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Engineered dissipation can be employed to prepare interesting quantum many-body states in a nonequilibrium
fashion. The basic idea is to obtain the state of interest as the unique steady state of a quantum master equation,
irrespective of the initial state. Due to a fundamental competition of topology and locality, the dissipative
preparation of gapped topological phases with a nonvanishing Chern number has so far remained elusive. Here,
we study the open quantum system dynamics of fermions on a two-dimensional lattice in the framework of a
Lindblad master equation. In particular, we discover a mechanism to dissipatively prepare a topological steady
state with nonzero Chern number by means of short-range system bath interaction. Quite remarkably, this
gives rise to a stable topological phase in a nonequilibrium phase diagram. We demonstrate how our theoretical
construction can be implemented in a microscopic model that is experimentally feasible with cold atoms in

optical lattices.
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I. INTRODUCTION

The possibility of dissipatively preparing interesting quan-
tum states of matter in open quantum systems [1-7] provides
a new paradigm in quantum engineering complementing
both practically and conceptually ongoing efforts on the
implementation of many-body Hamiltonians in closed quan-
tum systems [8—12]. The guiding idea of the dissipative
approach is to engineer a controlled interaction of a quantum
system with its environment in order to realize an exotic
state of quantum matter in a nonequilibrium fashion as the
unique steady state of a Markovian quantum master equation,
irrespective of the initial state. The degree of control over
the system bath interaction determines the precision of the
dissipative preparation. This is in contrast to the conventional
Hamiltonian approach where the ability to reach sufficiently
low temperatures is crucial in order to access the physical
properties of a many-body ground state. For synthetic systems
based on ultracold atoms in optical lattices, attaining thermal
equilibrium at low temperatures compared to the energy scales
of the lattice potential is a key challenge, in particular for
fermionic systems where the most efficient scattering channel
is blocked by the Pauli principle. In this light, dissipative
state preparation may be seen as an alternative to cooling
and adiabatic passage mechanisms that is tailor-made to reach
a specific quantum many-body state without relying on the
relaxation of excitation energy by thermal exchange with a
bath. Quite naturally, this approach of directly targeting a
certain steady state has its own challenges, mainly relating
to the complexity of the required controlled system bath
interaction.

The focus of this work is on inherent challenges which
arise if one attempts to dissipatively prepare a particularly
timely class of states, namely topological states of quantum
matter [13-15]. In the context of disordered free fermionic
Hamiltonians describing insulators and superconductors at
mean-field level, the so-called Periodic Table of topological
insulators and superconductors has been discovered [16]
which systematically lists all topological states in the ten
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Altland Zirnbauer symmetry classes [17]. In this framework,
fermionic ground states are topologically inequivalent if they
cannot be continuously, i.e., without closing the energy or
mobility gap of the local Hamiltonian, deformed into each
other while preserving the protecting symmetries. In contrast
to this theoretically well understood system of topological
insulators and superconductors, the generalization of these
concepts to the realm of open quantum systems out of thermal
equilibrium is far from being conclusively understood despite
its fundamental importance for realistic systems which are
not perfectly isolated from their environment. While, in a
more general context, dissipation is intuitively expected to
have a mainly detrimental effect on ordering phenomena, the
possibility to engineer and control dissipative processes in
synthetic materials based on ultracold atoms in optical lattices
enables qualitatively different scenarios. Employing controlled
dissipation to induce a topological state, a realization in
terms of a dissipative master equation dynamics has been
proposed [18,19] for one-dimensional topological supercon-
ductors [20]. However, higher-dimensional topological states,
in particular states with a nonvanishing Chern number [21-23],
have so far been elusive in this framework due to a fundamental
competition between topology and the natural locality of the
engineered system bath interaction: As we discuss in more
detail below (see Sec. II B), the topology of a quantum state, in
particular its Chern number, imposes fundamental constraints
on how locally it can be represented in real space by, e.g., a
set of Wannier functions. More specifically, Wannier functions
of a filled band with a nonvanishing Chern number can only
decay algebraically in real space. This constraint in turn entails
requirements regarding the complexity and nonlocality of the
system bath interaction that needs to be engineered in order to
prepare the state of interest in a dissipative fashion.

