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We investigate the coherence measures induced by fidelity and trace norm, based on the coherence quantification
recently proposed by Baumgratz et al. [T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401
(2014)]. We show that the fidelity of coherence does not in general satisfy the monotonicity requirement as
a measure of coherence under the subselection of the measurement condition. We find that the trace norm of
coherence can act as a measure of coherence for qubits and some special class of qutrits with some restrictions
on the incoherent operators, while the general case needs to be explored further.
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I. INTRODUCTION

Coherence arising from quantum superposition plays a
central role in quantum mechanics. Quantum coherence is an
important subject in quantum theory and quantum information
science and is a common necessary condition for both entan-
glement and other types of quantum correlations. It has been
shown that a good definition of coherence depends not only on
the state of the system ρ, but also on a fixed basis for the quan-
tum system [1]. Up to now, several themes of coherence have
been considered, such as witnessing coherence [2], catalytic
coherence [3], the thermodynamics of quantum coherence [4],
and the role of coherence in biological system [5]. There
has been no well-accepted efficient method for quantifying
coherence until recently. Girolami proposed a measure of
quantum coherence based on the Wigner-Yanase-Dyson skew
information [6]. It is implementable in theoretical as well as
experimental schemes with the current technology. Baumgratz
et al. introduced a rigorous framework of quantification of
coherence and proposed several measures of coherence, which
are based on the well-behaved metrics including the lp norm,
relative entropy, trace norm, and fidelity [1]. The quantification
of coherence promoted in a unified and rigorous framework
thus stimulated many further considerations about quantum
coherence [7–11].

From the view point of the definition, one can straightfor-
wardly quantify the coherence in a given basis by measuring
the distance between the quantum state ρ and its nearest
incoherent state. This property is similar to that of the
well-studied measures of the quantum correlations, e.g.,
entanglement and quantum discord [12–14]. We remark that
the coherence measures are to be applied to all quantum
systems, in comparison with quantum correlation measures,
which naturally involve multiple parties [7]. We know that
several basic criteria are proposed that should be satisfied
by any measure of the entanglement [12,14]. In comparison,
the coherence measures presented by Baumgratz et al. also
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need to satisfy four necessary criteria [1]. Consider a finite-
dimensional Hilbert space H with d = dim(H). We note that
I is a set of quantum states, called incoherent states, that are
diagonal in a fixed basis {|i〉}di=1. Then any proper measure of
the coherence C must satisfy the following conditions.

(i) C(ρ) � 0 for all quantum states ρ and C(ρ) = 0 if and
only if ρ ∈ I.

(ii a) Monotonicity under all the incoherent completely
positive and trace-preserving (ICPTP) maps �: C(ρ) �
C(�(ρ)), where �(ρ) = ∑

n KnρK
†
n and {Kn} is a set of Kraus

operators, which satisfies
∑

n K
†
nKn = I with KnIK

†
n ⊂ I.

(ii b) Monotonicity for average coherence under subselec-
tion based on measurement outcomes: C(ρ) �

∑
n pnC(ρn),

where ρn = KnρK
†
n

pn
and pn = Tr(KnρK

†
n) for all {Kn} with∑

n K
†
nKn = I and KnIK

†
n ⊂ I.

(iii) Nonincreasing under mixing of quantum states:∑
n pnC(ρn) � C(

∑
n pnρn) for any ensemble {pn,ρn}.

As shown in [1], the condition (ii b) is important as it allows
for subselection based on measurement outcomes, a process
available in well-controlled quantum experiments. It has been
shown that the quantum relative entropy and l1 norm satisfy
all conditions (i)–(iii). The squared Hilbert-Schmidt norm
satisfies conditions (i), (ii a), (iii), but not (ii b). However, it is
still an open question whether some other coherence measures
satisfy (ii b), for example, the fidelity and trace distance. In
this paper we show that the measure of coherence induced
by the fidelity does not satisfy condition (ii b) and an explicit
example is presented. It is still unknown whether the trace norm
of coherence obeys (ii b) in general; however, we consider
some special circumstances. If we restrict the incoherent
operators Kn to the 2 × 2 and 3 × 2 matrices, we show that
the trace norm of coherence satisfies condition (ii b). For some
special qutrits, if we restrict the incoherent operators Kn to
the 3 × 3 matrices, the trace norm of coherence satisfies this
condition.

