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We study the driven-dissipative dynamics of a network of spin-1/2 systems coupled to one or more chiral
1D bosonic waveguides within the framework of a Markovian master equation. We determine how the interplay
between a coherent drive and collective decay processes can lead to the formation of pure multipartite entangled
steady states. The key ingredient for the emergence of these many-body dark states is an asymmetric coupling of
the spins to left and right propagating guided modes. Such systems are motivated by experimental possibilities
with internal states of atoms coupled to optical fibers, or motional states of trapped atoms coupled to a spin-orbit
coupled Bose-Einstein condensate. We discuss the characterization of the emerging multipartite entanglement in
this system in terms of the Fisher information.
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I. INTRODUCTION

The ability to engineer the system-bath coupling in quantum
optical systems allows for novel scenarios of dissipatively
preparing quantum many-body states of matter [1]. This is of
interest both as a nonequilibrium condensed matter physics
problem [2–8] and in the context of quantum information
[9–18]. In the present work we will study open system quantum
dynamics of chiral spin networks from a quantum optical
perspective. The nodes of these networks are represented by
spin-1/2 systems, whereas the quantum channels connecting
them are 1D waveguides carrying bosonic excitations [cf.
Figs. 1(a) and 1(b)]. In addition, these waveguides provide
the input and output channels of our quantum network,
allowing for driving and continuous monitoring of the spin
dynamics. In a quantum optical setting, such a network can be
identified by two-level atoms coupled to optical fibers [19,20]
or photonic structures [21,22]. As discussed in previous studies
[23–25], the 1D character of the quantum reservoir manifests
itself in unique features including long-range dipole-dipole
interactions mediated by the bath and collective decay of the
two-level systems as super- and subradiant decay.

The crucial aspect underlying our study below is the as-
sumption of a chiral character of the waveguides representing
the photonic channels. By chirality we mean that the symmetry
of emission of photons from the two-level atoms into the right
and left propagating modes of the 1D waveguides is broken.
This allows the formation of novel nonequilibrium quantum
phases as steady states of the open system dynamics in chiral
quantum spin networks. This includes the driven-dissipative
evolution as “cooling” to pure states of entangled spin clusters,
which play the role of quantum many-particle dark states, i.e.,
spin clusters decoupled from the bath. While in Ref. [26]
the formation of entangled spin clusters for the (idealized)
purely unidirectional waveguide has been discussed, we
have recently presented results that this formation of pure
entangled spin clusters is, in fact, the generic case for chiral
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spin networks under fairly general conditions [27]. It is the
purpose of the present paper to present an in depth study
of this quantum dynamics and pure entangled spin cluster
formation in chiral spin networks including imperfections,
and the characterization of the resulting multipartite entan-
gled states in experiments (e.g., via the Fisher information
[28,29]). We emphasize that our results are derived within
the standard quantum optical master equation (ME) treatment,
where the effective spin dynamics is obtained by eliminating
the reservoir in a Born-Markov approximation (in contrast

(a)

(b)

FIG. 1. (Color online) Spin networks with chiral coupling to
1D bosonic reservoirs. (a) Driven spins can emit photons to the
left and right propagating reservoir modes, where the chirality of
the system-reservoir interaction is reflected in the asymmetry of
the corresponding decay rates γL �= γR . (b) Spin network coupled
via three different chiral waveguides m = 1,2,3. Waveguide m = 1
couples the spins in the order (1,2,3,4), whereas m = 2 couples
them in order (1,3,2,4) and m = 3 in order (2,1,4,3). Note that only
waveguides without closed loops are considered in this work.
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to non-Markovian treatments discussed, for instance, in
Refs. [30–34]).

The present work is motivated by recent experiments
and proposals for the realization of chiral spin networks
with quantum optical systems. This includes the remarkable
recent experimental demonstration of directional spontaneous
emission of single atoms and scattering from nanoparticles
into a 1D photonic nanofiber in Refs. [35,36], and similar
experiments and proposals with quantum dots coupled to
photonic nanostructures in Refs. [37,38]. We also note that
related experiments reporting directional emission in 2D
setups have been performed with photons [39] and surface
plasmons [40,41]. Moreover we remark that topological pho-
tonic devices provide chiral edge modes for light propagation
[42,43], with possible applications in this context. In contrast
to these photonic setups, we have shown in Ref. [27] that
chiral waveguides for phonons (or Bogoliubov excitations)
can be realized using a 1D spin-orbit coupled Bose-Einstein
condensate (SOC BEC) [44,45]. A faithful realization of the
corresponding chiral spin network was proposed by coupling
atoms in optical lattices, representing spins with vibrational
levels, to the SOC BEC via collisional interactions.

The paper is organized as follows. In Sec. II we present
the quantum optical model describing the chiral spin networks
and provide a qualitative summary of the various multipartite
entangled pure states, which are formed as steady states of
their driven-dissipative dynamics. In Sec. III we illustrate this
for networks of two and four spins and identify sufficient
conditions for the existence of pure steady states as “dark
states” of the quantum master equation. In Sec. IV we extend
these concepts to networks with an arbitrary number of
spins. There, we will also analyze the purification dynamics
and comment on the role of imperfections. In Sec. V, we
discuss the possibility to witness the steady-state multipartite
entanglement via a measurement of the Fisher information. In
Sec. VI we conclude with an outlook.

II. MODEL AND OVERVIEW

The key feature of the chiral spin networks considered here
is the accessibility of pure multipartite entangled states that
arise as the steady state of their driven-dissipative dynamics.
In this section we give an overview of this primary result,
beginning with an introduction to the underlying physical
model of the chiral spin network itself. We then discuss the
master equations that describe the corresponding open system
dynamics and illustrate the entanglement properties of their
pure steady states in different parameter regimes.

A. The chiral spin network

The system we consider consists of a collection of N two-
level systems (TLSs) or spins, as depicted in Fig. 1(a). For
each spin j , we will denote the two states by |g〉j and |e〉j ,
and the corresponding transition frequency between the two
states by ωj . These spins are driven by a classical coherent
field at a single frequency ν, defining a detuning pattern δj ≡
ν − ωj . We denote the corresponding Rabi frequencies by �j .
In a rotating frame with the driving frequency ν and after
applying the rotating wave approximation (RWA), provided

|�j |,|δj | � ωj , the Hamiltonian for the spin chain reads

Hsys = �

N∑
j=1

(−δjσ
†
j σj + �jσj + �∗

j σ
†
j ), (1)

where we have used the notation σj ≡ |g〉j 〈e|. The spins are
coupled to a 1D waveguide, whose Hamiltonian is given by

Hres =
∑

λ=L,R

∫
dω �ω b

†
λ(ω)bλ(ω), (2)

where the bλ(ω) are bosonic annihilation operators for the right
(λ = R) and left (λ = L) moving bath modes of frequency ω;
i.e., [bλ(ω),b†λ′ (ω′)] = δλ,λ′δ(ω − ω′). We note that in writing
Eq. (2) we implicitly assumed a linear dispersion relation for
the degrees of freedom of the reservoir.

We are interested in a chiral coupling of the spins to
these reservoir modes. By this we refer to an asymmetry in
the coupling to the left and right propagating modes of the
waveguide. Such a chiral system-reservoir interaction can be
modeled by the linear RWA Hamiltonian

Hint = i�
∑

λ=L,R

∑
j

∫
dω

√
γλ

2π
b
†
λ(ω)σje

−i(νt+ωxj /vλ) + H.c.,

(3)

where γL and γR are the decay rates into the left (vL < 0)
and right (vR > 0) moving reservoir modes, respectively, with
vλ denoting the corresponding group velocities. In addition,
we denote the position of spin j along the waveguide by xj .
We stress the fact that the chirality of the system-reservoir
coupling is reflected by γL �= γR .

B. Chiral dissipative dynamics and overview
of parameter regimes

Treating the chiral waveguide as a long reservoir exhibiting
Markovian dynamics, we can now derive a master equation
describing the dissipative dynamics of the spin degrees of
freedom. If we make the standard quantum-optical Born-
Markov approximation and neglect retardation effects (which
is valid provided |�j |,γj ,|δj | � |vλ|/|xj − xl|,ωj ), we obtain
a master equation for the evolution of the system density
operator ρ(t), as detailed in Appendix A. Using the notation
D[A]ρ ≡ AρA† − {A†A,ρ}/2, the chiral master equation in
explicit Lindblad form reads

ρ̇= − i

�
[Hsys + HL + HR,ρ] + γLD[cL]ρ + γRD[cR]ρ, (4)

where left and right moving reservoir modes give independent
contributions. Their coherent parts

HL ≡ − i�γL

2

∑
j<l

(eik|xj −xl |σ †
j σl − H.c.), (5)

HR ≡ − i�γR

2

∑
j>l

(eik|xj −xl |σ †
j σl − H.c.) (6)

describe long-range spin interactions mediated by the left and
right moving reservoir modes, respectively. Due to the 1D
character of the bath these interactions are of infinite range.
However, the positions of the spins xj enter due to their
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ordering along each propagation direction. Without loss of
generality we label the spins such that xj > xl for j > l. The
second relevant quantity thereby is their distance as compared
to the wave vector k of the resonant reservoir modes (cf.
Appendix A). The dissipative terms with collective jump
operators cL ≡ ∑

j eikxj σj and cR ≡ ∑
j e−ikxj σj describe

collective spin decay into left and right moving excitations
that leave the waveguide at the two different output ports
[cf. Fig. 1(a)]. Therefore, in contrast to the coherent part, the
dissipative part does not depend on the ordering of the spins
along the waveguide.

In the rest of this subsection we discuss the two limiting
cases corresponding to a bidirectional (nonchiral) situation
γL = γR , and a purely cascaded one where γL = 0. We then
introduce a more general situation considering multiple chiral
waveguides.

1. Bidirectional master equation

We note that the familiar Dicke model [47] in one dimension
is obtained from the chiral master equation (4) in the limit
of a perfect bidirectional reservoir; i.e., when the symmetry
between left and right moving excitations is not broken,
γL = γR ≡ γ . In this case, HL + HR conspires to form the
well-known infinite-range dipole-dipole Hamiltonian, whereas
the Lindblad terms form the familiar super- and subradiant
collective decay [48]

ρ̇ = − i

�

[
Hsys + �γ

∑
j,l

sin(k|xj − xl|)σ †
j σl,ρ

]

+ 2γ
∑
j,l

cos(k|xj − xl|)
(

σlρσ
†
j − 1

2
{σ †

j σl,ρ}
)

. (7)

Both coherent and dissipative parts depend on the distance
between spins only up to a multiple of the wavelength.
Therefore, in contrast to the chiral situation, the order of the
spins does not matter.

Remarkably, when placing the spins at distances commen-
surate with the reservoir wavelength such that k|xj − xl| =
2πn (n integer), the dipole-dipole interactions vanish and the
collective jump operators to left and right moving excitation
modes coincide cL = cR = ∑

j σj ≡ c. When driving all
spins homogeneously �j = � and on-resonance δj = 0, this
reduces to a totally symmetric Dicke model [23,49]

ρ̇ = −i[�(c + c†),ρ] + 2γD[c]ρ. (8)

This model is symmetric under exchange of all the spins, giving
rise to multiple steady states corresponding to decoupled
subspaces in different symmetry sectors. On each of these
subspaces, the system of N spin-1/2s reduces to a single
collective spin-J , where J = 0,1, . . . ,N/2 (for even N ) is
determined by the initial condition. Interestingly, this model
predicts a nonequilibrium phase transition, e.g., in the J =
N/2 manifold, at a critical driving strength �c ≡ Nγ/4
[23,49].