In this work, we report a mechanism in momentum space
coined “dissipative hole plugging” to overcome this issue. In
our present scenario, the detailed control over the system bath
interaction determines how pure the dissipatively prepared
steady state is rather than to which topological class it
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belongs. This establishes a natural notion of robustness in
the dissipative preparation of topological states, where rough
qualitative features of the system bath interaction determine
the topology of the mixed steady state, while making it pure
contains some fine-tuning that may be seen as the counterpart
of reaching absolute zero temperature in a Hamiltonian system.
Yet, involving the interplay of two dissipative channels per
degree of freedom in the target system, our construction goes
conceptually beyond intuition drawn from the Hamiltonian
analog. More specifically, we demonstrate that local system
bath engineering can result in a master equation with a unique
superfluid steady state that is characterized by a nonvanishing
Chern number for fermions on a two-dimensional (2D)
lattice. Quite remarkably, in our scheme, this topology from
dissipation is robust, and exists as a stable topological phase in
a nonequilibrium phase diagram in loose analogy to a gapped
phase in the Hamiltonian context. Furthermore, we introduce
a microscopic particle number conserving model for which
the dissipative analog of a mean-field decoupling leads to the
class of Gaussian superfluid steady states studied in our general
analysis. Such a scheme can be experimentally realized with
cold atoms in optical lattices combining previously reported
techniques [2,18,24], and complements recent proposals for
engineering topological superfluids as Hamiltonian ground
states [25]. We stress that the detection of the topological
state in terms of its static correlations can be done as in the
Hamiltonian case via state tomography [26-28].

Outline. The remainder of this article is organized as
follows. In Sec. II, we set up the framework for the dissipative
preparation of topological states with a focus on challenges
that arise for states with a nonvanishing Chern number.
Subsequently, in Sec. III, we show how such Chern states
can be dissipatively prepared in a robust way by employing
the dissipative hole-plugging mechanism mentioned above. A
microscopic model which, upon implementing the dissipative
analog of a mean-field decoupling realizes this mechanism
and gives rise to a steady state with a nonvanishing Chern
number is introduced and numerically analyzed in Sec. IV. A
concluding discussion mentioning the relation of our analysis
to recent discussions on the representation of Chern insulators
as tensor network states is presented in Sec. V.

II. DISSIPATIVE FRAMEWORK AND TOPOLOGICAL
STEADY STATES

We assume an open quantum system dynamics as described
by a Lindblad master equation [29]

|
p':i[p,H]+Z<Lij}—E{L;Ljﬁp}> (D
J

for the system density matrix p with the incoherent action of
the Lindblad operators L ; accounting for the coupling of the
system to a bath. The Born-Markov approximation underlying
the derivation of Eq. (1) is well justified in a broad class of
scenarios, where a system is coupled to a continuum of modes
in a bath which can, e.g., be provided by phonon excitations
in a Bose-Einstein condensate [2]. We focus in the following
on purely dissipative dynamics, i.e., we put H = 0 in Eq. (1).
The physical target system that we have in mind when making
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this assumption consists of very weakly interacting ultracold
fermionic atoms in the quasiflat lowest Bloch band of a deep
optical lattice. Under these circumstances the time evolution
is dominated by the engineered dissipative dynamics, thus
justifying the approximation H = 0. While the interplay of
Hamiltonian and dissipative dynamics on comparable time
scales is an interesting and, at least in the quantum many-body
context, largely unexplored topic in its own right, the main
subject of the present work is the form of the Lindblad
operators L; required to dissipatively prepare topological
states of quantum matter. For our subsequent analysis, we
consider lattice translation invariant Lindblad operators L ;
that are linear in the spinless [30] fermionic field operators
Y, w} that form a complete fermionic algebra on the 2D square

lattice Z2. A master equation of this form allows solutions in
the form of Gaussian states, which are characterized by their
second moment correlation functions. The density matrix p; at
lattice momentum k can then be represented in the momentum

space Nambu basis (ak,aT_k) as

o = 11 — i - 7). )

Here, t; are the Pauli matrices in Nambu space, a; =
\/#ﬁ > i ek Y ; are the Fourier transforms of the field operators,

and |7i;| < 1, where |7i;| =1 holds for pure states. In the
long-time limit, the density matrix p approaches a steady
state p°*. The dissipative analog of an energy gap stabilizing
a Hamiltonian ground state is a so-called damping gap
k [18,19] (see also the subsequent Sec. I A for a more detailed
discussion), which is defined as the smallest rate at which
deviations from p* are damped out. Formally, a damping gap
implies that the zero eigenvalue of the steady state is an isolated
point in the spectrum of the Liouvillian operator governing
the dissipative dynamics [31]. In this sense, damping gapped
steady states are the Liouvillian analogs to insulating ground
states in the Hamiltonian context.