This paper is organized as follows. In Sec. II we illustrate
that the fidelity of coherence is not a good measure for quantum
coherence by presenting an example in which condition (ii b)
is not satisfied. In Sec. III we show that condition (ii b) can be
satisfied in qubit and some special qutrits for the trace norm of
coherence with some restrictions on the incoherent operators
Kn. We summarize our results in Sec. IV.
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II. FIDELITY OF COHERENCE

In quantum information theory, the fidelity is a measure of
the distance between quantum states ρ and σ ; it is defined by
[15]

F (ρ,σ ) = [Tr
√

ρ1/2σρ1/2]2. (1)

It is known that the fidelity is non-negative and it is
nondecreasing under completely positive and trace-preserving
(CPTP) maps E , i.e., F (E(ρ),E(σ )) �F (ρ,σ ). Then we find
that the fidelity-induced distance D(ρ,σ ) = 1 − √

F (ρ,σ ) is
monotonic under CPTP maps and F (ρ,σ ) = 1 if and only if
ρ = σ . Hence, the fidelity of coherence can be defined as

Cf (ρ) := min
δ∈I

D(ρ,δ) = 1 −
√

max
δ∈I

F (ρ,δ). (2)

It is easy to verify that the fidelity of coherence fulfills
(i), (ii a), and (iii) [1]. However, it is not clear whether
condition (ii b) is satisfied. To test this condition, without
loss of generality, we consider the simple one-qubit system.
It is known that the fidelity has a more explicit formula for
the one-qubit system. By using a Bloch sphere representation,
quantum states ρ and δ can be expressed as [16]

ρ = I + r · σ

2
, δ = I + s · σ

2
, (3)

where I is the identity operator, r = (rx,ry,rz) and s =
(sx,sy,sz) are the Bloch vectors, and σ = (σx,σy,σz) is a vector
of Pauli matrices. Then the fidelity between qubits ρ and σ

has an elegant form

F (ρ,δ) = 1

2
[1 + r · s +

√
(1 − |r|2)(1 − |s|2)], (4)

where r · s is the inner product of r and s, and |r| and |s| are the
magnitudes of r and s, respectively. Since δ is an incoherent
state, then the Bloch vector s can be expressed as s = (0,0,sz).
This helps us simplify Eq. (4),

F (ρ,δ) = 1

2

[
1 + rzsz +

√(
1 − r2

x − r2
y − r2

z

)(
1 − s2

z

)]
. (5)

To optimize F (ρ,δ) over all incoherent states, we take the
derivative with respect to the parameter sz,

dF (ρ,δ)

dsz

= 1

2

[
rz −

√(
1 − r2

x − r2
y − r2

z

) sz√
1 − s2

z

]
. (6)

After some simple algebraic operation, we obtain

max
δ∈I

F (ρ,δ) = 1

2

[
1 +

√(
1 − r2

x − r2
y

)]
. (7)

Therefore, we give an analytical expression of the fidelity of
coherence for the one-qubit system, namely,

Cf (ρ) = 1 −
√

max
δ∈I

F (ρ,δ)

= 1 −
√

2

2

√
1 +

√(
1 − r2

x − r2
y

)
. (8)

This implies that the state ρdiag that is generated by removing
all the off-diagonal elements and leaving the diagonal elements
in the density operator ρ is not necessarily optimal for the
fidelity of coherence in the one-qubit system. Thus, in general,

we claim

min
δ∈I

[1 −
√

F (ρ,δ)] �= 1 − √
F (ρ,ρdiag). (9)

This makes the subselection process hard to verify. To
simplify the calculation, we choose some peculiar incoherent
operations.

Now we give an example to show that condition (ii b) is
violated. We know that the depolarizing, the phase damping,
and the amplitude damping channels are the qubit incoherent
operations. We consider the amplitude dampinglike operation,
which is an ICPTP map; its operation elements are

K1 =
(

a 0
0 b

)
, K2 =

(
0 c

0 0

)
, (10)

where |a|2 = 1 and |b|2 + |c|2 = 1. After applying this chan-
nel on the one-qubit state ρ, we obtain the output state

ρ1 =
⎛
⎝ |a|2(1+rz)

|a|2(1+rz)+|b|2(1−rz)
ab∗(rx−iry )

|a|2(1+rz)+|b|2(1−rz)

a∗b(rx+iry )
|a|2(1+rz)+|b|2(1−rz)

|b|2(1−rz)
|a|2(1+rz)+|b|2(1−rz)

⎞
⎠ (11)

with the probability

p1 = Tr(K1ρK
†
1) = 1

2 [|a|2(1 + rz) + |b|2(1 − rz)]. (12)

To obtain the quantity Cf (ρ1), we transform ρ1 to the Bloch
representation and define r̂ = {r̂x ,r̂y,r̂z},

r̂x = ab∗(rx − iry) + a∗b(rx + iry)

|a|2(1 + rz) + |b|2(1 − rz)
,

r̂y = −i[a∗b(rx + iry) − ab∗(rx − iry)]

|a|2(1 + rz) + |b|2(1 − rz)
, (13)

r̂z = |a|2(1 + rz) − |b|2(1 − rz)

|a|2(1 + rz) + |b|2(1 − rz)
.