2. Cascaded master equation

The other limiting case of a chiral waveguide is a purely
unidirectional reservoir, where the spin chain couples only to

modes propagating in one direction (e.g., γL = 0). One refers
to such a system as cascaded, since the output of each spin can
only drive other spins located on its right, without back-action.
The corresponding cascaded master equation was extensively
studied in Refs. [26,50–54] and it is simply given by setting
γL = 0 and thus HL = 0 in Eq. (4). To gain more insight into
the dynamical structure of such a unidirectional channel, we
rewrite Eq. (4) for this specific case as

ρ̇ = − i

�
[Hsys,ρ] − i

�
(Heffρ − ρH

†
eff) + γRcρc†, (9)

where the non-Hermitian effective Hamiltonian reads

Heff = − i�γR

2

∑
j

σ
†
j σj − i�γR

∑
j>l

σ
†
j σl. (10)

To connect to the standard literature we have (without
loss of generality) absorbed phases by σj → σje

ikxj and
�j → �je

−ikxj . The positions of the spins then enter solely
via their spatial ordering. Note that such a simplification
is only possible in the strict cascaded case, since there is
only one collective jump operator, by construction. Between
the corresponding quantum jumps [46], the system evolves
with the non-Hermitian Hamiltonian in Eq. (10). It induces
unidirectional interactions between spins, where an excitation
of spin l can be transferred only to spins j located on its
right (j > l). The inverse process is not possible. In contrast
to conventional spin interactions [55], these unidirectional
interactions are thus fundamentally non-Hermitian, and cannot
be obtained in a closed system.

3. Multiple-waveguide chiral master equation

In a more general context one can consider spins coupled
not only by one, but by several chiral waveguides as depicted
in Fig. 1(b). These additional waveguides, labeled by m =
1, . . . ,M , are arranged such that the order of the spins along
each of them differs. We are interested in the situations where
each of these waveguides couples to each spin at most once,
excluding, for example, loops. Since the different waveguides
are independent, it is straightforward to generalize the chiral
ME from a single- to a multiple-waveguide network, where
each waveguide gives an additive contribution analogous to
Eq. (4). Denoting by γ

(m)
λ the decay rates of the spins into

modes propagating in directions λ = L,R along waveguide
m, the ME for multiple chiral waveguides reads

ρ̇ = − i

�

[
Hsys +

∑
m,λ

H
(m)
λ ,ρ

]
+

∑
m,λ

γ
(m)
λ D

[
c

(m)
λ

]
ρ. (11)

Analogous to the single-waveguide case, the coherent con-
tributions from each waveguide H

(m)
λ and the corresponding

collective jump operators c
(m)
λ are given by

H
(m)
λ ≡−i�λγ

(m)
λ

2

∑
j,l

θ
(
xm

j − xm
l

)
(eik|xm

j −xm
l |σ †

j σl − H.c.),

(12)

c
(m)
λ ≡

∑
j

e−ikλxm
j σj . (13)
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Here we denoted the position of spin j along waveguide m

by xm
j and assigned the values λ = {1, − 1} corresponding to

λ = {R,L}. The symmetry breaking γ
(m)
L �= γ

(m)
R in the cou-

pling to each reservoir introduces an explicit dependence of the
reservoir-mediated coherent term on the ordering of the spins
along each waveguide, as reflected by the Heaviside function
θ (x) in Eq. (12), with θ (x) = 1 for x > 0 and θ (x) = 0 for
x � 0.

These chiral networks allow coupling the spins in multiple
ways, offering a variety of possibilities to create multipartite
entangled states as we illustrate in the next subsection.

C. Dynamical purification of spin multimers

The master equations presented above describe the spin net-
works as a driven, open many-body system, whose dynamics

drive the system into a steady state ρ(t)
t→∞−−−→ ρss . Generally,

this steady state is mixed, but under special circumstances the
interplay between driving and dissipation leads to a pure steady
state ρss = |�〉 〈�|, which in the language of quantum optics
is called a dark state [56]. There are a variety of paradigmatic
examples of this in quantum optics, including optical pumping
[57] and laser cooling [58], where the internal or motional
states of atoms, respectively, are dissipatively purified to reach
a steady state with a lower temperature.

We will show below that for a spin ensemble coupled via a
chiral network (γL �= γR), there is a set of sufficient conditions
under which the steady state is pure. In particular, for a single-
waveguide network this set is as follows:

(i) The spacing between spins is commensurate with the
wavelength of reservoir excitations such that k|xj − xl| =
2πn, with n an integer.

(ii) All spins are driven symmetrically, �j = �.
(iii) The total number of spins N is even.
(iv) The detuning pattern δj (j = 1, . . . ,N ) is such that

detunings cancel in pairs. That is, for each spin j with detuning
δj , there is another spin l with δl = −δj .

With conditions (i) and (ii) the chiral master equation (4)
can be written as

ρ̇= − i

[
�(c + c†)−

∑
j

δjσ
†
j σj− iγ

2

∑
j>l

(σ †
j σl−σ

†
l σj ),ρ

]

+ (γL + γR)D[c]ρ, (14)

where condition (i) allows us to express the dissipative part
in terms of a single collective jump operator c = cR = cL =∑

j σj . In the bidirectional case, this condition leads to a
complete absence of dipole-dipole interactions [cf. Eq. (8)].
In Eq. (14), however, owing to the asymmetry between
decay rates γ ≡ γR − γL > 0, spin-spin interactions are still
present. Moreover, this chirality breaks the permutation sym-
metry between the spins, which is crucial for the uniqueness
of the steady state.

If conditions (iii) and (iv) are also fulfilled, the steady states
of Eq. (14) are always pure and multipartite entangled, and
their structure is determined by the detuning pattern δj . In
general, the steady state factorizes in a product of Nm adjacent

multimers:

|�〉 =
Nm⊗
q=1

|Mq〉 , (15)

where each multimer state |Mq〉 is a Mq-partite entangled state
of an even number of spins Mq � N . Specifically, it takes the
form

|Mq〉 = a(0) |g〉⊗Mq +
∑
j1<j2

a
(1)
j1,j2

|S〉j1,j2
|g〉⊗Mq−2

+
∑

j1<j2<j3<j4

a
(2)
j1,j2,j3,j4

|S〉j1,j2
|S〉j3,j4

|g〉⊗Mq−4

+ · · · +
∑

j1<···<jMq

a
(Mq/2)
j1,...,jMq

|S〉j1,j2
. . . |S〉jMq −1,jMq

,

(16)

where |S〉j,l ≡ (|g〉j |e〉l − |e〉j |g〉l)/
√

2 denotes the singlet
state between two spins j and l. These clusters contain
superpositions of up to Mq/2 (delocalized) singlets, but no
other spin excitations.

As an illustrative example, in Fig. 2 we analyze the
dynamics that produce entangled pure states in a chiral network
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FIG. 2. (Color online) Dynamical purification of a chiral spin
network of N = 8 spins into different entangled multimer steady
states. As a function of time, we plot the purity of the total state P
and the purities of reduced density matrices of different spin subsets
Pj1,j2,... ≡ Tr{(ρj1,j2,...)2} to probe the entanglement structure of the
steady states. (a) Dimers are formed when δj = 0 and γL = 0.1γR . (b)
Tetramers are formed for the indicated detuning pattern. Here δa = 0,
δb = 0.3γR , and γL = 0.1γR . (c) Genuine 8-partite entangled octamer
formed as the result of coupling the spins to two chiral channels,
when driven on resonance δj = 0. For the second chiral channel
we assume γ

(2)
R = γR , γ

(2)
L = 0.5γR and the order of coupling the

spins is indicated above. Additionally, γ
(1)
L = 0.1γR and γ

(1)
R = γR .

(d) Nonlocal dimers in a single bidirectional channel, γL = γR .
The detuning pattern is as indicated, with δa = 0.6γR , δb = 0.4γR ,
δc = 0.2γR , and δd = 0.1γR . All calculations assume � = 0.5γR .
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of N = 8 spins. This will be expanded upon in Secs. III and
IV, where we analyze in detail the general conditions leading
to these types of states. In Fig. 2(a) all spins are driven on
resonance δj = 0, which results in the spin chain dynamically
purifying into dimers (i.e., Mq = 2, ∀q). Here, not only
the total state purifies dynamically [P(t) ≡ Tr{ρ2(t)} → 1 as
t → ∞], but also the reduced states of spin pairs [P2j−1,2j ≡
Tr{(ρ2j−1,2j )2} → 1, as t → ∞, ∀j = 1, . . . ,4]. Throughout
this work we use the notation ρj1,j2,... to denote the reduced
density operator of spins {j1,j2, . . . }. On the other hand,
when driving the same chiral spin network with the detuning
pattern indicated in Fig. 2(b), the spin chain arranges itself
into four-partite clusters, or tetramers, as indicated by the
purification of two blocks of four adjacent spins [cf. Fig. 2(b)].
All other spin subsets are in a mixed steady state.

It is remarkable that also in a multiple-waveguide setting,
pure states of the form in Eq. (15) can be obtained under
analogous conditions as (i)–(iv) (see Sec. IV D for details). In
Fig. 2(c) we show an example with N = 8 spins coupled to
two chiral waveguides in a partially reverse order, as indicated.
When driven on resonance δj = 0, the spins purify into a
genuine 8-partite entangled state, or octamer. In this case only
the total state purifies P(t) → 1, while all reduced density
matrices involving fewer spins stay mixed. While a chiral
spin chain with a single waveguide forms a dimerized state
when driven on resonance, the alternate “wiring” of the second
waveguide is here the key to entangle these structures.

We note that also in the case of an ideal bidirectional
waveguide (γL = γR) it is possible to prepare unique pure
steady states in specific situations. While in the chiral setting
the permutation symmetry is intrinsically broken via the
chirality of the reservoir, in the bidirectional case this can also
be achieved by choosing different detunings for each spin.
Then, under the same conditions as in the chiral case (i)–(iv),
the system is driven into a unique steady state. However, only
bipartite dimerized states form, but interestingly, depending
on the detuning pattern, these can be highly nonlocal. For
instance, in Fig. 2(d) we illustrate such a situation. There, the
first and last spins are driven into a nonlocal pure entangled
state, while all the other spins in between are dynamically
purified into adjacent dimers. Note that in the absence
of chirality, the coupling between subspaces of different
permutation symmetry is weaker, and correspondingly the time
scale to approach this steady state is longer than in the chiral
counterpart [cf. Fig. 2(b)].

D. Experimental realizations

As a final remark in this overview section, it is important
to comment on experimental possibilities to realize these
chiral spin networks. Very recently, chiral system-reservoir
interactions of the type in Eq. (3) have been realized in
photonic systems by coupling a Cs atom [36] or a gold
nanoparticle [35] to a tapered nanofiber as shown in Fig. 3(a),
as well as quantum dots to photonic crystal waveguides [37].
Related works where directionality of photon emission has
been experimentally demonstrated or proposed can be found
in Refs. [38–41]. The directionality in these photonic setups is
due the strong transverse confinement of light, which gives rise
to nonparaxial longitudinal components of the electric field

(a)

(b)

FIG. 3. (Color online) Photonic and phononic realizations of spin
chains with chiral coupling to a 1D reservoir. (a) Atoms coupled to the
guided modes of a tapered nanofiber. The directionality of the photon
emission γL �= γR stems from coupling between the transverse spin
density of light and its propagation direction. A current experimental
challenge is the control of photon emission into nonguided modes,
indicated by γ ′. (b) Cold atoms in an optical lattice immersed in a 1D
quasi-BEC of a second species of atoms, where the latter represents
the reservoir [3,4]. Including synthetic spin-orbit coupling (SOC) of
the quasi-BEC [44] allows the breaking of the symmetry of decay
into left and right moving Bogoliubov excitations [27].

that are different for left and right moving photons [59,60].
A polarization-selective coupling of an emitter can therefore
result in directional coupling to the guided modes [35–37].
Note that also optomechanical systems have been proposed to
realize a unidirectional spin chain [26].