A. Gaussian steady states and damping gaps

We now give a practical recipe for the calculation of both
the steady state p® and the damping gap « of a generic
Gaussian Lindblad master equation (1). Within the Gaussian
approximation, all static information about the system density
matrix p is contained in its Gaussian correlation matrix I’
which can be conveniently represented in the basis of the

Majorana operators c¢; | = ¥; + w;,cj,z = i(W; — ;) as

ijo_ i
Ty, = zTr{p[Ci,A»cj,u]}- 3)

With the density matrix p evolving in time according to Eq. (1)
with H = 0, I obeys the equation of motion [32,33]

[ ={IX}-Y, 4)

where the matrices X = M + M7 and Y = 2i(M — M) are
determined in terms of the Majorana representation of the
Lindblad operators L; = TITE via M =3, lqu/r Since we
are dealing with lattice translation invariant systems here,
it is convenient to consider the equation of motion for
the Fourier transform of the correlation matrix, f‘Aﬂ(k) =

042117-2



DISSIPATIVE PREPARATION OF CHERN INSULATORS

£Tr{p[&4,..¢ ., 1}, which simply reads as
(k) = (F(k), X(k)} — Y (k), (5)

where X, ¥ denote the Fourier transforms of X, Y. Equation (5)
is a 2x2 matrix equation for every lattice momentum k. A
steady state obeys I[';(k) = 0. Plugging this into Eq. (5) yields
the Sylvester equation

{5, X(k)} = Y (k), (6)

which has a unique solution if X (k) is invertible. The spectrum
of the generally positive semidefinite matrix X (k) determines
the damping rates towards the steady state. The minimum
eigenvalue of X(k) all over the Brillouin zone is called the
damping gap. For a finite damping gap, the steady state [';(k)
and from that, via a simple basis transformation back to the
Nambu basis, the Gaussian density matrix p; itself is readily
obtained by direct solution of Eq. (6).

B. Locality versus topology in dissipative dynamics

The major conceptual challenge in the dissipative prepa-
ration of topological states in spatial dimension d > 2 is
due to the competition of topology and locality of the
Lindblad operators L ;. Drawing intuition from Hamiltonian
ground states, a generic recipe for preparing pure Gaussian
steady states is the following [18,19]: construct a so-called

parent Hamiltonian H), =}, LTiL j from a complete set
of anticommuting Lindblad operators L;. The ground state
|G){G| of this Hamiltonian is then the unique steady state of
the corresponding master equation (1) since |G) is the only
state vector annihilated by all L ;. In other words, the Lindblad
operators are chosen as single-particle operators that span
the many-body ground state of H),. For a lattice translation
invariant parent Hamiltonian that defines a band structure, a
set of Lindblad operators L; providing a real space repre-
sentation of its many-body ground state corresponds to the
Wannier functions of all occupied bands. However, nontrivial
topological invariants characterizing the ground state impose
fundamental constraints on the localization properties of the
Wannier functions [34-37] (see Ref. [38] for a detailed recent
discussion). The archetype of a topological invariant for band
structures is the integer quantized first Chern number [21-23]
distinguishing topologically inequivalent gapped 2D band
structures. By its very definition, a nonvanishing Chern number
implies an obstruction to finding a global smooth gauge for the
associated family of Bloch functions [22,23], or, equivalently,
the impossibility [34-36] to find an exponentially localized set
of Wannier functions. Hence, for the dissipative preparation
of a gapped state with nonvanishing Chern number based on
a parent Hamiltonian, long-ranged Lindblad operators with
algebraic asymptotic decay properties would be inevitable.

C. Mixed-state topology

To overcome the conflict between locality and topology
discussed in the previous Sec. I B, going beyond the Hamil-
tonian analogy and the realm of pure steady states turns out
to be crucial. For mixed states, topological properties over the
lattice momentum Brillouin zone (BZ) are well defined as long
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as there is a finite purity gap |ni|*> [19] [see Eq. (2)], i.e., as
long as p has a finite polarization at all lattice momenta k. A
rigorous and more general discussion of the notion of a purity
gap can be found in Ref. [39]. The first Chern number [21]
which is the relevant topological invariant for our study is here
given by

C—L/ Tr{ ok [ (k. ok (9, ox) |}

Sl ) - 1)
1 n o A
=4 [, [Oui) x @ag) @

This integer quantized topological invariant measures how

often the normalized polarization vector 7i; = % covers the
unit sphere and can only change if either the purity gap closes
(rendering 71, ill defined at some k) or if the damping gap closes
(giving rise to discontinuities in k > py). In this sense the
topological steady states we are concerned with are protected
by both a finite damping gap and a finite purity gap, i.e., their
topology is unchanged under continuous deformations as long

as both gaps are maintained.

II1. DISSIPATIVE PREPARATION OF CHERN STATES

To induce a steady state with nonvanishing Chern num-
ber (7), we proceed in two steps. First, in Sec. IIT A, we
construct a set LE of compactly supported Lindblad operators
that yield a critical Chern state as a steady state. Second, in
Sec. III B we devise a set of auxiliary Lindblad operators L*
which is capable of lifting the topologically nontrivial critical
point to an extended phase with a finite damping gap.

