the two properties mentioned above.

Before moving on to our results, let us note their difference
from known results. Confidence interval and confidence level
are well known concepts in classical statistics, and there
are many statistical techniques to calculate them for finite
data [16]. Most of these techniques are, however, based on the
normal distribution approximation (NDA), and a confidence
interval calculated with the NDA is called an approximate con-
fidence interval. The NDA is valid when the number of
measurement trials n is sufficiently large (the central limit
theorem), but again, it is not clear which n can be considered as
sufficiently large. Therefore, it is not rigorous to apply approx-
imate confidence intervals for finite data in experiments. In
contrast to an approximate confidence interval, our confidence
interval is calculated without any assumption on probably
distribution and is called an exact confidence interval.

An exact confidence region, which is a generalization
of confidence interval to higher dimensional spaces, for
quantum tomography was proposed in [17]. The estimation
object in quantum tomography is quantum state, process, or
measurement, which includes multiparameters. Some readers
might think that the result in [17] would be applicable for
quantum metrology because quantum metrology is an estima-
tion problem of quantum process with a single parameter, but
this is not correct. Quantum process tomography and quantum
metrology are different problems from statistical viewpoints,
and the result for quantum tomography obtained in [17] is
not applicable for quantum metrology. The main difference
is from the difference of their parametrization of probability
distribution. In quantum tomography, the probability distri-
bution of measurement outcome can be linearly parametrized
by the estimation object. In quantum metrology, on the other
hand, the estimation object is a single parameter, but the
parametrization of probability distribution is nonlinear. In gen-
eral, statistical estimation problems with linearly parametrized
and nonlinearly parametrized probability distributions have
different statistical properties. For example, the classical CRB
for finite data is attainable in the linear case, but it is not
attainable in the nonlinear case [18]. Actually, in quantum
tomography, there exists an unbiased estimator that attains the
equality of the classical Cramér-Rao inequality for any finite
data, but in quantum metrology, there do not exist any unbiased
estimators that attain the equality for finite data. This is caused
by the difference of their parametrizations. Therefore, quantum
process tomography and quantum metrology are different
problems in statistical estimation. Additionally, the linearity
of the parametrization in quantum tomography is used in the
derivation of the exact confidence region in [17], and the
result is not applicable for quantum metrology. In order to
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derive an exact confidence interval that reflects quantumness
of resources in quantum metrology, we need new mathematical
techniques.

III. RESULTS

We consider the least squares (LS) estimator,

φLS
n (xn) := argmin

φ′∈�

|Sn − f (φ′)|. (9)

Same as the MLE, the LS estimates φLS
n (xn) always exist and

take values in �. Let us define

SLS
n := argmin

r ′∈Rf

|r ′ − Sn|, (10)

Vmax := (b − a)2/4, (11)

Vn := 1

n − 1

n∑
i=1

⎛
⎝xi − 1

n

n∑
j=1

xj

⎞
⎠

2

, (12)

L := max
φ′∈�

∣∣∣∣
{

df

dφ
(φ′)

}−3
d2f

dφ2
(φ′)

∣∣∣∣. (13)

Note that Vn is the unbiased sample variance of the data and
satisfies E[Vn] = V[�|ρφ]. Using the quantities introduced
above, we define three functions of data xn and an user-
specified constant ε:

δ1(xn,ε) := 1∣∣ df

dφ

(
φLS

n

)∣∣
√

2

n
Vmax ln

2

ε
+ L

n
Vmax ln

2

ε
, (14)

δ2(xn,ε) := 1∣∣ df

dφ

(
φLS

n

)∣∣
{√

2

n
Vn ln

4

ε
+ 8(b − a)

3(n − 1)
ln

4

ε

}

+ L

2

{√
2

n
Vn ln

4

ε
+ 8(b − a)

3(n − 1)
ln

4

ε

}2

, (15)

δ(xn,ε) :=
{
δ1(xn,ε) if n = 1,

min{δ1(xn,ε),δ2(xn,ε)} if n � 2.
(16)

The following theorem guarantees that the deviation of the LS
estimates from the true parameter is upper bounded by δ with
high probability.

Theorem 1. For any number of measurement trials n � 1,
user-specified constant ε ∈ (0,1), and true parameter φ ∈ �,∣∣φLS

n (xn) − φ
∣∣ � δ(xn,ε) (17)

holds with probability at least 1 − ε.
Theorem 1 means that the δ defined in Eq. (16) is a rigorous
“error bar” on LS estimates φLS

n (xn) for arbitrary finite
data. In other words, φ = φLS

n (xn) ± δ(xn,ε) holds with high
probability 1 − ε, where we choose the value of ε as small as
we like. The δ(xn,ε) becomes larger as we choose smaller ε.
This means that, if we require a higher confidence level for a
fixed n, the error bar becomes larger for safe. If we want to
keep the confidence level, we need to increase the number of
measurement.