On the other hand, a purely atomic implementation of
these chiral reservoirs, replacing photons by phonons, has
been proposed in Ref. [27] [cf. Fig. 3(b)]. There, cold atoms
in an optical lattice are immersed in a second species of
atoms representing the reservoir [3,4]. This reservoir gas is
confined to a 1D geometry and forms a quasi-BEC in which the
Bogoliubov excitations play the role of the guided modes. The
symmetry between left and right moving modes is broken by
implementing synthetic spin-orbit coupling of the reservoir gas
[44,45], as detailed in Ref. [27]. Proof of principle experiments
on implementations of such quantum optical systems with
cold atoms have already been reported in Refs. [3,4]. One of
the remarkable features of this implementation is the intrinsic
absence of other decay channels outside the waveguide [cf.
Fig. 3(a)], which is currently a major challenge in photonic
experiments.

III. PURE DARK STEADY STATES OF CHIRAL
SPIN NETWORKS

From a quantum optics perspective, steady states of open
systems are pure when they are dark states of the driven-
dissipative dynamics. The scope of this section is to analyze
in detail the conditions under which the steady states of the
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chiral spin networks are dark, and to establish a physical
interpretation of the underlying mechanisms. In particular, in
the illustrative examples with two and four spins, we show
that the conditions stated in Sec. II C are sufficient to cool the
system into such dark states. In Sec. IV we extend this to larger
networks.

We recall that a pure quantum state |�〉 is a dark state of
the driven-dissipative dynamics [61,62], if it is

(1) annihilated by all jump operators, and
(2) invariant under the coherent part of the dynamics, i.e.,

an eigenstate of the Hamiltonian.
In the particular case of a chiral spin network with ME (4),

the first condition reads cL |�〉 = cR |�〉 = 0, which means
that the system does not emit photons at both output ports of
the waveguide (hence the term “dark”). The second condition
is fulfilled if (Hsys + HL + HR) |�〉 = E |�〉, i.e., if the state
is an eigenstate of the total Hamiltonian, consisting not only
of the system part Hsys but also of the bath-mediated coherent
parts HL and HR . In general, these two conditions cannot
be satisfied at the same time, inhibiting the existence of a
dark state. To understand why and when they can be satisfied
simultaneously it is instructive to first consider the simple
example of only two spins coupled by a chiral waveguide,
since it contains many of the essential features, and will serve
as a building block to understand larger systems.

A. Two spins coupled by a chiral waveguide

The dark state condition (1) restricts the search for dark
states to the null spaces of the two jump operators cL and cR .
The null space of cL = σ1 + eik|x2−x1|σ2 is spanned by the triv-
ial state |gg〉 and the state |�L〉 ≡ (|ge〉 − eik|x2−x1| |eg〉)/√2.
The latter does not emit photons propagating to the left because
of destructive interference of the left-moving photons emitted
by the two spins, an effect well known as subradiance [47,63].
However, this subradiant state in general decays by emitting
photons traveling to the right; i.e., cR |�L〉 �= 0. On the other
hand, the null space of cR = σ1 + e−ik|x2−x1|σ2 is spanned by
|gg〉 and |�R〉 ≡ (|ge〉 − e−ik|x2−x1| |eg〉)/√2, where again,
|�R〉 is subradiant with respect to emission of photons to the
right, but in general emits photons to the left. As a consequence,
only the trivial state |gg〉 is in general annihilated by both
jump operators, leaving no room for a nontrivial dark state.
An exception occurs if the distance of the two spins is an
integer multiple of the wavelength of the photons, that is
if k|x1 − x2| = 2πn with n = 0,1,2, . . . [64]. Then the two
jump operators coincide cL = cR = c = σ1 + σ2 (up to an
irrelevant phase), and the common null space is spanned by
the two states |gg〉 and |S〉 ≡ (|ge〉 − |eg〉)/√2. The so-called
singlet state |S〉 is then perfectly subradiant with respect to both
photons propagating to the right and photons propagating to the
left. On the other hand the triplet state |T 〉 ≡ (|ge〉 + |eg〉)/√2
is superradiant; that is, it decays with 2(γL + γR) (cf. Fig. 4).
We note that in the perfectly cascaded setup this condition on
the distance of the spins is not required, since in this case there
is only one jump operator [cf. Eq. (9)].

As mentioned in Sec. II C, condition (2) can be satisfied
if the two spins are driven with the same Rabi frequency
�1 = �2 ≡ � and opposite detunings δ1 = −δ2 ≡ δ. This
can be most easily realized by expressing the Hamiltonian

(a) (b)

FIG. 4. (Color online) A chiral waveguide couples two spins that
are separated by a distance commensurate with the photon wave-
length. They are additionally driven homogeneously (�1 = �2 = �)
and with opposite detunings (δ1 = −δ2 = δ). (a) The superradiant
collective decay couples dissipatively only the spin triplet states. The
spin singlet |S〉 does not emit into the waveguide (subradiance) and
couples coherently only to |T 〉. (b) The level diagram of states |gg〉,
|S〉, and |T 〉 resembles a � system and thus there is a dark state |D〉
in the subspace spanned by |S〉 and |gg〉.

H = Hsys + HL + HR in the basis of singlet |S〉 and the triplet
states |gg〉, |T 〉, and |ee〉 as

H

�
=

√
2� (|T 〉 〈gg| + |ee〉 〈T |)

+
(

δ − iγ

2

)
|S〉 〈T | + H.c. (17)

The level scheme and the corresponding coherent and dissipa-
tive couplings of the two spins are depicted in Fig. 4(a). There
the states |gg〉, |S〉, and |T 〉 resemble a so-called � system
with resonant couplings from the stable states |gg〉 and |S〉 to
the superradiant state |T 〉. In the null space of c, one can thus
find a transformation from |gg〉 and |S〉 to a dark state |D〉 and
a bright state |B〉 [cf. Fig. 4(b)]. The state |D〉 decouples from
the coherent dynamics due to destructive interference of the
coherent drive, chiral interactions, and detunings, and thus is
an eigenstate of H . Explicitly it is given by

|D(α)〉 ≡ 1√
1 + |α|2

(|gg〉 + α |S〉) , (18)

where α ≡ −2
√

2�/(2δ + iγ ) is the singlet fraction. Fig-
ure 4(b) shows the coherent and dissipative couplings in this
transformed basis. The two spins are dissipatively “pumped”
into this dark state on a time scale tD ≡ 2π/γeff , where the
effective decay γeff reads

γeff = 2(γL + γR)(γ 2/4 + δ2)

γ 2/4 + δ2 + 2�2
. (19)

With this picture it is simple to understand the two require-
ments �1 = �2 and δ1 = −δ2, necessary for the existence
of a pure steady state. An inhomogeneous Rabi frequency
leads to a coherent coupling of the singlet state |S〉 to the
states |gg〉 and |ee〉 with strength

√
2�̃, where �̃ ≡ �1 − �2

[cf. Fig. 5(a)], inhibiting the existence of an eigenstate of
the Hamiltonian in the null space of c. On the other hand,
if the detunings are not exactly opposite, but rather have
an additional homogeneous offset  ≡ (δ1 + δ2)/2 �= 0, this
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(a) (b)

(c) (d)

FIG. 5. (Color online) Deviations from the dark state conditions
for N = 2 and their effect on the dark states. (a) A nonhomogeneous
drive �̃ = �1 − �2 �= 0 couples |S〉 coherently to |ee〉 and |gg〉,
inhibiting the formation of a dark state. (b) A homogeneous offset
in the detunings  = (δ1 + δ2)/2 �= 0 destroys the Raman resonance
between the states |S〉 and |gg〉. (c) Decay processes for spins at
arbitrary distance, i.e., noncommensurate with the wavelength. The
state |S〉 is in general not perfectly subradiant and thus decays to
the state |gg〉. (d) Additional decay channels such as emission of the
spins into independent reservoirs different from the chiral waveguide
also lead to a decay of the singlet state.

gives rise to a nonzero “two-photon” Raman detuning between
states |S〉 and |gg〉. Effectively this leads to a coupling between
the ideal dark state |D〉 and the bright state |B〉, inhibiting the
formation of a stationary dark state [cf. Fig. 5(b)]. Similarly,
also other imperfections are simple to understand in this
picture. For example we show in Fig. 5(c) the dissipative
couplings if the commensurability condition (i) is not met.
As discussed above, the singlet is no longer in the null space
of both jump operators cL, cR and decays with a rate γ−,
where we denoted γ± ≡ (γL + γR)[1 ± cos(k|x2 − x1|)]. In
addition, an experimentally relevant question is the effect of
a finite decay to dissipative channels other than the chiral
waveguide [35,36]. This would introduce an additional term
γ ′(D[σ1]ρ + D[σ2]ρ) to the chiral ME (4). Since the singlet
|S〉 is not in the null spaces of these two additional jump
operators σ1 and σ2, the pure dark state does not survive [cf.
Fig. 5(d)]. In Fig. 6 we quantify the decrease in the purity
P ≡ Tr{ρ2

ss} of the steady state of the chiral ME (4), when
considering different deviations of the dark-state conditions
discussed above. In general, one finds that the steady state is

(a) (b)

FIG. 6. (Color online) Purity of the steady state for N = 2 if the
dark-state conditions are not met (cf. Fig. 5). (a) Shown as a function
of a homogeneous offset in the detuning  and a staggered component
of the coherent drive �̃. (b) As a function of the distance between
the spins relative to the wavelength (modulo integers) and an on-site
decay γ ′. Parameters are �/γR = 0.5, δ/γR = 0.3, and γL/γR = 0.5.

close to pure if these deviations are small compared to the rate
γeff at which the dark steady state would be formed in the ideal
setup, i.e., �̃,,γ−,γ ′ � γeff .

As a final remark in this subsection we note that the dimers
are formed as long as the permutation symmetry between the
two spins is broken, i.e., as long as γ �= 0 or δ �= 0. Else the
singlet and the triplet manifold decouple [cf. Fig. 4(a)] and
the steady state is not unique.

B. Four spins coupled to a chiral waveguide

To gain insight into the general structure of dark states of
longer spin chains, we consider here the case of N = 4 spins.
This system is still small enough to find analytical solutions
and allows us to show that conditions (i)–(iv) are necessary
and sufficient to obtain dark states (up to trivial exceptions).
Moreover, it will pave the way to the more general discussion
of larger networks in Sec. IV. Note that N = 3 spins do not
allow for pure dark states, as direct search shows.