By using Eq. (8) we obtain the fidelity of coherence for ρ1 as

Cf (ρ1) = 1 −
√

2

2

√
1 +

√(
1 − r̂2

x − r̂2
y

)

= 1 −
√

2

2

√√√√
1 +

√
1 − 4|a|2|b|2(r2

x + r2
y

)
[|a|2(1 + rz) + |b|2(1 − rz)]2

.

(14)

Setting |b|2 = 1
4 , |c|2 = 3

4 , r2
x + r2

y = 1
2 , and rz = −

√
2

2 and
substituting them into Eqs. (8), (12), and (14), we then have

p1Cf (ρ1) = 10 − 3
√

2

16

⎡
⎣1 −

√
2

2

√√√√1 +
√

1 − 32

(10−3
√

2)2

⎤
⎦

≈ 0.082 73 (15)

and

Cf (ρ) = 1 −
√

1

2

[
1 +

√
2

2

]
≈ 0.076 12. (16)

Note that the operation K2 makes Cf (ρ2) = 0. Thus, we obtain

2∑
i=1

piCf (ρi) = p1Cf (ρ1) > Cf (ρ). (17)
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FIG. 1. (Color online) Comparison between Cf (ρ) and
p1Cf (ρ1). The black solid line is obtained by taking |a|2 = 1,

|b|2 = 1
4 , |c|2 = 3

4 , r2
x + r2

y = 1
2 , and −

√
2

2 � rz �
√

2
2 in Eqs. (12)

and (14). The red dashed line is obtained by taking the same values
in Eq. (8).

From the above example, we then conclude that condition
(ii b), i.e., Cf (ρ) �

∑
n pnCf (ρn), is not generally true for the

measure of coherence induced by fidelity. If the Bloch vector
r = (rx,ry,rz) satisfies r2

x + r2
y + r2

z � 1 and we suppose that

−
√

2
2 � rz �

√
2

2 , then we can find many examples to illustrate
that the fidelity of coherence does not satisfy condition (ii b),
as shown in Fig. 1.

III. TRACE NORM OF COHERENCE

Next we investigate whether the trace norm may play the
role of the measure to quantify coherence. In this section we
would present progress in this direction.

The trace norm of coherence is defined as

Ctr(ρ) := min
δ∈I

D(ρ,δ), (18)

where D(ρ,δ) = Tr|ρ − δ| is the trace norm between quantum
states ρ and δ. For the trace norm of coherence, we list some
basic formulas, which can help us judge whether the trace
norm of coherence satisfies condition (ii b).

First, we consider the one-qubit states. For the incoherent
states, we know that sx = sy = 0 and the trace norm of
coherence can be simplified as

Ctr(ρ) = min
δ∈I

|r − s| = min
δ∈I

√
r2
x + r2

y + (rz − sz)2

= ‖ρ − ρdiag‖tr =
√

r2
x + r2

y . (19)

Note that Ctr(ρ) has the same form of expression as the l1 norm
of coherence Cl1 (ρ) = ∑

i,j,i �=j |ρi,j | for the one-qubit case. If
we restrict the incoherent operators Kn to 2 × 2 matrices, then
Ctr(ρ) satisfies condition (ii b). Here we simply conclude that
the trace norm can act as a coherence measure for a qubit when
the incoherent operators Kn are all of dimension 2.

For the one-qutrit quantum system, the eigenvalues of the
qutrit density matrices have complex expressions. It seems dif-
ficult to estimate the optimal incoherent state. Fortunately, we

find some special density matrices whose optimal incoherent
states can be obtained.

Theorem. For the three classes of qutrit states

ρX =
⎛
⎝a11 0 a13

0 a22 0
a∗

13 0 a33

⎞
⎠ , (20)

ρY =
⎛
⎝a11 a12 0

a∗
12 a22 0

0 0 a33

⎞
⎠ , (21)

and

ρZ =
⎛
⎝a11 0 0

0 a22 a23

0 a∗
23 a33

⎞
⎠ , (22)

the optimal incoherent state of the trace norm of coherence is
of the form ρdiag.