We sketch the proof of Theorem 1, with the details shown
in Appendix B. The LS estimator is a nonlinear function of

the sample mean, which is the origin of the main difficulty for
the analysis. We use the Taylor expansion up to second order
with the remainder, and reduce the problem to an analysis on
the deviation of the sample mean from the true expectation
|Sn − f (φ)|. In the reduction we use the contractivity of the
LS estimator, i.e.,∣∣SLS

n − f (φ)
∣∣ � |Sn − f (φ)|, ∀xn, φ ∈ �. (18)

The contractivity is one of the two main keys in this proof,
and this is the reason why we choose the LS estimator.
After the reduction we use two inequalities for evaluating
|Sn − f (φ)|. One is Hoeffding’s inequality [19], which is
well known in classical statistics. The other is the empirical
Bernstein inequality [20], which is a new mathematical tool
developed for finite data analysis in machine learning. The
empirical Bernstein inequality is the second key in this proof.
It enables us to show a relation to the linearized uncertainty
explained later. By combining these inequalities, contractivity,
and Taylor expansion, we obtain Theorem 1.

It is important that δ(xn,ε) depends only on data xn and
user-specified constant ε, and that it is independent of the true
parameter φ. [The probability distribution of δ(xn,ε) depends
on φ.] So, we can calculate δ(xn,ε) without knowing φ. Let us
introduce a data-dependent interval

Iε(xn) := �∩[
φLS

n (xn)−δ(xn,ε),φLS
n (xn)+δ(xn,ε)

]
. (19)

Theorem 1 guarantees that this interval estimator Iε is an exact
confidence interval with (1 − ε)-confidence level. For exam-
ple, when we choose ε = 0.01, we obtain a confidence interval
Iε=0.01(xn) that includes φ with probability at least 99%. What
we do after step 4 in quantum metrology experiments is to
choose a value of ε as we like and to calculate the LS estimate
φLS

n (xn) and δ(xn,ε) from data obtained. Then we have an
estimate of the unknown parameter φ with a rigorous error
bar.

IV. ANALYSIS

The main purpose of this paper is to propose an exact
confidence interval satisfying properties 1 and 2 explained in
Sec. II D. By definition of δ in Eq. (16), our new exact confi-
dence interval Iε satisfies property 1. In this section we theoret-
ically and numerically prove that Iε also satisfies property 2. In
Sec. IV A we show relations to the LU and quantities calculated
in experiments. Especially the relation to the LU indicates
that δ shows a quantum enhancement for asymptotically large
n whenever the LU shows it. In Sec. IV B we perform a
numerical simulation of a Ramsey interferometer. The result
indicates that, even for finite n, δ can show the quantum
enhancement when a quantum resource is used in quantum
metrology.

A. Relation to LU

First, we explain a relation between δ and the LU. By
definition, δ2 decreases as O(1/

√
n), and the coefficient of

the dominant term is given by
√

2Vn ln 4
ε
/| df

dφ
(φLS

n )|. This

coefficient converges to BLU

√
2 ln 4

ε
in the limit of n going

to infinity because Vn and φLS
n converge to V[�|ρφ] and φ,
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respectively. So, we would expect that δ have the scaling the
same as the LU with respect to n and N . Actually we can prove
the following inequality:

lim
n→∞{√nE[δ(xn,ε)]} � BLU

√
2 ln

4

ε
, (20)

where E denotes the expectation with respect to data xn. The
proof is shown in Appendix C. The logic mentioned above
and Eq. (20) guarantee that, on average, δ(xn,ε) scales the
same as the LU. The upper bound δ shows the HL scaling,
whenever the LU shows it. This is important especially in
noisy cases. The quantum enhancement of precision can be
suppressed when the dynamical process κφ is noisy [21], and
recently there are many proposals for recovering the quantum
enhancement with respect to the LU [22] and CRB [23–25].
Equation (20) indicates that the recovery method with respect
to LU also works well for δ.

Next, we explain a relation between δ and quantities
calculated in experiments. As explained in Sec. II C, estimates
of BLU, such as Eq. (4), have been calculated in some quantum
metrology experiments. Such a quantity also appears in δ. Let
define an estimate of BLU as

Best
LU :=

√
Vn∣∣ df

dφ

(
φLS

n

)∣∣ . (21)

Then the dominant part of δ2 is rewritten as Best
LU

√
2
n

ln 4
ε
.

This means that δ2 is a sum of an estimate of BLU with a
coefficient originated from the value of the confidence level
and the higher order, i.e., O(1/n), terms. The coefficient
and higher order terms are corrections for guaranteeing the
statistical rigorousness. Therefore, our result is not what is
totally different from the conventional method in experiments,
but it is an extension from such a rough method toward
rigorously treating finite data.

B. Example: Ramsey interferometer

We apply our result to a Ramsey interferometer with N

atoms. For a separable probe state of N atoms, the LU scales as
the SQL scaling O(1/

√
N ). On the other hand, for an entangled

state like a GHZ state, the LU can scale as the HL scaling
O(1/N ).