As in Sec. III A we start by identifying the null space of the
jump operators cL and cR . Again, its dimension depends on the
distances between the spins with respect to k, and is maximal
if both jump operators coincide cL = cR = c, that is, if the
commensurability condition (i) of Sec. II C is fulfilled. The
corresponding null space is then spanned by states in which
excitations of the spins are always shared in singlet states |S〉j,l
between two spins j and l, while all other spins are in the state
|g〉. Therefore, condition (1) restricts the possible dark states
to states of the form [cf. Eq. (16)]

|�〉 = a(0)|gggg〉 + a
(1)
12 |S〉12|gg〉34 + a

(1)
34 |S〉34|gg〉12

+ a
(1)
13 |S〉13|gg〉24 + a

(1)
14 |S〉14|gg〉23 + a

(1)
23 |S〉23|gg〉14

+ a
(1)
24 |S〉24|gg〉13 + a

(2)
1234|S〉12|S〉34

+ a
(2)
1324|S〉13|S〉24 + a

(2)
1423|S〉14|S〉23. (20)

One can easily check that this subspace for four spins is six-
dimensional. Note that any violation of the commensurability
condition leads to a second (independent) jump operator,
which reduces the dimension of this subspace, inhibiting in
general a simultaneous fulfillment of the dark-state conditions
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FIG. 7. (Color online) Level diagram of the N = 4 spin system
in a total angular momentum basis, obtained by first adding the
subspaces of spin 1 with 2 and spin 3 with 4, separately. The
resulting 16 states are grouped into 6 angular momentum manifolds
of given total angular momentum, which ranges from 0 to 2 (see
text). In each manifold, states are ordered by increasing number of
excited spins, i.e., eigenvalue of J z (see text). The coherent driving
∼� and dissipative terms ∼(γL + γR) couple them vertically. The
interactions γ and different detunings ∼δj couple states of different
manifolds, but conserve the number of excitations. The null space of
the collective jump operator c = ∑

j σj is spanned by the 6 states
marked in red. All these are superpositions of products of singlet
|S〉j,l ≡ (|ge〉 − |eg〉)/√2 and |g〉j |g〉l states between the different
spins j,l, as indicated in the figure.

(1) and (2). To see that states of the form in Eq. (20) indeed span
the full null space of c it is instructive to add the four different
spins-1/2 to a total angular momentum. For example, one can
add the first two spins to form a spin-0 and a spin-1 system
as in the N = 2 case, and analogously the last two spins.
Adding these spins, one obtains two spin-0, three spin-1, and
one spin-2 system (cf. Fig. 7). Note that the collective jump
operator c = ∑

j σj is simply the lowering operator of the
collective angular momentum, such that in each of these six
manifolds there is exactly one state, namely the one with the
minimum eigenvalue of the z component of the total angular
momentum J z ≡ ∑

j (σ †
j σj − σjσ

†
j ), which is annihilated by

c (cf. red states in Fig. 7).
Dark states can be formed if Hsys + HL + HR has an

eigenstate in this null space. As in the N = 2 case, this happens
only when all spins are driven homogeneously �j = �,
implying that the driving terms ∼ � couple only states within
the same angular momentum manifold (cf. vertical arrows in
Fig. 7). On the other hand, the reservoir-mediated spin-spin
interactions ∼ γ , as well as differences in detunings ∼ δj ,
couple only states with the same number of excitations (cf.
horizontal dashed lines in Fig. 7). It is a straightforward
calculation to show that the existence of dark states, that is,
eigenstates of Hsys + HL + HR in the six-dimensional null
space of c, requires the detunings δj to vanish in pairs. For
N = 4 spins there are three different possibilities to satisfy
this:

(I) δ1 + δ2 = δ3 + δ4 = 0,
(II) δ1 + δ3 = δ2 + δ4 = 0,
(III) δ1 + δ4 = δ2 + δ3 = 0.
The structure of the steady state thereby depends on the

structure of this detuning pattern. Note that all three cases
can be obtained from each other by permutations of the
detunings.

1. Dimerization

If the detuning pattern is of the form (I), one finds that the
dark state decouples into two dimers:

|�〉 = |D(α1)〉12 |D(α3)〉34 . (21)

The dimers |D(α1)〉12 and |D(α3)〉34, formed between between
the first and the second spin pair, respectively, are of the same
form as Eq. (18), with singlet fractions αj defined as

αj ≡ −2
√

2�

2δj + iγ
. (22)

As is evident from Eq. (21), under these conditions the dark
state is two-partite entangled. This dimerized state is the
straightforward generalization of the N = 2 case presented in
Sec. III A. Each of the two spin pairs thereby goes separately
into a dark state, scattering no photons into the waveguide, and
thus allowing also the other pair to reach its corresponding dark
state. In the next section we show that this concept generalizes
to chains with any even number of spins N .

2. Tetramer

If the detuning pattern is not of the form (I) but fulfils
(II) or (III), the dark state is fully four-partite entangled. The
corresponding tetramer states, which are special cases of the
general multimer in Eq. (16), read

|�〉 ∝|gggg〉 + a
(1)
12 |S〉12|gg〉34 + a

(1)
34 |S〉34|gg〉12

+ a
(1)
13

(|S〉13|gg〉24 + |S〉14|gg〉23

+ |S〉23|gg〉14 + |S〉24|gg〉13
)

+ a
(2)
1234|S〉12|S〉34 + a

(2)
1324(|S〉13|S〉24 + |S〉14|S〉23),

(23)

where the explicit form of the coefficients a
(m)
j1,...,j2m

∝ �m is
given in Appendix B. Interestingly, in the strong-driving limit
� → ∞, this tetramer takes the form |�〉 ∝ |S〉12|S〉34 +
|S〉13|S〉24 + |S〉14|S〉23, reminiscent of a valence bond state
[55].

3. Nonlocal dimers in bidirectional bath

The formation of such a tetramer relies heavily on the
broken symmetry between γL and γR . In fact, if γ = 0,
no four-partite entangled state can be formed in the dissipative
dynamics. As already seen in the N = 2 case, unique pure
steady states exist also in the bidirectional case (under the
same conditions as in the chiral case), if the permutation
symmetry is broken via δj �= 0. However, a direct calculation
(cf. Appendix B) shows that they are always dimerized.
Remarkably, when the detuning pattern is of the form (II)
or (III) [but not of the form (I)], these dimers are nonlocal
since the dark state factorizes as |�〉 = |D(α1)〉13 |D(α2)〉24
or |�〉 = |D(α1)〉14 |D(α2)〉23, respectively. In these two last
cases pairs of non-neighboring spins are entangled, but they
decouple from adjacent spins due to quantum interference. In
Fig. 2(d) we show an example of this behavior in the case of
N = 8, where spins 1 and 8 form a nonlocal dimer in steady
state. In Sec. IV E we discuss this in the general context of
networks with arbitrary even N .
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IV. PURE STEADY STATES IN SYSTEMS WITH N SPINS

In this section we want to extend the discussion of Sec. III
to dark states of networks with an arbitrary number of spins
that coupled to one or many chiral waveguides. The analysis
presented above for two and four spins will thereby serve
as guide. In particular, we show that the conditions (i)–(iv)
already anticipated in Sec. II C are sufficient for a system to
have a unique pure dark state if N is even. In addition, we
show that the structure of this steady state is in general of the
form given in Eqs. (15) and (16), i.e., the system factorizes
into a product of clusters, and we connect this structure to the
properties of the bare spin system, in particular to the detuning
pattern δj .

A. Cascaded channel and dimerization

We first take a detour (cf. Sec. IV A) and consider not a
chiral but a cascaded setup instead. The cascaded problem is
simpler, inasmuch as the unidirectional flow of information
allows an analytic solution from “left to right.” Using this
property, it was shown in Ref. [26] that the steady state of a

cascaded spin system (under conditions specified below) has
a unique pure steady state in which the system dimerizes; i.e.,
the steady state is of the form

|�〉 =
N/2⊗
j=1

|D(α2j−1)〉2j−1,2j
. (24)

Here each spin j = 1, . . . ,N , pairs up with one of its neighbors
to form a dimer and decouples from the rest of the chain.

To this end, let us consider a system of N spins that
are coupled via a unidirectional channel as described by
the cascaded ME (9). A defining property of Eq. (9) is
that information flows only in one way, specifically in the
propagation direction of the photons along the unidirectional
waveguide. While this is evident from the physical picture
underlying the ME, one can also see this also on a formal
level. For example, it is possible to calculate the equations of
motion for the “first” or “leftmost” spin along the cascaded
channel, by simply tracing out the degrees of freedom of all
other spins in Eq. (9), obtaining

ρ̇1 = − i[−δ1σ
†
1 σ1 + �1(σ1 + σ

†
1 ),ρ1] + γRD[σ1]ρ1. (25)
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FIG. 8. (Color online) Dynamical purification in the cascaded setup (γL = 0, first row), chiral setup (γL = 0.5γR , second row), and
bidirectional setup (γL = γR , third row). We show the entropies of reduced density matrices Sj1,j2,... of spins {j1,j2, . . . } (colored solid lines)
and the purity of the total state P (dashed black lines) as a function of time. In the first column the detuning pattern is chosen such that the
steady state dimerizes, which is signaled by a vanishing entropy of the reduced density matrix of the corresponding spin pairs (see text). While
in the cascaded setup the system purifies from left to right, in the chiral case the system purifies as a whole. In the second column the detuning
pattern is chosen such that the steady state breaks up into a tetramer and two dimers. The last two columns show analogous situations for
detuning pattern corresponding to two tetramers and an octamer, respectively. Note that in the bidirectional case (γL = γR , last row), the steady
state is always dimerized, but the dimers can be nonlocal, depending on the detuning pattern. Other parameters are � = 0.5γR , δa = 0.6γR ,
δb = 0.4γR , δc = 0.2γR , and δd = 0.1γR .
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The above ME (25) is closed, meaning that the first spin is
independent of the state of all other spins and reflecting the
unidirectionality of the system. Note that Eq. (25) is the well-
known optical Bloch equation for a single driven two-level
system and thus its steady state is in general mixed.

More interesting is the equation of motion for the density
operator of the first two spins ρ1,2, which is obtained from
Eq. (9) analogously to Eq. (25) and reads

ρ̇1,2 = − i
∑
j=1,2

[−δjσ
†
j σj + �j (σj + σ

†
j ),ρ1,2]

− γR

2
[σ †

2 σ1 − σ
†
1 σ2,ρ1,2] + γRD(σ1 + σ2)ρ1,2. (26)

Again, the equation of motion of the first two spins does not
depend on the state of any other spin, since the first two spins
do not notice the presence of the others in the cascaded setup.
Importantly, Eq. (26) is a special case (with γ = γR) of
the chiral master equation for two spins, already analyzed in
Sec. III A. There we showed that after a characteristic time tD
[cf. Eq. (19)], the two spins dynamically purify into the dimer
state |D(α1)〉 in Eq. (18), provided δ2 = −δ1 and �2 = �1 =
�. The corresponding singlet fraction is given as in Eq. (22),
but here with γ = γR .