A. Overcompleteness and damping criticality

We define Lindblad operators corresponding to a set of
nonorthonormal single-particle states coined pseudo Wannier
functions. These operators compactly supported but span
only a critical topological state at fine-tuned parameters.
Concretely, let us consider

LS = ul i+ vy, (8)

l
where the only nonvanishing coefficients are v§ = B,v§, =
v§y = land uf, = —iu§; = +1, supported only on nearest-
neighbor sites of the square lattice Z2. The steady state of
the associated master equation (1) is given by the ground
state of the translation invariant parent Hamiltonian HPC =

CtycC . .
Zj L 'L} . The Fourier-transformed Nambu spinors
BE = (af,o¢)"

= {2i[sin(k,) + i sin(ky)], B + 2[cos(k,) + cos(ky)]}T
9

are coined pseudo Bloch functions and are nonvanishing all
over the BZ except at isolated values of 8. At 8 = —4, for
example, (i§,75) = (0,0). Such a zero gives rise to a closing
of the damping gap k¢ = [i{ |> + |0C |, i.e., a critical damping
behavior. Yet, the normalized polarization vector 7i; of the
steady state p; continuously approaches the value 71p = &3 as
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k — 0 and can thus be defined all over the BZ even at the
critical point 8 = —4. Direct calculation of the associated
Chern number using Eq. (7) yields C = —1. However, 7
is not real analytic in kK = O but only finitely differentiable.
As a consequence p; at B = —4 corresponds to a critical
Chern state that can have algebraically decaying correlations.
The pseudo Wannier operators (8) form an overcomplete
set of that critical state since the vanishing pseudo Bloch
function BOC [see Eq. (9)] precludes their linear independence.
Away from such isolated parameter points, the pseudo Bloch
functions are nonvanishing all over the BZ and C = 0. This
phenomenology is generic and not due to an unfortunate
choice of our model: as has been extensively analyzed for free
electrons in a perpendicular magnetic field, localized pseudo
Wannier functions spanning the lowest Landau level (LLL) are
necessarily overcomplete due to the nonzero Chern number of
the LLL (see, e.g., Ref. [35]). For the same topological reason,
the above pseudo Bloch functions Bf must exhibit a zero
associated with a critical damping behavior at the isolated
topologically nontrivial points. A dissipative preparation of
such a critical state involves fine-tuning since an infinitesimal
deviation removes the essential zero from the pseudo Bloch
functions, in turn rendering the state topologically trivial. We
will now devise an auxiliary set of Lindblad operators L;‘
which is capable of lifting the critical state resulting only from
the fine-tuned LJC operators to a gapped extended phase.

B. Dissipative hole-plugging mechanism

Deviating by § from the topologically nontrivial critical
point, i.e., 8 = —4 — § in (8) may be viewed as tearing a hole
into the smooth winding of 71; as a function of k. The simplest
way to see this is to consider the third component ﬁ,f of /iy in
the steady state. With the Lindblad operators given by Eq. (8),
we have A = [i{|* — |0C |*. Indeed, a finite value of 3§ = §
enforces that 79 = —é3 since ﬁg = 0 [see Eq. (9)]. In contrast,
atsmall k > 8,7/ ~ &3 since ﬁ,f =2i(ky +iky) + O(k?). This
rapid change in ﬁz compensates the almost complete smooth
winding over the rest of the BZ (compare Fig. 1 left and central
panel or the red dashed and green dotted left plots in Fig. 2)
rendering the state topologically trivial even at infinitesimal
8. From a more physical perspective, (1 — ﬁ,f) /2 measures the
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FIG. 2. (Color online) Left panel: ﬁi as a function of k, at k, =
0 for § =0,d = g = 0 (green dotted), for 6 =0.5,d = g =0 (red
dashed), and for 6 = 0.5,d = 0.7,g = 1.0 (blue solid). Right panel:
purity gap p = |ii;|? of the steady state p{ as a function of k, at
ky, =0,6 =d =0.2. Gapat g = 0.1 (blue dotted) in the topologically
trivial phase, purity critical point at g = 0.2 (red dashed), and gap
at g = 1.0 (green solid) in the nontrivial phase. Inset: phase diagram
of the steady state as a function of 6 = —4 — B and g. d =1.0 is
fixed. The purple region has Chern number C = —1, while C =0
in the bright region. The purity gap closes at the transition lines.
The damping gap is finite everywhere except at the critical point
6=g=0.
occupation number (a}:ak) which is rapidly changing around
k = O for finite § (see red dashed plot in the left panel of Fig. 2).