We consider two combinations of initial state and measure-
ment. One is a combination of a separable state [ 1√

2
(|e〉 +

|g〉)]⊗N and the measurement of the total energy, and the other
is that of a GHZ state 1√

2
(|e〉⊗N + |g〉⊗N ) and the measurement

of the parity, where |e〉 and |g〉 are excited and ground states
of an atom, respectively. In the cases we have BLU = 1/

√
N

for the separable state and BLU = 1/N for the GHZ state.
We performed Monte Carlo simulations for the cases

with N =1–100, n=1–10000, φmin = 0, φmax = π/400, φ =
π/4000, and ε = 0.1 (90%-confidence level). The details are
given in Appendix D. In order to analyze typical behaviors
of δ, we calculated expectations of δ and compared them to
expectations of |φLS

n − φ|. Figures 2(a) and 2(b) are the results.
In both Figs. 2(a) and 2(b) the vertical axes are for expected
deviations. Solid and dashed (black) lines are E[δ(xn,ε)] and
E[|φLS

n (xn) − φ|] for the separable state, respectively. Chained
and dotted (red) lines are E[δ(xn,ε)] and E[|φLS

n (xn) − φ|] for
the GHZ state, respectively. The expectations were calculated
by a Monte Carlo sampling with 5000 repetitions.

In Fig. 2(a) the horizontal axis is the number of atoms N .
Plots in the panel express the scaling of the expected deviations
with respect to N with a fixed number of measurement trials,
n = 3000. The expectations of δ are larger than those of
|φLS

n − φ|, which is consistent with Theorem 1. Figure 2(a)
also indicates that, up to N = 100, the expectation of δ for
the GHZ state scales as the HL scaling, although that for the
separable state scales as the SQL scaling.

In Fig. 2(b) the horizontal axis is the number of measure-
ment trials n. Plots in the panel express the scaling of the
expected deviations with respect to n with a fixed number of

FIG. 2. (Color online) Numerical result on expected deviations (E[δ] with ε = 0.1, and E[|φLS
n − φ|]) in a Ramsey interferometer using a

separable or GHZ initial state of N atoms. Expectations were calculated by a Monte Carlo sampling with 5000 repetitions. (a) N dependency
with n = 3000, and (b) n dependency with N = 100. Both panels indicate that δ for the GHZ state shows the HL scaling up to N = 100 for
finite n.
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atoms N = 100. The expectations of δ for both states scale as
O(1/

√
n), and δ for the GHZ state is, on average, 10(=√

N in
the panel) times smaller than δ for the separable state.

In conclusion of the numerical simulations, the expectations
of δ with 90%-confidence level are larger than the expectations
of the actual deviations for both separable and entangled
states, which is consistent with Theorem 1. Furthermore,
Fig. 2 indicates that, compared to the separable state, the
entangled state gives smaller deviation of estimates and smaller
error bar δ. Equation (20) guarantees that δ shows the HL
scaling for asymptotically large n whenever the LU shows
the scaling, and Fig. 2 indicates that δ can also show the
quantum enhancement of precision for finite n. Note that
the Ramsey interferometer is mathematically equivalent to a
Mach-Zehnder interferometer [26], which means that δ can
show the quantum enhancement of precision in an optical
interferometer with N00N states.

V. DISCUSSION

In this section we discuss how to apply our result to some
cases in which unknown systematic errors exist.

A. Partially unknown systematic errors

In Theorem 1 it is assumed that we perfectly know ρ, �,
and the functional form of κφ . This assumption may not be
valid when there exists a systematic error in experiments.

In the standard approach of quantum metrology theory,
a model for the systematic error is introduced, and it is
assumed that the model correctly characterizes the error
and that we know the value of a noise parameter in the
model [21–25,27–30]. Theorem 1 is applicable for such a
perfectly known systematic error. Even if the model is correct,
however, the value that we think of as the noise parameter may
be different from the true value in an experiment. Theorem 1
and the standard approach are not directly applicable for such
a partially unknown systematic error. However, we can obtain
an exact confidence interval for quantum metrology with a
partially unknown systematic error, by modifying Theorem 1
based on the worst case of the noise parameter.

Here let us consider the case that the noise is partially
unknown, i.e., the noise model is correct, but we do not
know the value of a noise parameter in the model. Suppose
that there is an imperfection of the preparation of the initial
state and that it is characterized by a noise model with a
parameter η1. The time evolution is characterized by the
true parameter of interest φ and noise parameter η2. There
is an imperfection in the measurement apparatus, and it is
characterized by a noise model with a parameter η3 (η1, η2, and
η3 can be multiparameters). Suppose that the noise parameters
η := (η1,η2,η3) are unknown, but that we know a region E

including the true noise parameters, i.e., η ∈ E. In this case,
the probability distribution of the measurement outcome is
given by

p(x|φ,η) = Tr
[
κφ,η2

(
ρη1

)
�x,η3

]
. (22)

We know the function form of the probability distribution, but
we do not know the true values of φ and η. Then the functional
forms of f and g depend on the values of η, and the value of δ

depends on η as well. To clarify this noise dependency of φLS
n

and δ, let us use new notations φLS
n (xn,η) and δ(xn,ε,η).