Since this state is pure, the first two spins cannot be
entangled with any of the other spins and thus the state
of the total system for times t � tD has the form ρ(t) =
|D〉1,2 〈D| ⊗ ρ3,...,N (t). Once the first two spins are in the dark
state |D〉1,2, they no longer scatter photons and therefore do not
affect the dynamics of any of the other spins. The equation of
motion for ρ3,4 then decouples not only from spins {5, . . . ,N}
due to the cascaded nature of the problem, but also from the
first pair forming the dark state. The ME for ρ3,4 is therefore
closed and given by an expression analogous to Eq. (26). As for
the first pair, also this second pair is driven into the pure dark
state |D(α3)〉3,4 if δ4 = −δ3 and �4 = �3 = �. This argument
can be iterated to show that the dimerized state in Eq. (24) is
the unique steady state of a cascaded spin chain with an even
number of spins N , driven homogeneously �j = �, and with
a “staggered” detuning pattern δ2j = −δ2j−1, j = 1 . . . N .
Remarkably this iterative purification from left to right is not
only a mathematical trick to solve for a dark state, but it is also
realized physically, meaning that the cascaded system is indeed
dynamically purified from left to right, as shown in Fig. 8(a).
There we numerically calculate the time evolution of the
entropies of spin pairs, Si,j ≡ −Tr{ρi,j ln ρi,j }, signaling the
successive formation of dimers as S2j−1,2j → 0, for different
pairs at different times. They are separated by the relaxation
times tD given in Eq. (19), and the time scale to form the full
dimerized state in the cascaded setup is proportional to the
number of spins tss ∼ NtD/2 [65].

If the total number of spins is odd, all spins except the
last one are driven into such dimers. This last spin simply
factorizes off and goes to a mixed steady state, as its dynamics
is described by a ME of the same form as Eq. (25), once all
other spins reach the dimerized dark state [cf. Fig. 9(a)].

B. Dimerization in a chiral channel

For spins coupled to a chiral channel (0 < γL < γR), an
iterative solution for the steady state as in the cascaded setup is
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FIG. 9. (Color online) Typical behavior of a system with an odd
number of spins in the case of N = 7. We show the entropies of
reduced density matrices Sj1,j2,... of spins {j1,j2, . . . } (colored solid
lines) and the purity of the total state P (dashed black lines) as a
function of time. (a) In the strict cascaded limit (γL = 0), dimers are
formed, but the last spin stays mixed and renders the steady-state
nondark (cf. red and black dashed curves). (b) If γL �= 0 the steady
state is mixed, and no substructure is formed. Other parameters are
the same as in Figs. 8(a) and 8(b).

not possible due to the non-unidirectional flow of information.
However, we have already seen for N = 2 and N = 4 that the
generic chiral ME (4) also has dark steady states if the general
conditions (i)–(iv) of Sec. II C are satisfied. We show below
that this holds true also for arbitrary even N .

We start by showing that under the same conditions as in
the cascaded case, also the chiral ME (4) drives the spins into a
dimerized steady state, which in Sec. IV C is the starting point
to obtain more complex multipartite entangled dark states.
Since the solution of the cascaded ME relies heavily on its
unidirectional character, it is quite remarkable that it is this
solution that allows us to construct also the dark states of its
chiral counterpart. In fact any dark steady state of the cascaded
system can be obtained also in a chiral setup, as we show in
the following.

First, we note that under condition (i) of Sec. II C one finds
the relations

γRHL = −γLHR, cL = cR, (27)

and thus the chiral ME (4) can be written as a sum of a
cascaded Liouvillian, whose strength is replaced by γ � 0,
and an additional Lindblad term with the single collective jump
operator cR of strength 2γL:

ρ̇ = − i

�

[
Hsys + γ

γR

HR,ρ
]

+ γ

γR

D[cR]ρ + 2γLD[cR]ρ.

(28)

As shown in the Sec. IV A, the dimerized state is the
unique pure steady state of the cascaded part of Eq. (28).
By construction this dark state is annihilated by the single
collective jump operator cR , such that it is also a dark state of
the additional term in the chiral setup. Thus, any unique pure
steady state of the cascaded ME is also the steady state of the
corresponding chiral ME, with the identification γR → γ .
Moreover, it is also guaranteed to be unique as long as γ > 0.
In particular, the dimerized state (24) is also the steady state
of the chiral ME, where only the singlet fraction (22) is
renormalized with respect to the cascaded case. We note that
this construction requires γ �= 0 and thus cannot be extended
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naively to the bidirectional setting of Sec. II B 1. This special
case will be discussed in Sec. IV E.

Note that the treatment of the cascaded case cannot be
extended to the chiral one if the number of spins is odd. In
the cascaded setup, even though dimers are formed, the last
unpaired spin scatters photons and thus the state is not dark
[cf. Fig. 9(a)]. However, only dark states of the cascaded ME
are also steady in the chiral pendant. From a physical point
of view this is clear, since the unpaired spin in the chiral
setting will scatter photons to both sides of the chain and thus
necessarily disturb any dimers that may have been formed
between other spins, inhibiting a dimerization of the steady
state [cf. Fig. 9(b)].

Even though the cascaded and the chiral ME have the same
steady states (for even N ), the dynamics of the two systems in
how this steady states is approached is rather different. While
in the cascaded setup the spin chain purifies successively from
left to right due to the unidirectional flow of excitations [cf.
Fig. 8(a)], in the chiral case the system purifies “as a whole”
[cf. Fig. 8(e)].

C. Multipartite entanglement in a chiral spin chain

The above discussion shows that the spin chain is driven
into a pure dimerized steady state if driven homogeneously and
with a “staggered” detuning pattern δj such that δ2j = −δ2j−1.
For N = 4 we found in Sec. III B 2 that also for permutations
of this detuning pattern the system has dark states, which are
no longer dimerized, but rather four-partite entangled. It turns
out that this concept can be generalized to any even number
of spins N . In fact, a chiral spin chain driven with a detuning
pattern obtained by any permutation p ∈ SN of the staggered
one, i.e.,

δp(2j ) = −δp(2j−1), (29)

goes into a pure steady state. Moreover, this steady state can be
multipartite entangled. For the cascaded case this was shown in
Ref. [26] and—as for the dimerized state—the solution carries
over also to the chiral setting.

Specifically, there is a unitary mapping U (p) that leaves
the chiral master equation form-invariant up to permutations
p of the detunings, and therefore the corresponding steady
states are connected by this transformation. Starting from
the dimerized state |�〉 one can thus construct dark states
U (p) |�〉, corresponding to MEs with more complex detuning
patterns. To construct U (p), we first consider the unitary
transformation

Uj (ϑ) = exp

(
i
ϑ

2
�σj · �σj+1

)
, (30)

acting on two neighboring spins j and j + 1, where �σj ≡
(σx

j ,σ
y

j ,σ z
j ) is the vector of Pauli matrices for spin j . One

finds that for ϑ = arctan{(δj+1 − δj )/γ } the chiral ME
(14) is invariant up to the swap of the detunings δj ↔ δj+1

(cf. Ref. [26]). Therefore, on the level of the steady states,
interchanging the detunings between two neighboring spins
corresponds to applying the entangling operation in Eq. (30),
on the involved subsystems. For instance, the detuning patterns
in Figs. 10(a) and 10(b) differ by the exchange of δ2 ↔ δ3. This
is reflected in the structure of the corresponding steady state,

(a)

(b)

(c)

FIG. 10. (Color online) (a) Dimerized state as the steady state of
the chiral spin chain, when driven on resonance with a staggered
detuning pattern. (b) Tetramerized steady state, when the spin chain
is driven with a permuted detuning pattern with respect to (a). (c)
Simple 2-waveguide chiral network with a tetramerized pure steady
state. The connection between the states generated in these 3 different
situations is outlined in Secs. IV B–IV D.

inasmuch as in Fig. 10(a) it is dimerized, while in Fig. 10(b)
it forms a tetramer.

Since any permutation p can be decomposed into a
sequence of such pairwise transpositions, the corresponding
unitary U (p) is given by a product of pairwise transformations
of the form (30), and thus the structure of the steady state
can be easily understood by constructing it via a sequen-
tial application of these entangling gates starting from the
dimerized state. For example, we show in Figs. 8(a)–8(h) the
time evolution towards different types of “clusterized” steady
states in systems of N = 8 spins, including dimerized states
[cf. Figs. 8(a) and 8(e)], tetramerized states [cf. Figs. 8(c) and
8(g)], octamers [cf. Figs. 8(d) and 8(h)], but also heterogeneous
cluster sizes [cf. Figs. 8(b) and 8(f)]. As already discussed in
the example of the dimerized states above, also in this general
setting there is a difference between the cascaded and the chiral
setup, inasmuch the unidirectional character of the cascaded
setting is reflected in the order at which the clusters purify.

D. Many chiral waveguides

A single chiral waveguide breaks the left-right symmetry
and therefore introduces an ordering of the spins along it.
When more waveguides are involved, as depicted for example
in Fig. 1(b), the situation becomes more complex, since the
order of the spins along each of them can differ. Remarkably, in
this more general context, pure steady states are still possible.
A complete characterization of the possible dark states in all
chiral networks described by the ME (11) is beyond the scope
of this paper, but we rather want to show this for some simple
cases. For instance, we are interested in the situation where
all M waveguides couple to all N spins exactly once and
where conditions analogous to (i)–(iii) of Sec. II C are satisfied
for each waveguide. In particular, condition (i) simplifies the
discussion drastically since the jump operators corresponding
to emission of photons at both outputs of all waveguides
are then the same, and equal to the collective jump operator
c = ∑

j σj discussed earlier.
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FIG. 11. (Color online) Steady states in multiple-waveguide chi-
ral networks. We show the entropies of reduced density matrices
Sj1,j2,... of spins {j1,j2, . . . } (colored solid lines) and the purity of
the total state P (dashed black lines) as a function of time. (a)
Pure tetramerized state as dark state of a 2-waveguide network. (b)
2-waveguide network with a wiring such that the steady state is mixed
and without internal structure. Parameters as in Fig. 2(c).

The simplest nontrivial such network consists of two chiral
waveguides, m = 1,2 (with decay asymmetry γ (m) ≡ γ

(m)
R −

γ
(m)
L > 0), where the order of two neighboring spins along the

first and second waveguide is interchanged. Such a system is
depicted in Fig. 10(c). It turns out that the corresponding ME
can be unitarily mapped to the one of a set of spins coupled
to a single chiral waveguide (14), with different detunings. In
fact one can show that this is achieved via the unitary given in
Eq. (30) with a choice of ϑ such that

tan(ϑ) = δj − δj+1 ± √
(δj − δj+1)2 + 4γ (1)γ (2)

2γ (1)
. (31)

Under this transformation, this two-waveguide network maps
onto a single-waveguide one with γL = γ

(1)
L + γ

(2)
L and γR =

γ
(1)
R + γ

(2)
R . Moreover, the detunings of spins j and j + 1

transform as δj → (δj + δj+1)/2 + ε/2 and δj+1 → (δj +
δj+1)/2 − ε/2, with

ε ≡ (γ (1) + γ (2)) sin(2ϑ) + (δj − δj+1) cos(2ϑ), (32)

whereas all others are left invariant. From the discussion in
Sec. IV C we can thus infer that the steady state is pure if this
transformed pattern satisfies condition (iv) of Sec. II C. For
example, the situation depicted in Fig. 10(c) can be mapped
into a single chiral waveguide similar to Fig. 10(b) with a
detuning pattern δj = {δa,ε/2, − ε/2, − δa} and thus has a
pure steady state.

This construction can be iterated to interchange the order
of more spins along the waveguides and also to introduce
more chiral waveguides. For example in Fig. 11(a) we show
how a two-waveguide network can be wired to lead to a
pure tetramerized steady state. However, not every multiple-
waveguide chiral network can be mapped in this manner
to a single-waveguide chiral network [cf. Fig. 11(b) for
an example] and thus a completely general setting needs a
different approach, which is beyond the scope of this paper.