To compensate for this “topological leak,” we propose
a dissipative hole-plugging mechanism which stabilizes the
smooth winding of 7i; even at finite deviations from the critical
point. More specifically, we introduce the auxiliary Lindblad
operators Z,‘? = ﬁ?ak in momentum space which have only
an annihilation part (ﬁ,ﬁ‘ = 0) with, e.g., a Gaussian weight
function @i} = ge’kz/ @ These operators act selectively in
momentum space: they prevent the unwanted occupation of
the k = 0 mode as long as g > 4, but their action becomes
irrelevant for k >> d. The Gaussian weight function in the
definition of L{! makes the favorable exponential localization
properties manifest also in real space, alternative choices are,
however, readily conceivable. The key qualitative point of
the dissipative hole-plugging mechanism is the momentum
selective depletion around k = 0 which can also be achieved
with a lattice regularized weight function and a finite number
of Fourier modes, i.e., with Lindblad operators that are com-
pactly supported in real space. Our dissipative hole-plugging
mechanism is illustrated in terms of the Berry curvature

F

8

-3-2-10 1 2 3
ky

-3 -2-10
ky

1 2 3 -3 -2-10 1 2 3

ky

FIG. 1. (Color online) Density plot of the Berry curvature F [half of integrand in Eq. (7)] as a function of momentum for 8 = —4.0,d =

g = 0 (left), B = —3.0,d = g = 0 (center), and 8 = —3.0,d = 0.7,¢ = 2.0 (right). Performing the integral in Eq. (7) for the plotted function
gives C = —1 (left), C = 0 (center), and C = —1 (right), respectively. In the central plot, the peak (dark region) around k = 0 compensates
the smooth negative curvature away from the center. In the right plot the dissipative hole-plugging mechanism depletes the central peak thus
maintaining the nonvanishing Chern number.
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F = %ﬁk - [(Ok, 7ix) x (O, Ax)], i.e., the integrand of Eq. (7) in
Fig. 1. In the left panel, F is shown exactly at the topological
critical point 8 = —4, where C = —1. In the central panel, F
is plotted somewhat away from the critical point at § = —3.
The peak (dark region) around k£ = 0 compensates the negative
curvature away from k = O thus giving rise to C = 0. In the
right panel this dark center region is suppressed by the action
of the L;‘ jump operators thus maintaining C = —1 even away
from the critical point.

We now demonstrate that our hole plugging mechanism
leads to a topologically nontrivial steady state in a finite
parameter range around the critical point § = —4. We
calculate the Chern number of the steady state obtained
from the interplay of the Lindblad operators LJC- and L;‘
while monitoring both its damping gap «; [19] and its purity
gap |Ai|>. We find that the auxiliary jump operators L/ are
capable of lifting the isolated points at which the L¢ become
topologically nontrivial to an extended phase (see inset in
right panel of Fig. 2). If we start in the absence of L% with
a topologically trivial 8 = —4 — §, i.e., detuned from the
critical point by § > 0 and switch on Lf by ramping up g, we
observe a topological transition associated with a purity gap
closing at g = § (see Fig. 2 right panel). At g > §, the purity
gap reopens and the steady state has Chern number C = —1.
The damping gap stays finite throughout this procedure.

We stress that the topological properties of the steady state
are quite insensitive to the value of d. However, a larger value
of d leads to a larger region around k = 0 where the purity gap
differs significantly from one, i.e., where the steady state is
significantly mixed. This reflects the earlier mentioned tradeoff
between locality of the L4 operators and the purity of the
dissipatively prepared Chern state. Another purity gap closing
which would render the Chern number (7) undefined does,
however, not occur in a wide parameter range, even if the
Gaussian weight function g e R/ g approximated by a few
Fourier modes.

IV. MICROSCOPIC IMPLEMENTATION

So far, we have generally analyzed how a superfluid steady
state with a nonvanishing Chern number can occur at the level
of a Gaussian Lindblad master equation (1). In the Hamiltonian
case, a superconducting condensate arises at mean-field level
in the thermodynamic limit from an interacting particle number
conserving microscopic Hamiltonian. Also in our present
dissipative framework, an effective quadratic master equation
with spontaneously broken U(l) symmetry arises from a
microscopic, particle number conserving model described by
a master equation that is quartic in the field operators. In the
following, we introduce such a model and outline how it can
be experimentally implemented with cold atoms in optical
lattices. As we confirm numerically, the phenomenology
described above, in particular our dissipative hole-plugging
mechanism is obtained in a mean-field approximation analo-
gous to the one introduced in Ref. [18].