Let η′ := (η′
1,η

′
2,η

′
3) denote the values that we think of as

the true values of η. In general, η′ and η are different. We want
to evaluate the difference between φLS

n (xn,η′), which is a LS
estimate calculated from data and incorrect noise parameter
and φ. We have

∣∣φLS
n (xn,η′) − φ

∣∣
�

∣∣φLS
n (xn,η′) − φLS

n (xn,η)
∣∣ + ∣∣φLS

n (xn,η) − φ
∣∣ (23)

�
∣∣φLS

n (xn,η′) − φLS
n (xn,η)

∣∣ + δ(xn,ε,η) (24)

� max
η∈E

{∣∣φLS
n (xn,η′) − φLS

n (xn,η)
∣∣ + δ(xn,ε,η)

}
, (25)

where Eq. (24) holds with probability at least 1 − ε. Let us
define

δ̃(xn,ε,η′) := max
η∈E

{∣∣φLS
n (xn,η′) − φLS

n (xn,η)
∣∣ + δ(xn,ε,η)

}
.

(26)

We obtain the following theorem.
Lemma 1. For any number of measurement trials n � 1 and

user-specified constant 0 < ε < 1,

∣∣φLS
n (xn,η′) − φ

∣∣ � δ̃(xn,ε,η′) (27)

holds with probability at least 1 − ε.
Lemma 1 provides an exact confidence interval for quantum
metrology with partially unknown noise.

The first term in the right-hand side of Eq. (26) is the effect
of the partially unknown noise. This is a systematic error. The
second term in the right-hand side of Eq. (26) corresponds to
the statistical error. When a noise is partially unknown and
we choose an incorrect value for the noise parameter, any
estimator φest cannot converge to the true parameter φ. So,
when n goes to infinity, δ converges to 0, but δ̃ does not.
To avoid this problem in the case that the noise is partially
unknown, we need to estimate the parameter of interest φ and
noise parameters η both. This simultaneous estimation of φ

and η is a theoretically interesting and practically important
problem, but it is out of the main topic of this paper.

B. Physical vs statistical models

Here we explain a possible method for treating unknown
statistical errors, which is different from the way described in
the previous subsection. An experimental setup of quantum
metrology is characterized by an initial state ρ, a dynamical
process κφ , and a measurement �. Let us call a set (ρ,κφ,�)
a physical model of the experiment.

Let us call the function form of the expectation f a
statistical model for the experiment. Recall that the calculation
of the LS estimate and δ requires only f . So, if we know the
statistical model, we can use Theorem 1 even if we do not
perfectly know the physical model.
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Our strategy is as follows:
Step 1′. We perform a pre-experiment before starting

a quantum metrology experiment for an unknown φ. We
set a known value of φ and perform quantum metrology
experiments.

Step 2′. We repeat the pre-experiment for many different
known values of φ.

Step 3′. We estimate the statistical model f from the data
obtained in the pre-experiments.
If the numbers of known φs and measurement trials for each
known φ are sufficiently large, we have a precise estimate
of the statistical model f , and we can use the estimate
of f instead of the true f in Theorem 1. The method
consisting of steps from 1′ to 3′ is exactly the same as
experiments for observing interference fringes in quantum
metrology [13,31,32]. The precision of estimating f depends
on the way of sampling φs and the choice of estimator
for f . To establish a method for rigorously evaluating a
total precision of interference fringe observation and quantum
metrology for estimating unknown φ after the pre-experiments
is an open problem, which is important for practical quantum
metrology.

VI. SUMMARY

We considered a general setting of quantum metrology,
proposing a least squares estimator and deriving an explicit
formula of an exact confidence interval for the estimator with
an arbitrary finite number of measurement trials. The explicit
formula makes it possible to calculate a rigorous error bar δ on
the least squares estimates in experiments. We showed that the
error bar δ scales the same as the linearized uncertainty, which
is a popular benchmark in the standard approach of quantum
metrology, for asymptotically large number n of measurement
trials. This means that δ asymptotically shows the Heisenberg
limit scaling whenever the linearized uncertainty shows the
scaling. As an example, we applied our results to a Ramsey
interferometer with N atoms and performed Monte Carlo
simulations for N = 1–100 and n = 1–10 000. The numerical
result indicates that, when a GHZ state is used as an initial
state, δ shows the Heisenberg limit scaling for finite n. It
means that δ can also exhibit the quantum entrancement of
precision for finite n. To the best of our knowledge, this is
the first result that makes it possible to rigorously guarantee
an estimation precision in quantum metrology with finite data,
and we hope it finds application in the analysis of experimental
data.
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APPENDIXES

We explain the details of our results. In Appendix A we give
a summary of assumptions and the derivation of the linearized
uncertainty. In Appendix B we give the proof of Theorem 1. In
Appendix C we give the proof of Eq. (20). In Appendix D we
explain the details of the Ramsey interferometer and Monte
Carlo simulation mentioned in Sec. IV B.