E. Special case: Bidirectional channel

The case γL = γR has to be treated separately, since a
unique steady state can only form if the permutation symmetry
between all spins is broken. However in the absence of

chirality γ = 0, this is not guaranteed. In particular if
some detunings are equal the symmetry is partially restored,
leading to nonunique steady states, depending on the initial
conditions. On the other hand, if all detunigs are different, the
permutation symmetry is again fully broken, and the steady
state is unique also in the bidirectional case. Additionally, if
conditions (i)–(iv) of Sec. II C are fulfilled, the steady state is
dark and—in contrast to the chiral case—always dimerizes.
Spins with opposite detuning pair up in dimers and factorize
off from the rest of the system, even if they are not nearest
neighbors. Unlike the chiral setting, these dimers cannot be
entangled by interchanging the detunings of different spins.
This is related to the fact that the unitary U corresponding
to such a swap [cf. Eq. (30)] is not an entangling gate for
γ = 0. This behavior is illustrated in the last row of Fig. 8.
In the absence of chirality, the coupling between subspaces of
different permeation symmetry is weaker, and correspondingly
the time scale to approach this steady state is longer than in
the chiral or cascaded counterparts (cf. Fig. 8).

F. Remarks on less restrictive assumptions for dark states

We remark that both conditions (i) and (ii) stated in Sec. II C
can be trivially relaxed in some situations. In particular, for a
clusterized state of the form in Eq. (15) (with Nm � 2), these
conditions need to be fulfilled only within each cluster of spins.
For example, dark states still form if the coherent driving field
�j varies from cluster to cluster. Similarly, the spacings of
the spins has to be commensurate with the photon wavelength
only for spins within each cluster. This simply reflects the
fact that each cluster can be dark independently, since in that
case it does not emit any photons into the waveguide and thus
completely decouples from all other spins.

G. Imperfections

An important question, so far discussed only in the example
of N = 2 spins in Sec. III A, is the error susceptibility of
the steady state against various types of imperfections. In
Fig. 12 we numerically calculate the error robustness for
different kinds of setups as a function of the size of the spin
chain N . In particular, in Fig. 12(a) we show the effect of
a homogeneous offset  on top of detuning patterns that
would be consistent with pure steady states. For a finite 

the steady state is no longer pure and its purity decreases
as P = 1 − (1/2)(/0)2 + O(4), such that the the error
susceptibility is quantified by 0. This type of error is only
of second order in , since P() = P(−), which can be
shown by noting that the ME corresponding to  and the
one corresponding to − can be unitarily mapped into each
other. One can very clearly see that the error susceptibility
increases with system size, and moreover that the chiral setting
is more vulnerable than the cascaded counterpart. This can
be understood intuitively, since any imperfection will disturb
the formation of the dark state, e.g., dimers. Moreover, an
imperfectly formed dimer scatters photons affecting also the
other parts of the system. While all pairs can be disturbed by
such photons in the chiral setting, in the cascaded setting they
act as an additional perturbation only on pairs on its left.
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(a) (b)

FIG. 12. (Color online) Imperfections for different system sizes.
We consider a homogeneous offset in the detuning  on top of the
ideal detuning pattern in (a) and additional on-site decay channel
with decay rate γ ′ in (b). For small  the purity of the steady states
behaves like P = 1 − (1/2)(/0)2, whereas for on-site decay, it
scales linearly as P = 1 − γ ′/γ ′

0 (see text). The figure shows the
corresponding error susceptibilities 0 in (a) and γ ′

0 in (b) for systems
with N = 2,4,6,8 spins. Parameters: (1) and (2) show the fully N -
partite entangled situation with an ideal detuning pattern satisfying
δ1 = δN = 0 and δ2j = −δ2j+1 = 0.3γR , else. (3) and (4) show the
dimerized situation δj = 0. For the decay asymmetries we choose
γL/γR = 0 in (1) and (3), γL/γR = 0.3 in (2) and (4). We further fix
�/γR = 0.5.

In Fig. 12(b) we show the effect of a finite on-site decay of
each spin with a rate γ ′. In this case the purity depends linearly
on γ ′; i.e., P = 1 − γ ′/γ ′

0 + O(γ ′2). Therefore, the quantity
γ ′

0 shown in Fig. 12(b) is a rough bound on the maximum decay
rate γ ′ still allowed to see the effect of a dynamical purification.
One finds, again, that chiral systems are more error prone
than their cascaded counterpart and that the control of the
on-site decay γ ′ becomes more crucial for larger systems.
While such imperfections are in general hard to control in
current photonics realizations of the spin network [19,22], this
would be intrinsically absent in a cold-atom realization [27].

H. Quantum trajectories calculations

We can extend our calculations to larger spin chains, for
example by integrating the ME (9) using quantum trajectories
methods [66,67]. In addition to averaging over trajectories
to reproduce expectation values associated with the ME,
these methods also give us an interpretation of the dynamics
that would occur under continuous measurement of whether
collective decay into the waveguide had occurred as a function
of time [46]. In Fig. 13 we show example trajectories obtained
by propagating an initial state with all of the spins in the
ground state. Following the usual prescription, the states are
propagated under the effective, non-Hermitian Hamiltonian,
e.g., Hsys + Heff in the cascaded case, with collective jumps
under the jump operator c occurring in appropriately statisti-
cally weighted time steps [66,67].

In Fig. 13(a) we show an example trajectory for the
cascaded case γL = 0, and we clearly see that the purity of
the reduced state of each pair of spins increases in succession
as the cascaded system evolves towards the steady state. In this
plot, we also see how in the cascaded case the time scale for
formation of the pairs increases linearly with the length of the
chain. The dynamics of the chiral case with γL = 0.05γR is
more complicated, as illustrated by the equivalent example
trajectory in Fig. 13(b). With coupling in two directions,

(a) (b)

FIG. 13. (Color online) (a) Illustration of the time-dependent
process of formation of dimers, through a single random trajectory
in a quantum trajectories calculation, as described in the text, with
γL = 0. We plot the purity of each spin pair j , determined by
Pj,j+1 = Tr{ρ2

j,j+1}, where ρj,j+1 is the reduced density operator for
spins j and j + 1, shown as a function of the spin pair index j and
time t . Here, we take a chain of N = 18 spins, and choose � = 1.8γR .
The shading is interpolated across the plot, so that we clearly see the
formation of pure spin pairs between all pairs (j,j + 1) with j odd,
while the reduced density operators for all pairs (j,j + 1) with j even
remain in a mixed state. (b) Same as in (a) but with γL = 0.05γR . We
can clearly see that quantum jumps with γL �= 0 can lead to breakup of
already formed dimers, that tends to lengthen the process of reaching
the steady state.

jumps can lead to a sudden decrease in the purity of a range
of different spins, which then reestablish their purity in the
subsequent time evolution. This type of process substantially
slows the dynamics as γL is increased, as predicted also for
two spins in Eq. (19).

I. Adiabatic preparation of the dark state

As a last side remark in this section, we note that the
steady states discussed here can be reached dynamically in
different ways. So far we considered the situation where �

is constant in time, such that, starting with an initial state,
e.g., |g〉⊗N , the driven system will scatter photons that leave
the chiral waveguide at one of the two output ports until the
dark state is reached. This scenario is the many-body analog
of optical pumping in quantum optics [57]. Alternatively,
one can reach the steady state without scattering a single
photon by changing the coherent drive time-dependently
� = �(t), and in particular turning it on slowly. Then, the
system follows adiabatically the instantaneous dark states
corresponding to �(t), never leaving the nonemitting subspace
defined by c |ψ〉 = 0 [cf. Fig. 14(a)], reminiscent of the
stimulated Raman adiabatic passage (STIRAP) in quantum
optics [68]. In Fig. 14(b) we illustrate this in the example
of a spin chain (initially in the trivial state |g〉⊗N ) that
reaches a teteramerized steady state. For �(t) = �max the
state purity initially decreases as the system scatters photons
before it eventually purifies again into the entangled steady
state. For an “adiabatic” switching on of the driving field
according to �(t) = �max sin2(π

2
t

Tmax
) the system is almost

pure, indicating that it follows the instantaneous dark state
from the trivial initial state to the highly entangled final state.
Figure 14(c) shows the total number of scattered photons
NPhoton ≡ (γL + γR)

∫ t→∞
0 dτTr{c†cρ(τ )} before the system
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FIG. 14. (Color online) (a) Schematic illustration of different
ways to “cool” to the many-body dark steady state (see text). The
thick black arrow corresponds to an adiabatic path, while the red
arrows indicate a nonadiabatic one. (b) Dynamical purification of
a chain of N = 8 spins into two tetramers initially in the state
|g〉⊗N for a sudden switch on of the constant coherent driving field
(dashed lines), and for an “adiabatic” switching on of the driving
field (solid lines). The black lines correspond to the purities P of
the total system in the two cases. The total number of photons
leaving the system in both cases is plotted in red; residual photons
in the “adiabatic case” are due to nonadiabatic effects stemming
from a finite TmaxγR = 300. Parameters are γL/γR = 0.5, and the
detuning pattern chosen is δj /γR = {0,0.4, − 0.4,0,0,0.4, − 0.4,0}.
(c) Total number of photons scattered for N = 6 (solid line) and
N = 4 (dashed line) as a function of the ramp time Tmax. Parameters
are �max = 0.5γR , γL/γR = 0.5, δj /γR = {0,0.4, − 0.4,0,0,0} (solid
line), and δj /γR = {0,0.4, − 0.4,0} (dashed line).

relaxes to the steady state as a function of the turn-on time
Tmax. One can clearly see that the total number of photons
leaving the waveguide goes to zero with Tmax → ∞.

V. MULTIPARTITE ENTANGLEMENT DETECTION VIA
FISHER INFORMATION

In this section we discuss the possibility to detect the
entanglement generated in the chiral spin networks discussed
in this work. In particular, we are interested in the possibility to
witness entanglement via the Fisher information and analyze
its suitability in the present context.

Since the steady state is in general not only pure, but also
fragments into a product of multimers, state tomography can be
efficient. For periodic detuning patterns the experimental cost
for such a tomography does not scale exponentially with the
system size, but linearly. Even though such a state tomography
may be efficient, it still may be challenging to perform since
it requires local measurements.

An alternative route to analyze the entanglement properties
is to use entanglement witnesses. The advantage of such
witnesses is that they do not require full knowledge of the
state, and therefore can be determined with a smaller set of
measurements, that are potentially much simpler to perform as
compared to state tomography. Recently, it has been shown in

Refs. [28,69] that the Fisher information can be used to witness
multipartite entanglement. Moreover, the Fisher information
has been measured in an experiment with cold atoms and used
to detect entanglement [29]. In the remainder of this section we
review some properties of the Fisher information, its relation
to entanglement, and analyze up to what extent it can be used
to detect the entanglement generated in the steady state of a
chiral spin network.

A. Fisher information and entanglement

Originally, the Fisher information was introduced in the
context of parameter estimation [70]. There, one is interested
in distinguishing the state ρ from the state ρθ = e−iGθρeiGθ ,
obtained by applying a unitary induced by a Hermitian genera-
tor G. To infer the value of θ one performs a measurement M =
{Mμ}, which in the most general case is given by a positive
operator valued measure (POVM). The Fisher information
F [ρ,G,M] quantifies the sensitivity of this measurement
and gives a bound on the accuracy to determine θ as
(θ )2 � 1/F . In particular, the Fisher information is defined
as [70]

F [ρ,G,M] ≡
∑

μ

1

P (μ|θ )

(
∂P (μ|θ )

∂θ

)2

, (33)

where P (μ|θ ) ≡ Tr{ρ(θ )Mμ} is the probability to obtain the
measurement outcome μ in a measurement of M given the
state ρ(θ ).