A. Particle number conserving quartic model

Our model again consists of a near-critical and -topological
set of Lindblad operators £, and an auxiliary set £4. The
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Lindblad operators have the number conserving bilinear form
€ = C* A% o = C,A with the creation C¥' = > v?‘_iw;
and annihilation parts A?T =) ;u$ ¥ For a =C, the
coefficients u¢,v¢ are the same as in Eq. (8). The experimental
implementation of Lindblad operators of such a form has
been discussed in Ref. [19]. The auxiliary operators E;‘ are
chosen such that particles are pumped out of the central
region of the Brillouin zone into the higher momentum states
thus reflecting the depletion of low momenta which is at
the heart of our hole plugging mechanism. For atoms in
optical lattices this can be achieved by momentum selective
pumping techniques as described in [24]. In momentum
space, Ek = Z CAT AA w1thC = G?aZ,A,‘? = ukak The
momentum selectlve functlons are ideally of the form i =
gue ©/% removing particles from the central region, and
5 =g, Y, e"®~m’/4 describing their reappearance at high
momenta 7; € {(0,7),(7,0),(;r,7)}. The key qualitative point
to the form of ¢ that has to be reflected in an experimental
realization is the dominance of processes taking a particle at
the center of the Brillouin zone and transferring a momentum
of order .

B. Dissipative mean-field theory

A self-consistent mean-field theory can be derived building
up on Ref. [19]. We start from the master equation

dp = LE[p]+ L p], (10)

where Lo[p] =Y (¢epts" — 1" p}), a=C.A. We
write out thls quartlc master equation in momentum space,
and make the ansatz p = ]—[;c Px, Where p; describes the mode
pair {k, —k} and obeys Trypr = 1. ]_[;{ reminds that the product
is taken over half of the Brillouin zone only, e.g., the upper
half. We then focus on one particular momentum mode pair
{p, — p}, and keep only terms which are quadratic in operators
associated to this mode pair. By means of the prescription
pp = Trzp L p], we obtain an evolution equation for p, with
coefficients C{, which are governed by the mean fields of the
remaining modes in the system,

oy = Y {CHTA L,y , [0 + CS A% L, i1op)
a=C,A

= CI,aT, Lo o [op) = G570 05" La a0, [0)]
+{p— -pt}, (11)

with abbreviation Ea,b[p] =apb — l{ba,,o} and

C‘l"—2| aaq C2—2|~°‘|(1—aaq
qF#p q#p
Cc§ = Zu 0 (a_gay); (12)
q#p
we note (a_sa,)" = (aq al ¢)> and that the constraint on the

sum can be neglected in the thermodynamic limit.

In the absence of L£#, the stationary state is known
explicitly, using the equivalence of fixed number and
fixed phase wave functions in the thermodynamic limit,
and the exact knowledge of the fixed number state
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annihilated by the set Eic [19]. It is given by the
pure density matrix pp = [¥) (|, where |y) = [T, Ny (1 +

”Ca aq)|0) and NV, =1/./1+ |vc/uc|2 In this case, the

averages can be evaluated explicitly, (aqaq) = |v 2, (aqaq) =

S |? . (a_qaq) = 0C,7S*, (TaTq) o<l , where 05 =0</

/|b7qc|2 + |f)qC|2 and analogous for ¢ 7 Note that, in this case,

one common real number Cy = C¢ = C2C = C3C = C3C* =
> 4ty % can be factored out of Eq. (11). The resulting

linearized Lindblad operators coincide with those defined
in Eq. (8) in the main text (at half-filling, and up to an
irrelevant relative phase which reflects spontaneous symmetry
breaking). In other words, the product of the creation and
annhilation part in Eic can be linearized and transforms into
its sum [18], thus yielding precisely the form displayed in
Eq. (8) at half-filling. This solution serves as a starting point to
evaluate the stationary state of the master equation with both
sets of Lindblad operators £€,¢4 at mean-field level.

When £ is added, the stationary state is no longer known
explicitly. However, a self-consistent mean-field theory can
still be constructed. To this end, we derive the evolution of the
covariances for the mode pair {p, — p},

(a;a,,) —Kp v; v, (a;a,,)
o | la—pa,) | = 0 —Kp 0 (a_pap)
(a;aip) 0 0 —Kp (aj,a_p)
Hp
+ | A ], (13)
Ay
where
o ~o 2 o~ 2
KP=Z(C,‘vp —i—Cz‘up ),
1 o~ ~ok ~O~ Ok
vp =5 D C5(0%, a5 + i), (14)