APPENDIX A: NOTATIONS AND ASSUMPTIONS

In this Appendix, for convenience we give a summary of
assumptions. We also explain a relation between the RMSE
and LU.

1. List of assumptions

Theorem 1 holds under the following four assumptions.
(A1) We know ρ, �, and the functional form of κφ , i.e.,

we know f .
(A2) The measurement outcomes are bounded, i.e., −∞ <

a � x � b < +∞, ∀x ∈ X .
(A3) f is injective for φ ∈ �.
(A4) The derivative of f is always nonzero on �, i.e.,

| df

dφ
| �= 0, ∀φ ∈ �.
Assumption A1 is the standard assumption not only in

quantum metrology, but also in statistical parameter estima-
tion. Assumption A2 is necessary for the use of Hoeffding’s
inequality (Lemma 2) and empirical Bernstein inequality
(Lemma 3) in the proof of Theorem 1. Unbounded outcomes
can exist theoretically, but outcomes are always bounded in
experiments since there is a technical limit, or cutoff, on an
observable range of measurement outcomes. So, assumption
A2 is natural in experiments. Assumption A3 is necessary for
the uniqueness of the least squares estimates for any data, and
assumption A4 is necessary for avoiding the divergence of δ1

and δ2. In Appendix A 2 we explain that assumptions A3 and
A4 are required in the use of the linearized uncertainty, which
means that A3 and A4 are implicitly assumed in the standard
approach using the LU.

2. Linearized uncertainty and assumptions

We explain a relation between the RMSE and LU
[Eq. (A8)], which clarifies the role of assumptions A3 and
A4 for the LU. The RMSE of an estimator φest is defined by

(δφ)RMSE(φest,n|φ) :=
√
E

[(
φest

n (xn) − φ
)2]

. (A1)

Let us choose the DI estimator φDI as the estimator. The DI
estimates do not necessarily exist for any data. Assumption A3
guarantees the existence of the DI estimates only for Sn ∈ Rf .
When Sn is out of Rf , the DI estimate may not exist. A3 is a
necessary condition for the existence, but it is not a sufficient
condition. However, let us ignore this fact, i.e., we assume that
DI estimates exist for any data. By definition,

f
(
φDI

n

) = Sn (A2)
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holds. We have

V[�|ρφ] = nE[(Sn − E[�|ρφ])2] (A3)

= nE
[{

f
(
φDI

n

) − f (φ)
}2]

. (A4)

We apply the Taylor expansion to f ,

f
(
φDI

n

) = f (φ) + df

dφ
(φ)

(
φDI

n − φ
) + O

(∣∣φDI
n − φ

∣∣2)
, (A5)

and suppose that n is sufficiently large that the nonlinear terms
in the Taylor expansion O(|φDI

n − φ|2) is negligible. Then

V[�|ρφ] = n

(
df

dφ

)2

E
[(

φDI
n − φ

)2]
(A6)

≈ n

(
df

dφ

)2

(δφ)RMSE(φDI,n|φ)2 (A7)

holds. Since df

dφ
�= 0 holds from assumption A4, we obtain

(δφ)RMSE(φDI,n|φ) ≈ 1√
n

√
V[�|ρφ]∣∣ d

dφ
E[�|ρφ]

∣∣ (A8)

= (δφ)LU. (A9)

Equation (A8) means that the linearized uncertainty is an
approximated RMSE of the DI estimator, which is derived
by ignoring the existence problem of the estimator and the
nonlinearity of f . This is the reason why we call (δφ)LU a
linearized uncertainty.

In the derivation of Eq. (A8), the following two conditions
are required in addition to assumptions A3 and A4.

(C1) DI estimates exist for Sn /∈ Rf .
(C2) The number of measurement trials n is sufficiently

large that the nonlinearity of f around φ is negligible.
In the standard approach using the LU, assumptions A1, A3,

A4, and conditions C1 and C2 are implicitly assumed. On the
other hand, Theorem 1 does not require C1 and C2. Especially
the disuse of C2 is important to analyze finite data, because it
is unclear which n can be considered as “sufficiently” large in
C2.

APPENDIX B: PROOF OF THEOREM 1

In this Appendix we show the proof of Theorem 1. We
derive an upper bound of P[|φLS

n − φ| > δ] = 1 − P[|φLS
n −

φ|�δ]. It is difficult to directly analyze this quantity, because
φLS

n is a nonlinear function of Sn and is a biased estimator. On
the other hand, the following two lemmas hold for Sn.