The Fisher information for an optimal measurement, i.e.,
the one that gives the best resolution to determine θ , is called
quantum Fisher information, and is defined as FQ[ρ,G] ≡
maxM F [ρ,G,M]. In pure states it takes the simple
form [70]

FQ[|ψ〉 〈ψ | ,G] = 4(G)2, (34)

relating the quantum Fisher information to the variance of the
generator (G)2 ≡ 〈ψ | G2 |ψ〉 − 〈ψ | G |ψ〉2.

There is an interesting link between quantum metrology
and entanglement, inasmuch as entangled states can be useful
to improve measurement sensitivities [71,72]. In particular,
in Refs. [28,69] it has been shown that the quantum Fisher
information witnesses multipartite entanglement in spin sys-
tems, as the ones considered here. For linear generators
G = (1/2)

∑N
j=1 �nj · �σj (with with |�nj | = 1), the quantum

Fisher information of a k-producible state, is bounded by
[28,69]

FQ[ρ,G] � f (k,N ) ≡ nk2 + (N − nk)2, (35)

where n is the integer part of N/k. Therefore, a quantum
Fisher information FQ[ρ,G] > f (k,N ) witnesses (k + 1)-
partite entanglement. Notice that this criterion also applies
for the Fisher information corresponding to any measurement
M , since FQ � F . To witness entanglement via Eq. (35) it is
desirable to use a generator G that maximizes the quantum
Fisher information. However, the optimal local rotation axes
�nj , corresponding to this generator, are in general dependent
on the state and need to be determined numerically. For pure
states it was shown in Ref. [73] that the optimal quantum
Fisher information F max

Q [|ψ〉 〈ψ |] ≡ maxG FQ[|ψ〉 〈ψ | ,G] is
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given by

F max
Q = max

{�nj }

N∑
i,j=1

∑
a,b=x,y,z

na
i �

a,b
i,j nb

j , with (36)

�
a,b
i,j ≡ 1

2 〈ψ | (σa
i σ b

j + σb
j σ a

i

) |ψ〉 − 〈ψ | σa
i |ψ〉 〈ψ | σb

j |ψ〉 .

(37)

Here σa
i denotes the ath Pauli matrix on site i, and anal-

ogously na
i denotes the a component of �ni . Thus, given

the two-spin correlation function of a pure state, one has
to solve a quadratically constrained quadratic problem. For
a positive semidefinite �

a,b
i,j , efficient numerical algorithms

(e.g., semidefinite programming) are known [74]. Moreover,
an upper bound can be easily found in terms of the largest
eigenvalue λmax of �

a,b
i,j and is given by F max

Q � Nλmax [73].

B. Quantum Fisher information for steady states
of a chiral spin chain

In this section we apply the above concepts to the different
steady states of chiral spin networks studied in Sec. IV. In
particular, we address the question of whether and up to what
extent a measurement of the (quantum) Fisher information can
reveal the multipartite entanglement structure of these states.

In the simplest example of a dimerized steady state, the
entanglement stems from a finite overlap of each dimer with
the singlet [cf. Eq. (18)]. This singlet state is maximally
sensitive to, e.g., staggered rotations around the x axis [cf.
Fig. 5(a)], and thus a suitable choice for the linear generator
is given by G = 1

2

∑
j (−1)j σ x

j . Moreover, it turns out that the
measurement of the global operator J z = ∑

j σ z
j is optimal to

detect such rotations of a singlet state [75]. A measurement
of the corresponding Fisher information thus consists of two
parts: (i) the generator G is implemented by driving the spins
on resonance with a coherent driving field, where in contrast
to the homogeneous field used to drive the system into the
dimerized state [cf. Eq. (1)], the amplitudes of this probe field
have to be staggered, and (ii) determining the probabilities for
the different measurement outcomes of the total spin along the
z axis, Jz. The Fisher information can then be calculated from
this probability distribution for different values of the probe
field (see Ref. [29]).

In Fig. 15(a) we calculate the corresponding Fisher infor-
mation in the example of N = 6 spins coupled by a chiral
waveguide and driven on resonance. We additionally map out
the region F > N , in which it detects bipartite entanglement.
The Fisher information can witness entanglement even in the
presence of imperfections such as a finite homogeneous detun-
ing , and thus the steady state is neither pure nor dimerized.
As one expects, no entanglement can be detected, if  is too
large. In the ideal case ( = 0), and for strong driving �,
F saturates at the maximum value f (2,N ) = 2N , consistent
with a 2-producible state in which N/2 singlets are formed.

For dark states with a more complex entanglement structure
than the dimerized state, such as the tetramer states for N = 4
spins, it is not straightforward to analytically find generators
and measurements that maximize the Fisher information.
Nevertheless, the quantum Fisher information reveals that an
optimal measurement can detect the full four-partite entangle-

(a) (b)

FIG. 15. (Color online) (a) Fisher information calculated via
Eq. (33) for a generator G = (1/2)

∑
j (−1)j σ x

j and a measurement
of J z = ∑

j σ z
j , in the case of N = 6 spins driven on resonance. The

solid line shows the standard quantum limit F = N . (b) Quantum
Fisher information calculated via Eq. (34), for a generator G =
(1/2)(σ x

1 − σ x
2 − σ x

3 + σ x
4 ) in the case of N = 4 spins driven with a

strength �/γR = 5 and a detuning pattern δj = {δa,δb, − δb, − δa}.
The solid lines distinguish regions where FQ detects (at least) n-partite
entanglement (for n = 2,3,4). There is a parameter region where full
four-partite entanglement is detected. All calculations are shown for
a chirality of γL = 0.5γR .

ment, for the simple generator G = (σx
1 − σx

2 − σx
3 + σx

4 )/2.
This is shown in Fig. 15(b) where FQ > f (3,4) = 10 in
a specific parameter region. For tetramers corresponding to
detunings outside this region, only three-partite, two-partite,
or even no entanglement is witnessed. This reflects the fact
that not every four-partite entangled state is equally useful for
quantum metrology [73].

To explore up to what extent the Fisher information can in
principle detect the multipartite entanglement in the clustered
states obtained in the chiral networks (cf. Fig. 16), we employ
Eq. (36) to numerically find the optimal generator and the
corresponding maximal Fisher information for steady states
of different structures. In Fig. 16 we show this maximal F max

Q

for systems of N = 8 spins, with detuning patterns leading to a
dimerized state in Fig. 16(a), a tetramerized state in Fig. 16(b),
and a full eight-partite entangled state in Fig. 16(c). The values
of the detunings are thereby chosen such that the corresponding
steady state maximizes F max

Q . In particular, we show the
directions �nj for the optimal generator, obtained by a numerical
solution of Eq. (36) and which give rise to the maximum
quantum Fisher information. The color code on each sphere
reflects the value of FQ as a function of the local generator
direction �ni (where all other �nj �=i are fixed at the optimal value),
demonstrating the sensitivity of FQ against deviations from the
optimal generator. In general, one finds that the optimal gener-
ator is not simple and in particular it is not a global one. An opti-
mal measurement of the Fisher information therefore involves
local rotations of the individual spins. As we have already
discussed above, in the dimerized case, FQ easily detects the
entanglement structure (16 > FQ > 8) [Fig. 16(a)]. In higher
entangled states, it detects the entanglement only partially
[Figs. 16(b) and 16(c)]. For example in the fully eight-partite
state [Fig. 16(c)] up to four-partite entanglement is detected.

VI. SUMMARY AND OUTLOOK

In this paper we have discussed the driven-dissipative dy-
namics of a many-particle spin system interacting via a chiral
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(a)

(b)

(c)

FIG. 16. (Color online) Optimal directions for local rotations to
detect entanglement via the quantum Fisher information. In each
panel (a)–(c) we indicate the directions �ni that give the maximum
FQ for different steady states of a chiral spin network. We show
examples of detuning patterns that give rise to (a) a dimerized state,
(b) a tetramerized state, and (c) a fully eight-partite entangled octamer.
The absolute values of the detunings are chosen (numerically) such
that the steady state maximizes F max

Q . The color map on each sphere
corresponds to FQ as a function of the local rotation direction �ni , while
keeping all other �nj (j �= i) at their optimal value. One finds that FQ

is able to detect the bipartite entanglement in the dimerized state,
three-partite entanglement in the tetramerized state, and four-partite
entanglement in the octamer. Other parameters are �/γR = 5 and
γL/γR = 0.2.

coupling to a set of 1D waveguides. Our key result is the forma-
tion of pure, multipartite entangled states as steady states of the
dynamics. Our results were derived within a quantum optical
master equation treatment based on a Born-Markov elimina-
tion of the waveguides playing the role of quantum reservoirs.
The emerging many-body dark states form clusters of spin
states that decouple from the reservoir. The crucial ingredient
of our scenario is the chirality of the reservoir, i.e., the sym-
metry breaking in the coupling of the spins to reservoir modes
propagating in different directions. Moreover, we have shown
that the multipartite entanglement emerging in these systems
could be detected in a measurement of the Fisher information.

We conclude with several remarks on the relevance and
possible future extensions of the present work in a broader con-
text. While the present work has focused on the nonequilibrium
many-particle dynamics of chiral spin networks, we emphasize
that chiral coupling of spins to waveguides has immediate
applications in quantum communication protocols with spins
representing the nodes (stationary qubits) of a network,
connected by the exchange of photons (as flying qubits)
[76]. In addition, we emphasize the Markovian assumption
underlying our master equation treatment, which ignores time
delays in the exchange of photons or phonons between spins.
Inclusion of time delays and loops in these networks allows
for a connection to quantum feedback problems [77]. Finally,
it would be interesting to extend the present study to 2D
geometries [39,78].
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APPENDIX A: DERIVATION OF THE CHIRAL
MASTER EQUATION

Here we derive the master equation for a collection of spins
coupled to a chiral waveguide, as given in Eq. (4). We take
a quantum optical point of view and identify the spins as the
system and the bosonic modes in the chiral waveguide as the
bath, which we will eliminate in a Born-Markov approximation
[46]. To do so it is convenient to consider an interaction picture
with respect to the bath Hamiltonian in Eq. (2), such that the
total Hamiltonian in this frame reads Htot(t) = Hsys + Hint(t).
The density operator of the full system and bath at time t is
denoted by W (t). Since the full system is closed, it simply
evolves unitarily, W (t) = U (t)W (0)U †(t). The unitary U (t)
satisfies the Schrödinger equation i� d

dt
U (t) = Htot(t)U (t),

with the initial condition U (0) = 1. We choose the initial
state of the system and bath as W (0) = ρ(0) ⊗ |vac〉 〈vac|;
that is, system and bath are uncorrelated initially, and the bath
is in the vacuum state. In the following we want to derive
an equation of motion for the reduced density operator of the
system ρ(t) = TrB{W (t)}, which is obtained from the state of
the full system by tracing over the bath degrees of freedom. To
this end we derive the quantum Langevin equations of motion,
and from there we obtain the corresponding master equation.
In a slightly more general situation than the one discussed in
the main text, we allow here for the system bath couplings
γλ to vary from spin to spin, denoting the decay rate for spin
j by γλj .