~o [1* ~O~00k
ZC3 V_plip Upu—p)

wp = Colal’ &
o

Here, we have used the property |0}, > = |02, |> and analogous
for ii,, exhibited by our Lmdblad operators The coefficients
C{* make these equations nonlinear. The implicit equations for
the stationary state read as

i U*, vy

(apap) 1 1 K—; o Mp

(a_pap) = 0 1 0 rp |- (15)
(aha' ) "\o o 1) \W

These equations can be solved iteratively, starting from the
known solution of £€ alone. Qualitative properties of the
solution can be discussed on the basis of the localization
properties of the functions ﬁj]‘,f)A in momentum space. In

particular, based on Eq. (11), we expect modifications of the
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FIG. 3. (Color online) 7} = —Tr{p;73} as a function of k, at
ky, = 0. Red dashed plot for § = —4 — 8 = 0.5 in the presence of
ZJC only. Blue solid plot shows the self-consistent solution of Eq. (15)
for§ =0.5,8, = g, =5.0,d, = 0.5,d, = 1.5 in the presence of both
€§ and €/ on alattice of 501x501 sites.

solution for £€ only in the central and edge regions of the
Brillouin zone, as clearly effective annihilation (creation) of
particles takes place in the center (edges) of the Brillouin
zone. In addition, the off-diagonal contributions to the effective
nontopological Liouvillian are exponentially small.

C. Numerical results

Our numerical simulations are done for a lattice of 501 x 501
sites with periodic boundary conditions. The above general
picture, in particular the efficiency of the dissipative hole-
plugging mechanism to stabilize a state with nonvanishing
Chern number, is fully confirmed by the numerical analysis
of this microscopic model. In Fig. 3, we give an explicit
example demonstrating how the self-consistent solution of
Eq. (15) is capable of achieving the dissipative hole-plugging
mechanism.

V. CONCLUDING DISCUSSION

The target state of the explicit construction presented
here resembles the p 4 ip superconducting ground state
introduced by Read and Green [40], i.e., a topological state
with nonvanishing Chern number in symmetry class D [17].
The generalization to gapped quantum anomalous Hall states
also known as Chern insulators [41] in symmetry class A,
however, is straightforward. Our present analysis focuses on
the possibility of preparing gapped states with a nonvanishing
Chern number by means of short-ranged Lindblad operators
at the expense of obtaining a mixed steady state. Alternatively,
the implementation of long-ranged, i.e., algebraically decaying
Lindblad operators leading to a pure Chern state as a steady
state might be an interesting future direction.

The criticality of the steady state supported by the L€
operators [see Eq. (8)] is in some analogy to Ref. [42], where
a tensor network state representing a critical Chern state is
constructed. While it may be impossible to represent pure
noncritical states with nonvanishing Chern number as tensor
network states, resorting to mixed states that are uniquely
associated with a pure state by replacing 7i; with 7A; in
Eq. (2) might be fruitful for systematic approximations of such
scenarios, where the deviation from the gapped pure state in
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the expectation value of any observable can be bounded in
terms of the purity gap.

As mentioned above, the Chern number of a mixed state
as defined in Eq. (7) is an observable property of the density
matrix. However, the general relation between natural response
quantities and topological invariants in open quantum systems
is still an open question that is the subject of ongoing
research.

PHYSICAL REVIEW A 91, 042117 (2015)

ACKNOWLEDGMENTS

We acknowledge interesting discussions with Emil J.
Bergholtz, Jens Eisert, and Tao Shi on related projects. Support
from the ERC Synergy Grant UQUAM, the START Grant No.
Y 581-N16, the SFB FoQuS (FWF Project No. F4006-N16),
and the German Research Foundation (DPG) through ZUK 64
is gratefully acknowledged.

[1] J. E. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4728
(1996).

[2] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Biichler, and
P. Zoller, Nat. Phys. 4, 878 (2008).

[3] E. Verstraete, M. M. Wolf, and J. I. Cirac, Nat. Phys. 5, 633
(2009).

[4] H. Weimer, M. Miiller, I. Lesanovsky, P. Zoller, and H. P.
Biichler, Nat. Phys. 6, 382 (2010).

[5] J. Barreiro, M. Miiller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
Nature (London) 470, 486 (2011).

[6] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M.
Petersen, J. I. Cirac, and E. S. Polzik, Phys. Rev. Lett. 107,
080503 (2011).

[7] E. Kapit, M. Hafezi, and S. H. Simon, Phys. Rev. X 4, 031039
(2014).

[8] L. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[9] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,
and U. Sen, Adv. Phys. 56, 243 (2007).

[10] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[11] G. Jotzu et al., Nature (London) 515, 237 (2014).

[12] M. Aidelsburger et al., Nat. Phys. 11, 162 (2015).

[13] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

[14] J. E. Moore, Nature (London) 464, 194 (2010).

[15] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[16] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Phys. Rev. B 78, 195125 (2008); A. Kitaev, AIP Conf. Proc.
1134, 22 (2009); S. Ryu, A. P. Schnyder, A. Furusaki, and A.
W. W. Ludwig, New J. Phys. 12, 065010 (2010).