Lemma 2 (Hoeffding’s inequality [19]). Let X be a ran-
dom variable with X ∈ [a,b] and X1,X2, . . . ,Xn be a sequence
of i.i.d. random variables satisfying Xi = X(i = 1, . . . ,n),
respectively. Then for any 0 < ε < 1 and n � 1,

P

[
|Sn − E[X]| >

√
2

n
Vmax ln

2

ε

]
� ε (B1)

holds.
Lemma 3 (Empirical Bernstein inequality [20]). Let X be

a random variable with a � X � b and X1,X2, . . . ,Xn be
a sequence of i.i.d. random variables satisfying Xi = X(i =

1, . . . ,n), respectively. Then for any 0 < ε < 1 and n � 2,

P

[
|Sn − E[X]| >

√
2

n
Vn(Xn) ln

4

ε
+ 8(b − a)

3(n − 1)
ln

4

ε

]
� ε

(B2)

holds [33], where

Vn(Xn) := 1

n − 1

n∑
i=1

⎛
⎝Xi − 1

n

n∑
j=1

Xj

⎞
⎠

2

. (B3)

Note that Vmax in Hoeffding’s inequality is independent of
data, and that Vn(Xn) in the empirical Bernstein inequality is
dependent of data.

First, we reduce the analysis of |φLS
n (xn) − φ| to that of

|Sn − E[�|ρφ]|. Let r denote the argument of g. Using the
Taylor expansion of g(r) around SLS

n up to second order with
the remainder in the Lagrange form, we obtain the following
inequality: ∣∣φLS

n (xn) − φ
∣∣ = ∣∣g(

SLS
n

) − g(r)
∣∣ (B4)

=
∣∣∣∣dg

dr

(
SLS

n

)(
r − SLS

n

) + 1

2

d2g

dr2
(r ′)

(
r − SLS

n

)2
∣∣∣∣ (B5)

�
∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣∣∣r − SLS
n

∣∣ + 1

2

∣∣∣∣d2g

dr2
(r ′)

∣∣∣∣∣∣r − SLS
n

∣∣2
, (B6)

where r ′ is some real number between r and SLS
n . By combining

Eq. (B6) with | d2g

dr2 (r ′)| = |{ df

dφ
(φ′)}−3 d2f

dφ2 (φ′)| � L and the
contractivity, we obtain

∣∣φLS
n (xn) − φ

∣∣ �
∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣|Sn − r| + 1

2
L|Sn − r|2. (B7)

Then δ < |φLS
n − φ| implies

δ <

∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣|Sn − r| + 1

2
L|Sn − r|2. (B8)

By solving this quadratic inequality with δ > 0, we can show
that Eq. (B8) is equivalent to

|Sn − r| >
1

L

{√∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
2

+ 2δL −
∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
}
. (B9)

By substituting δ = δ1 and δ = δ2 into Eq. (B9), we obtain

1

L

{√∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
2

+ 2δ1L −
∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
}

=
√

2

n
Vmax ln

2

ε
,

(B10)

1

L

{√∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
2

+ 2δ2L −
∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
}

=
√

2

n
Vn(xn) ln

4

ε
+ 8(b − a)

3(n − 1)
ln

4

ε
, (B11)

where we used the equalities dg

dr
= ( df

dφ
)−1 from assumption A3

and df

dφ
(φLS

n ) �= 0 from assumption A4 [note that φLS
n (xn) ∈ �
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holds for any xn]. From Lemmas 2 and 3 we obtain

P
[∣∣φLS

n − φ
∣∣ > δ

]
� P

[
|Sn − r| > min

{√
2

n
Vmax ln

2

ε
,

×
√

2

n
Vn(xn) ln

4

ε
+ 8(b − a)

3(n − 1)
ln

4

ε

}]
(B12)

� ε. (B13)

�

APPENDIX C: PROOF OF EQ. (20) IN THE PAPER

Here we show the proof of Eq. (20) in the paper:

lim
n→∞{√nE[δ(xn,ε)]}

� lim
n→∞{√nE[δ2(xn,ε)]} (C1)

= lim
n→∞

{
E

[∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣√Vn

]}√
2 ln

4

ε
(C2)

� lim
n→∞

{√
E

[∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
2]√

E[Vn]

}√
2 ln

4

ε
(C3)

=
√

lim
n→∞E

[∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
2]√

V[�|ρφ]

√
2 ln

4

ε
, (C4)

where we used the Cauchy-Schwarz inequality and the equality
E[Vn] = V[�|ρφ].

From the Taylor expansion we have

dg

dr

(
SLS

n

) = dg

dr
(r) + O

(∣∣SLS
n − r

∣∣). (C5)

At the limit of n to infinity, |SLS
n − r| converges to 0 because

of the contractivity |SLS
n − r| � |Sn − r|, and the law of large

numbers. Then

lim
n→∞E

[∣∣∣∣dg

dr

(
SLS

n

)∣∣∣∣
2]

=
∣∣∣∣dg

dr
(r)

∣∣∣∣
2

(C6)

holds, and we obtain

lim
n→∞{√nE[δ(xn,ε)]} �

∣∣∣∣dg

dr
(r)

∣∣∣∣√V[�|ρφ]

√
2 ln

4

ε
(C7)

=
√
V[�|ρφ]∣∣ dE[�|ρφ ]

dφ

∣∣
√

2 ln
4

ε
. (C8)

�

APPENDIX D: DETAILS OF RAMSEY
INTERFEROMETER SIMULATION

In this Appendix we explain the details of a Ramsey
interferometer and the Monte Carlo simulation. When we use
a separable state of N atoms for the initial state, the LU scales
as the SQL scaling O(1/

√
N ). On the other hand, when we

use an entangled state, the LU can scale as the HL scaling
O(1/N ).