Proof. We only prove the case of state ρX; states ρY and
ρZ are completely analogous. Since all qutrit incoherent states
have the form

δ =
⎛
⎝x 0 0

0 y 0
0 0 z

⎞
⎠ , (23)

then we can easily obtain the eigenvalues for ρX − δ,

λ1 = a22 − y,

λ2 = y − a22

2
−

√
(2x + y − 2a11 − a22)2 + 4|a13|2

2
,

λ3 = y − a22

2
+

√
(2x + y − 2a11 − a22)2 + 4|a13|2

2
.

(24)

We know that ρX − δ is a normal matrix; its singular values
are the modulus of the eigenvalues for ρX − δ. We then have

||ρX − δ||tr = |λ1| + |λ2| + |λ3|. (25)

In order to minimize ||ρX − δ||tr over all the incoherent states,
we consider the following four cases.

Case 1. When y−a22

2 �
√

(2x+y−2a11−a22)2+4|a13|2
2 and a22 �

y, we can simplify Eq. (25) as

||ρX − δ||tr = 2y − 2a22

� 2
√

(2x + y − 2a11 − a22)2 + 4|a13|2
� 2

√
|a13|2

= ||ρX − ρdiag||tr. (26)

Case 2. When y−a22

2 �
√

(2x+y−2a11−a22)2+4|a13|2
2 and a22 �

y, similar to case 1, we have

||ρX − δ||tr = y − a22 +
√

(2x + y − 2a11 − a22)2 + 4|a13|2
� 2

√
|a13|2

= ||ρX − ρdiag||tr. (27)
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Case 3. When y−a22

2 �
√

(2x+y−2a11−a22)2+4|a13|2
2 , y � a22,

and y−a22

2 +
√

(2x+y−2a11−a22)2+4|a13|2
2 � 0, we have

||ρX − δ||tr = a22 − y +
√

(2x + y − 2a11 − a22)2 + 4|a13|2
� 2

√
|a13|2

= ||ρX − ρdiag||tr. (28)

Case 4. When y−a22

2 �
√

(2x+y−2a11−a22)2+4|a13|2
2 , y � a22,

and y−a22

2 +
√

(2x+y−2a11−a22)2+4|a13|2
2 � 0, we have

||ρX − δ||tr � 2
√

(2x + y − 2a11 − a22)2 + 4|a13|2
� 2

√
|a13|2

= ||ρX − ρdiag||tr. (29)

Through the above analysis, we obtain that the trace norm of
coherence for ρX has the optimal incoherent state ρdiag. �

According to the above theorem, we can then obtain an
analytical expression of the trace norm of coherence for ρX as

Ctr(ρX) = Dtr(ρX,ρdiag) = 2|a13|. (30)

Note that Ctr(ρX) also has the same form of expres-
sion as the l1 norm of coherence Cl1 (ρ) = ∑

i,j,i �=j |ρi,j |
for ρX.

Next we explain in detail that Ctr(ρX) satisfies (ii b)
when the Kraus operators are restricted to 3 × 3 matrices.
Suppose that we have a 3 × 3 matrix K that has the
form

K =
⎛
⎝k11 k12 k13

k21 k22 k23

k31 k32 k33

⎞
⎠ .

If K can act as an incoherent operator, it means that KIK† ⊂
I. Here we set

δ =
⎛
⎝x 0 0

0 y 0
0 0 z

⎞
⎠ ∈ I,

where x + y + z = 1 and x,y,z ∈ R+. Then we have

KIK† =
⎛
⎝|k11|2x + |k12|2y + |k13|2z k11k

∗
21x + k12k

∗
22y + k13k

∗
23z k11k

∗
31x + k12k

∗
32y + k13k

∗
33z

k∗
11k21x + k∗

12k22y + k∗
13k23z |k21|2x + |k22|2y + |k23|2z k21k

∗
31x + k22k

∗
32y + k23k

∗
33z

k∗
11k31x + k∗

12k32y + k∗
13k33z k∗

21k31x + k∗
22k32y + k∗

23k33z |k31|2x + |k32|2y + |k33|2z

⎞
⎠ . (31)

If KIK† ⊂ I, all of the off-diagonal elements must be equal
to zero. Thus, we have

k11k
∗
21x + k12k

∗
22y + k13k

∗
23z = 0, (32)

k11k
∗
31x + k12k

∗
32y + k13k

∗
33z = 0, (33)

k21k
∗
31x + k22k

∗
32y + k23k

∗
33z = 0. (34)

In order to obtain the form of K that satisfies KIK† ⊂ I, we
choose some parameters x, y, and z for Eqs. (32)–(34). Those
equations can be considered in the form

k11k
∗
21 = 0, k12k

∗
22 = 0, k13k

∗
23 = 0,

k11k
∗
31 = 0, k12k

∗
32 = 0, k13k

∗
33 = 0,

k21k
∗
31 = 0, k22k

∗
32 = 0, k23k

∗
33 = 0.