[17] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

[18] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat. Phys. 7,
971 (2011).

[19] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
Imamoglu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001
(2013).

[20] A. Kitaev, Phys. Usp. 44, 131 (2001).

[21] S. S. Chern, Ann. Math. 47, 85 (1946).

[22] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[23] M. Kohmoto, Ann. Phys. (NY) 160, 343 (1985).

[24] A. Griessner, A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller,
New J. Phys. 9, 44 (2007).

[25] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker,
G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller,
Phys. Rev. Lett. 106, 220402 (2011).

[26] E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and
J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011).

[27] C. V. Kraus et al., New J. Phys. 14, 113036 (2012).

[28] P. Hauke, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 113,
045303 (2014).

[29] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[30] Our analysis can be generalized to consider spin and other
internal degrees of freedom in a straightforward way. For the
sake of simplicity, we here describe the spinless case which is
sufficient for our subsequent construction.

[31] J. E. Avron, M. Fraas, and G. M. Graf, J. Stat. Phys. 148, 800
(2012); J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth,
New J. Phys. 13, 053042 (2011).

[32] J. Eisert and T. Prosen, arXiv:1012.5013.

[33] M. Honing, M. Moos, and M. Fleischhauer, Phys. Rev. A 86,
013606 (2012).

[34] D. J. Thouless, J. Phys. C 17, L325 (1984).

[35] E. L. Rashba, L. E. Zhukov, and A. L. Efros, Phys. Rev. B 55,
5306 (1997).

[36] C. Brouder, G. Panati, M. Calandra, C. Mourougane, and
N. Marzari, Phys. Rev. Lett. 98, 046402 (2007).

[37] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and
D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[38] J. C. Budich, J. Eisert, E. J. Bergholtz, S. Diehl, and P. Zoller,
Phys. Rev. B 90, 115110 (2014).

[39] J. C. Budich and S. Diehl, arXiv:1501.04135.

[40] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[41] E. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[42] J. Dubail and N. Read, arXiv:1307.7726.

042117-7


http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/PhysRevX.4.031039
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1038/nphys3171
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1038/nature08916
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.2307/1969037
http://dx.doi.org/10.2307/1969037
http://dx.doi.org/10.2307/1969037
http://dx.doi.org/10.2307/1969037
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1016/0003-4916(85)90148-4
http://dx.doi.org/10.1088/1367-2630/9/2/044
http://dx.doi.org/10.1088/1367-2630/9/2/044
http://dx.doi.org/10.1088/1367-2630/9/2/044
http://dx.doi.org/10.1088/1367-2630/9/2/044
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.106.220402
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1088/1367-2630/14/11/113036
http://dx.doi.org/10.1088/1367-2630/14/11/113036
http://dx.doi.org/10.1088/1367-2630/14/11/113036
http://dx.doi.org/10.1088/1367-2630/14/11/113036
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1103/PhysRevLett.113.045303
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/s10955-012-0550-6
http://dx.doi.org/10.1007/s10955-012-0550-6
http://dx.doi.org/10.1007/s10955-012-0550-6
http://dx.doi.org/10.1007/s10955-012-0550-6
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://dx.doi.org/10.1088/1367-2630/13/5/053042
http://arxiv.org/abs/arXiv:1012.5013
http://dx.doi.org/10.1103/PhysRevA.86.013606
http://dx.doi.org/10.1103/PhysRevA.86.013606
http://dx.doi.org/10.1103/PhysRevA.86.013606
http://dx.doi.org/10.1103/PhysRevA.86.013606
http://dx.doi.org/10.1088/0022-3719/17/12/003
http://dx.doi.org/10.1088/0022-3719/17/12/003
http://dx.doi.org/10.1088/0022-3719/17/12/003
http://dx.doi.org/10.1088/0022-3719/17/12/003
http://dx.doi.org/10.1103/PhysRevB.55.5306
http://dx.doi.org/10.1103/PhysRevB.55.5306
http://dx.doi.org/10.1103/PhysRevB.55.5306
http://dx.doi.org/10.1103/PhysRevB.55.5306
http://dx.doi.org/10.1103/PhysRevLett.98.046402
http://dx.doi.org/10.1103/PhysRevLett.98.046402
http://dx.doi.org/10.1103/PhysRevLett.98.046402
http://dx.doi.org/10.1103/PhysRevLett.98.046402
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/PhysRevB.90.115110
http://dx.doi.org/10.1103/PhysRevB.90.115110
http://dx.doi.org/10.1103/PhysRevB.90.115110
http://dx.doi.org/10.1103/PhysRevB.90.115110
http://arxiv.org/abs/arXiv:1501.04135
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://arxiv.org/abs/arXiv:1307.7726