We start with the Heisenberg equations of motion for system
operators a(t) = U †(t)aU (t) and bath operators bλ(ω,t) =
U †(t)bλ(ω)U (t). The latter is given by

ḃλ(ω,t) =
N∑

l=1

√
γλl

2π
σl(t)e

−i(ν−ω)t−iωxl/vλ , (A1)

whose formal solution reads

bλ(ω,t) = bλ(ω) +
∫ t

0
ds

N∑
l=1

√
γλl

2π
σl(s)ei(ω−ν)s−iω

xl
vλ , (A2)

with bλ(ω,t = 0) = bλ(ω). The Heisenberg equations for an
arbitrary operator a acting on the Hilbert space of the spins
only read

ȧ(t) = − i

�
[a(t),Hsys(t)] +

∑
λ=L,R

N∑
j=1

∫
dω

√
γλj

2π

× (
b
†
λ(ω,t)ei(ω−ν)t−iω

xj

vλ [a(t),σj (t)]

− [a(t),σ †
j (t)]bλ(ω,t)ei(ν−ω)t+iω

xj

vλ

)
. (A3)
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Inserting the solution (A2) into Eq. (A3), denoting the quantum noise operators by bλ(t) ≡ 1√
2π

∫
dω bλ(ω)e−i(ω−ν)t , and

introducing the shorthand notations xjl ≡ xj − xl and kλ ≡ ν/vλ, one obtains

ȧ(t) = − i

�
[a(t),Hsys(t)] +

∑
λ=R,L

N∑
j=1

√
γλj (b†λ(t − xj/vλ)e−ikλxj [a(t),σj (t)] − [a(t),σ †

j (t)]bλ(t − xj/vλ)eikλxj )

+
∑

λ=R,L

N∑
j,l=1

√
γλjγλl

2π

∫ t

0
ds

∫
dω(ei(ω−ν)(t−s)−iωxjl/vλσ

†
l (s)[a(t),σj (t)] − e−i(ω−ν)(t−s)+iωxjl/vλ [a(t),σ †

j (t)]σl(s)). (A4)

Born-Markov approximation. We assume that the time scales on which system operators evolve are much longer than the
correlation time of the bath τ ∼ 1/ϑ . This is the essence of the Markov approximation [46], which allows us to perform the
integrals over ω and s in the second line of Eq. (A4), assuming that |�j |,|δj |,γλj � ϑ � ν. For example (for times t > |xjl/vλ|),
we obtain

∑
l

∫ t

0
ds

∫ ν+ϑ

ν−ϑ

dω
1

2π
ei(ω−ν)(t−s)−iωxjl/vλσ

†
l (s) =

∑
l

∫ t

0
ds δ(t − xjl/vλ − s)e−ikλxjl σ

†
l (s)

≈ 1

2
σ
†
l (t) +

∑
l

θ (xjl/vλ)e−ikλxjl σ
†
l (t − xjl/vλ). (A5)

Here, the the function θ (x) is defined via θ (x) = 1 for x > 0 and θ (x) = 0 for x � 0 and it accounts for the time ordering of the
spins along the two propagation directions.

Neglecting retardation. In the following, we will further neglect retardation effects arising from a finite propagation velocity
of the photons and approximate σl(t − xjl/vλ) ≈ σl(t). This approximation is justified provided |�j |,|δj |,γλj � |vλ|/|xjl|, that
is, if time scales on which system operators evolve are much slower than the time photons need to propagate through the
waveguide [25,79]. It is important to note that even though retardation effects are neglected, the time ordering of the spins along
the waveguide is still accounted for. The ordering of the quantum noise operators bλ(ω) allows a simple evaluation of expectation
values 〈a(t)〉 = TrS+B{a(t)W (0)} for initial states of the form W (0) = ρ(0) ⊗ |vac〉 〈vac|. Using the cyclic property of the trace
and the fact that the bath is initially in the vacuum state [bλ(ω)W (0) = W (0)b†λ(ω) = 0], one finds that the equation of motion
for expectation values of arbitrary system operators a is given by

〈ȧ(t)〉 = − i

�
〈[a(t),Hsys(t)]〉 +

∑
λ=R,L

N∑
j=1

γλj

2
(〈σ †

j (t)[a(t),σj (t)]〉 − 〈[a(t),σ †
j (t)]σj (t)〉)

+
∑

λ=R,L

∑
j,l

kλxj > kλxl

√
γλjγλl(e

−ikλ(xj −xl )〈σ †
l (t)[a(t),σj (t)]〉 − eikλ(xj −xl )〈[a(t),σ †

j (t)]σl(t)〉). (A6)

We note that 〈a(t)〉 = TrS+B{a(t)W (0)} = TrS+B{aW (t)} = TrS{aρ(t)}; that is, one can move the time dependence in the
expectation values for system operators to the reduced density operator. Since this above equation holds for all system operators,
we obtain the master equation for the evolution of the system density operator ρ(t) as

ρ̇(t) = − i

�
[Hsys,ρ(t)] +

∑
λ=R,L

N∑
j=1

γλj

2
([σj ,ρ(t)σ †

j ] − [σ †
j ,σjρ(t)])

+
∑

λ=R,L

∑
j,l

kλxj > kλxl

√
γλjγλl(e

ikλ(xj −xl )[σj ,ρ(t)σ †
l ] − eikλ(xj −xl )[σ †

j ,σlρ(t)]). (A7)

Without loss of generality, we take kR = −kL ≡ k > 0. This
can always be achieved (for a single waveguide) by going to a
different reference frame via the unitary transformation V =
exp(−i 1

2

∑
λ,j kλxjσ

†
j σj ). Simple algebra then shows that this

is equivalent to the master equation presented in Eq. (4).
The bidirectional and the cascaded master equations in

Eq. (7) and Eq. (9) follow as special cases. It is further
straightforward to generalize the above derivation to a chiral
network and obtain the master equation (11). A chiral network
as defined in Eq. (11) simply consists of several independent

chiral reservoirs, where the location of the spins along each
of these waveguides may change. Since these reservoirs are
all independent, the master equation is simply a sum of
Liouvillians of the form in Eq. (4) for each waveguide.

We note that we have performed a derivation of these
equations by starting with a Hamiltonian in the rotating
wave approximation. It is well known that the inclusion
of the counterrotating terms is crucial to obtain the correct
dipole-dipole interactions in three dimensions [48]. One can
derive the master equation also in 1D taking into account
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also the counterrotating terms [23]; however, in 1D such a
procedure leads to the same equation of motion (4).

APPENDIX B: EXPLICIT DARK STATE FOR N = 4 CASE

In this Appendix we give the explicit solution of the unique
dark steady state of Eq. (14) in the case of N = 4 spins
discussed in Sec. III B. As commented on in Sec. III B, the
dark state can be found as an eigenstate of the coherent part
of Eq. (14) within the subspace specified by Eq. (20), if the
detunings fulfill at least one of the conditions (I)–(III) in
Sec. III B. Then, with Q ≡ −iγ/2 �= 0, the five coefficients
determining |�〉 in Eq. (23) read

a
(1)
12 = �[2Q2 + 2δ3δ4 + (Q + δ1)(δ3 + δ4)]√

2(Q − δ1)(Q + δ3)(Q + δ4)
, (B1)

a
(1)
34 = �(2Q + δ3 − δ4)√

2(Q + δ3)(Q + δ4)
, (B2)

a
(1)
13 = �(δ3 + δ4)

2
√

2(Q + δ3)(Q + δ4)
, (B3)

a
(2)
1324 = 2

√
2�a

(1)
13

2Q − δ1 − δ2
, (B4)

a
(2)
1234 =

⎧⎨
⎩

�2(δ1+δ2−4Q)
(Q−δ1)(Q+δ4)(δ1+δ2−2Q) , (I) and (II),

√
2�(4Q+δ3+δ4)a(1)

34
(2Q+δ3+δ4)(2Q−δ3+δ4) , (III).

(B5)

Notice that for the detuning pattern (I) the dark state factorizes
into dimers |�〉 = |D(α1)〉12 |D(α3)〉34, as defined in Eq. (18)
with singlet fractions αj ≡ −2

√
2�/(2δj + iγ ). In the case

of detuning patterns (II) and (III) the dark state is a genuine
4-partite entangled tetramer. On the other hand, when the
bath is fully bidirectional (γ = 0), dark state solutions of
Eq. (14) also exist, provided all the detunings are nonzero and
different (cf. Sec. III B 3). The dark state is always dimerized
and the specific detuning pattern determines how the spins
pair up. For detunings (I), (II), and (III), it is given by
|�〉 = |D(α1)〉12 |D(α3)〉34, |�〉 = |D(α1)〉13 |D(α2)〉24, and
|�〉 = |D(α1)〉14 |D(α2)〉23, respectively. Remarkably, in the
last two cases the dimers are nonlocal (cf. Sec. III B 3).
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[78] A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and
H. J. Kimble, Nature Photonics (2015).

[79] P. Milonni and P. Knight, Phys. Rev. A 10, 1096 (1974).

042116-19

http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1103/PhysRevLett.109.170402
http://dx.doi.org/10.1038/nphoton.2015.57
http://dx.doi.org/10.1038/nphoton.2015.57
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1038/srep05720
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1126/science.1257671
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/ncomms6713
http://dx.doi.org/10.1038/ncomms6713
http://arxiv.org/abs/arXiv:1406.4295
http://arxiv.org/abs/arXiv:1406.0714
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1021/nl5003526
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233739
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1126/science.1233746
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1103/PhysRevLett.111.103901
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1038/nature11841
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1016/0370-1573(82)90102-8
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1143/PTPS.64.307
http://dx.doi.org/10.1143/PTPS.64.307
http://dx.doi.org/10.1143/PTPS.64.307
http://dx.doi.org/10.1143/PTPS.64.307
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2273
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevLett.70.2269
http://dx.doi.org/10.1103/PhysRevA.50.1792
http://dx.doi.org/10.1103/PhysRevA.50.1792
http://dx.doi.org/10.1103/PhysRevA.50.1792
http://dx.doi.org/10.1103/PhysRevA.50.1792
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.71.3095
http://dx.doi.org/10.1103/PhysRevLett.71.3095
http://dx.doi.org/10.1103/PhysRevLett.71.3095
http://dx.doi.org/10.1103/PhysRevLett.71.3095
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1103/RevModPhys.44.169
http://dx.doi.org/10.1038/ncomms4300
http://dx.doi.org/10.1038/ncomms4300
http://dx.doi.org/10.1038/ncomms4300
http://dx.doi.org/10.1038/ncomms4300
http://dx.doi.org/10.1103/PhysRevLett.114.063901
http://dx.doi.org/10.1103/PhysRevLett.114.063901
http://dx.doi.org/10.1103/PhysRevLett.114.063901
http://dx.doi.org/10.1103/PhysRevLett.114.063901
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1088/1751-8113/41/6/065201
http://dx.doi.org/10.1088/1751-8113/41/6/065201
http://dx.doi.org/10.1088/1751-8113/41/6/065201
http://dx.doi.org/10.1088/1751-8113/41/6/065201
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1103/PhysRevA.2.889
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/RevModPhys.70.1003
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1088/1751-8113/47/42/424006
http://dx.doi.org/10.1088/1751-8113/47/42/424006
http://dx.doi.org/10.1088/1751-8113/47/42/424006
http://dx.doi.org/10.1088/1751-8113/47/42/424006
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevLett.102.100401
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1103/PhysRevA.82.012337
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.1137/1038003
http://arxiv.org/abs/arXiv:1310.2844
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nphoton.2015.54
http://dx.doi.org/10.1038/nphoton.2015.54
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1103/PhysRevA.10.1096
http://dx.doi.org/10.1103/PhysRevA.10.1096