(35)

After some simple algebraic operation, we obtain 27 solutions
of Eq. (35) (see the Appendix for the explicit form of those
matrices).

We note that the elements kij of those 27 matrices can be
equal to zero; then it is straightforward to verify that those
27 matrices can map ρX (as well as ρY and ρZ) to the form
of ρX, ρY , or ρZ . Here we do not consider the completely
positive property for those matrices, so all of the incoherent
operators of dimension 3 are the subset of those 27 matrices.
We conclude that trace norm can act as a coherence measure
for those special qutrits when the incoherent operators Kn are
all of dimension 3.

Interestingly, if we restrict the incoherent operators to 3 × 2
matrices of the form

K =
⎛
⎝k11 k12

k21 k22

k31 k32

⎞
⎠ , (36)

by similar calculations we find that there are nine matrices that
satisfy KIK† ⊂ I, which are listed as follows:

⎛
⎝0 0

0 0
k31 k32

⎞
⎠ ,

⎛
⎝k11 0

0 0
0 k32

⎞
⎠ ,

⎛
⎝0 0

k21 0
0 k32

⎞
⎠ ,

⎛
⎝0 k12

0 0
k31 0

⎞
⎠ ,

⎛
⎝0 0

0 k22

k31 0

⎞
⎠ ,

⎛
⎝k11 k12

0 0
0 0

⎞
⎠ ,

⎛
⎝k11 0

0 k22

0 0

⎞
⎠ ,

⎛
⎝0 k12

k21 0
0 0

⎞
⎠ ,

⎛
⎝0 0

k12 k22

0 0

⎞
⎠ .

We can also verify that those matrices can map the qubit
to the form of ρX, ρY , or ρZ . So we can also conclude
that the trace norm can act as a coherence measure in this
case.

Recently, Bromley et al. obtain that the trace norm of
coherence Ctr coincides with the l1 norm of coherence Cl1 for
two-qubit Bell-diagonal states. It is shown that the equivalence
between Ctr and Cl1 cannot be extended to general two-qubit
states [17].
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IV. CONCLUSION

In this paper we have shown that the fidelity of coherence
does not satisfy condition (ii b) by presenting an example. We
conclude that the measure of coherence induced by fidelity in
general is not a good measure for quantifying coherence. For
the trace norm of coherence, we have shown that the qubit
states and some special qutrit states can satisfy condition (ii b)
with some restrictions on the incoherent operators. Our results
show that the trace norm of coherence is equivalent to the l1
norm of coherence for qubits and special qutrits. Whether the
coherence measure induced by the trace norm can be applied
for general quantum states needs further exploration. Our
findings complement the results of coherence quantification
in Ref. [1].
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APPENDIX

Following Eq. (35), we find that the form of matrix K may
take the following 27 forms:

⎛
⎝0 0 0

0 0 0
k31 k32 k33

⎞
⎠ ,

⎛
⎝k11 0 0

0 0 0
0 k32 k33

⎞
⎠ ,

⎛
⎝0 0 0

k21 0 0
0 k32 k33

⎞
⎠ ,

⎛
⎝0 k12 0

0 0 0
k31 0 k33

⎞
⎠ ,

⎛
⎝0 0 0

0 k22 0
k31 0 k33

⎞
⎠ ,

⎛
⎝0 0 k13

0 0 0
k31 k32 0

⎞
⎠ ,

⎛
⎝0 0 0

0 0 k23

k31 k32 0

⎞
⎠ ,

⎛
⎝k11 k12 0

0 0 0
0 0 k33

⎞
⎠ ,

⎛
⎝k11 0 0

0 k22 0
0 0 k33

⎞
⎠ ,

⎛
⎝0 k12 0

k21 0 0
0 0 k33

⎞
⎠ ,

⎛
⎝0 0 0

k21 k22 0
0 0 k33

⎞
⎠ ,

⎛
⎝k11 0 k13

0 0 0
0 k32 0

⎞
⎠ ,

⎛
⎝k11 0 0

0 0 k23

0 k32 0

⎞
⎠ ,

⎛
⎝0 0 k13

k21 0 0
0 k32 0

⎞
⎠ ,

⎛
⎝0 0 0

k21 0 k23

0 k32 0

⎞
⎠ ,

⎛
⎝0 k12 k13

0 0 0
k31 0 0
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[10] Á. Rivas and M. Müller, arXiv:1409.1770.
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