The procedure of the Ramsey interferometer is as follows.

1. Prepare an initial state |φ〉 of N atoms. Each atom is a
two-level system.

2. Each atom independently undergoes a free evolution,
exp(i φ

2 σ3).
3. After the evolution, we perform a π

2 pulse along an axis,
cos φ0 σ1 + sin φ0 σ2, where φ0 is a reference phase to be user
tuned.

4. Perform a projective measurement of an observable A.
5. Repeat 1 to 4 a number n of times.
We consider the following two combinations of the initial

state |ψ〉 and measured observable A.
(1) A product state and energy measurement.

Let us choose a product state

|φ〉 =
[

1√
2

(|e〉 + |g〉)
]⊗N

(D1)

as the initial state, where |e〉 and |g〉 are the excited and ground
states, respectively. We observe the total energy

J3 :=
N∑

j=1

σ
(j )
3 , (D2)

where σ
(j )
3 := I⊗(j−1) ⊗ σ3 ⊗ I⊗(N−j ). The set of possible

measurement outcomes is X = {−N, − (N − 1), . . . ,N −
1,N}. In this combination, the probability distribution is given
by

p(x|ρφ,�) = N !

[(N + x)/2]![(N − x)/2]!

×
{

1 + sin(φ − φ0)

2

} N+x
2

×
{

1 − sin(φ − φ0)

2

} N−x
2

, (D3)

and we obtain the following equalities:

f (φ) = N sin (φ − φ0), (D4)

df

dφ
= N cos (φ − φ0), (D5)

V[�|ρφ] = N cos2(φ − φ0), (D6)

Vmax = N2, (D7)

BLU = 1√
N

, (D8)

{
df

dφ

}−3
d2f

dφ2
= − 1

N2

sin (φ − φ0)

cos3(φ − φ0)
. (D9)

From Eq. (D4), f is a periodic function with period 2π . In
order to satisfy assumptions A3 and A4, the size of � must be
at most smaller than π .

(2) A GHZ state and parity measurement.
Let us choose a GHZ state,

|ψ〉 = 1√
2

(|e〉⊗N + |g〉⊗N ) (D10)
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as the initial state. We observe the parity,

P = (+1)Ng (−1)Ne , (D11)

where Ng and Ne are the particle number operators for |g〉
and |e〉, respectively. The set of possible measurement out-
comes is X = {−1,+1}. In this combination, the probability
distribution is given by

p(x|ρφ,�) = 1

2

{
1 + x cos N

(
φ − φ0 + π

2

)}
. (D12)

In this case we have the following equalities:

f (φ) = cos N

(
φ − φ0 + π

2

)
, (D13)

df

dφ
= −N sin N

(
φ − φ0 + π

2

)
, (D14)

V[�|ρφ] = sin2 N

(
φ − φ0 + π

2

)
, (D15)

Vmax = 1, (D16)

BLU = 1

N
, (D17)

{
df

dφ

}−3
d2f

dφ2
= 1

N

cos N
(
φ − φ0 + π

2

)
sin3 N

(
φ − φ0 + π

2

) . (D18)

From Eq. (D13), f is a periodic function with period 2π/N .
In order to satisfy assumptions A3 and A4, the size of � must
be at most smaller than π/N .

Note that J3 and P are commuting, and that these
are reduced from the measurement of particle numbers for
each energy level in an experiment [31]. Mathematically
these are different observables, but the same measurement
apparatus is used for both in the experiment. So, in cases

(1) and (2), their initial states are different, their observables
are different, and their POVMs are the same. In general,
the LU is larger than or equivalent to the CRB, but in
cases (1) and (2) their LUs coincide with their CRBs,
respectively. This is the reason why we choose different
observables.

We performed a Monte Carlo simulation for cases (1)
and (2) with the following parameters: φmin = 0, φmax =
π/400, φ = π/4000, and ε = 0.1 (90%-confidence level).
The reference phases are chosen as φ0 = −π/8 for case
(1) and φ0 = π/2 − π/10N . We show the result in Fig. 3,
where BLU and φmax − φmin are added to Fig. 2. In Figs. 3(a)
and 3(b) vertical axes are for expected deviations, E[δ(xn,ε)]
and E[|φLS

n (xn) − φ|]. Solid and dashed (black) lines are
E[δ(xn,ε)] and E[|φLS

n (xn) − φ|] for the separable state,
respectively. Chained and dotted (red) lines are E[δ(xn,ε)]
and E[|φLS

n (xn) − φ|] for the GHZ state, respectively. The
expectations were calculated by a Monte Carlo sampling with
5000 repetitions. Each horizontal axis in Figs. 3(a) and 3(b) is
for the number of atoms N and the number of measurement
trials n, respectively. As explained in Sec. IV B, these panels
indicate that δ for the GHZ state shows the Heisenberg limit
scaling O(1/N) for finite n. The scalings of E[δ(xn,ε)] with
respect to N and n are independent of ε, and the quantum
enhancement on δ appears not only for ε = 0.1 but also for
other values of ε,

Solid blue and orange lines in Fig. 3 are BLU√
n

√
2 ln 4

ε
for

cases (1) and (2), respectively. Equation (20) guarantees that
E[δ(xn,ε)] becomes smaller than the new lines in the limit
of n going to infinity. Figure 3(b) indicates that two lines for
E[δ(xn,ε)] (solid black and chained red lines) become closer
to the blue and orange lines as n becomes larger, respectively.

However, lines forE[δ(xn,ε)] are still larger than BLU√
n

√
2 ln 4

ε
at

n = 10 000. This means that n = 10 000 cannot be considered
as a “sufficiently” large number.

FIG. 3. (Color online) Numerical result on expected deviations (E[δ] with ε = 0.1, and E[|φLS
n − φ|]) in a Ramsey interferometer using a

separable or GHZ initial state of N atoms. Expectations were calculated by a Monte Carlo sampling with 5000 repetitions. Solid blue and orange

lines are BLU√
n

√
2 ln 4

ε
for the separable and GHZ states, respectively. Solid green lines are for φmax − φmin, which is a trivial 100%-confidence

interval. (a) N dependency with n = 3000, and (b) n dependency with N = 100. Both panels indicate that δ for the GHZ state shows the HL
scaling O(1/N ) for finite n.
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FIG. 4. (Color online) Numerical result on expected deviations (E[δ1] and E[δ2] with ε = 0.1) in a Ramsey interferometer using a
separable or GHZ initial state of N atoms. Expectations were calculated by a Monte Carlo sampling with 5000 repetitions. (a) N dependency
with n = 3000, and (b) n dependency with N = 100.

Solid green lines in Fig. 3 are for φmax − φmin = π/400 ≈
0.008. Because φLS

n (xn) is always included in � for any data,

∣∣φLS
n − φ

∣∣ � φmax − φmin (D19)

holds with probability 1. So, φmax − φmin gives a trivial
100%-confidence interval. In Fig. 3(a), E[δ] for the separable
state (solid black line) is larger than φmax − φmin (the solid
green line) for all N between 1 and 100. This means that, on
average, n = 3000 is not enough for obtaining a nontrivial
90%-confidence interval in case (1), while the number is
enough in case (2) with N � 10. In Fig. 3(b), E[δ] for
the separable state (solid black line) becomes smaller than
φmax − φmin (solid green line) for n � 6000. If we perform
measurement trials more than 6000 times for the separable
state, it is expected to obtain a nontrivial 90%-confidence
interval

Finally we analyze the behaviors of δ1 and δ2. In
Figs. 4(a) and 4(b) vertical axes are for expected deviations
E[δ1(xn,ε)] and E[δ2(xn,ε)]. Solid and dashed (black) lines
are E[δ1(xn,ε)] and E[δ2(xn,ε)] for the separable state,
respectively. Solid and dashed (red) lines are E[δ1(xn,ε)] and
E[δ2(xn,ε)] for the GHZ state, respectively.

In Fig. 4(a) the horizontal axis is the number of atoms N .
Plots in the panel express the scaling of the expected δ1 and
δ2 with respect to N with a fixed number of measurement
trials, n = 3000. E[δ1] for the separable state (solid black)

is almost constant, although the other three plots decrease
as N becomes large. This is caused by the difference
between scalings of Vmax and Vn. Roughly speaking, Vn and
V[�|ρφ] have the same scaling with respect to N . From
Eqs. (D5), (D6), (D7), (D9), (D14), (D15), (D16), and (D18),
we have the following scalings of δ1 and δ2 with respect to N

for fixed ns:

δ1 =
{
O(1) (the separable state)
O(1/N ) (the GHZ state) , (D20)

δ2 =
⎧⎨
⎩
O(1) (the separable state, small n)
O(1/

√
N ) (the separable state, sufficiently large n)

O(1/N ) (the GHZ state)
.

(D21)

The scaling of the dashed black line is between O(1/
√

N )
and O(1), which means that n = 3000 is not small and is not
sufficiently large.

In Fig. 4(b) the horizontal axis is the number of measure-
ment trials n. Plots in the panel express the scaling of the
expected δ1 and δ2 with respect to n with a fixed number
of atoms, N = 100. Plots for the separable and GHZ states
have a same behavior, i.e., E[δ1] < E[δ2] for small n and
E[δ1] > E[δ2] for large n. For small n, a correction term
8(b−a)
3(n−1) ln 4

ε
in δ2 is not negligible, and δ1 < δ2 holds. For large n,

the correction term becomes negligible, and δ1 > δ2 becomes
true because Vn � Vmax holds.
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