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Quantum non-Markovianity based on the Fisher-information matrix
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With the development of quantum-information theory, there has been a flurry of investigations of quantum
non-Markovian dynamics, and several significant measures for such dynamics have been proposed from various
perspectives, such as the breakdown of dynamical divisibility, increase in the distinguishability between quantum
states, increase in correlations between the system and an arbitrary ancillary, and so on. Motivated by the idea of
exploiting the information content of parameters encoded in initial states, we propose a conceptually simple and
physically intuitive characterization for non-Markovianity with the help of a quantum-Fisher-information matrix.
The basic features are illustrated through several examples, and relations with other approaches are elucidated.
A hierarchial aspect of quantum non-Markovianity is revealed.
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I. INTRODUCTION

Quantum non-Markovian evolutions are responsible for
a wide variety of physically interesting effects, and have
attracted more and more attention in both theory and practice
in recent years [1–31]. Although classical Markovianity and
non-Markovianity are well defined and widely studied in
stochastic processes and random dynamics [32], their quantum
extensions, i.e., quantum Markovianity and quantum non-
Markovianity, remain elusive and subtle. A number of quan-
titative measures for non-Markovianity have been proposed
based on different considerations, such as the derivation from
divisibility [2,4,10], entanglement with the environment [4],
states distinguishability [3,7,12], Fisher information [8], corre-
lations with an ancilla [15], channel capacities [25], accessible
information [26], local quantum uncertainty [28], and quantum
interferometric power [30]. Each of the above characteriza-
tions captures a certain aspect of quantum non-Markovianity
and exhibits some unique feature, and they do not coincide in
general [11,19,29]. A universal characterization for quantum
non-Markovianity is still lacking and might not exist.

In this work, we employ quantum Fisher information
to propose an alternative characterization of quantum non-
Markovianity for qubit systems, and indicate that the method
can also be readily applied to treat higher dimensional
situations. To gain an intuitive motivation, let us first recall the
notion of quantum Fisher information, which is a central con-
cept in quantum detection, estimation, and metrology [33–51].
The quantum Fisher information effectively characterizes
the statistical distinguishability about parameters encoded in
quantum states, and delimits the precision of parameter estima-
tion in quantum scenarios through the celebrated Cramér-Rao
inequality [35,36]. It also has intrinsic relation with the Bures
distance in quantum state space [37,38]. Due to the subtle non-
commutative nature of quantum theory, there are many differ-
ent and useful versions of quantum Fisher information [33–42].
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Here we will adopt the one based on the symmetric logarithmic
derivative [35,36,38], which is the most important and signifi-
cant version. This version of quantum Fisher information coin-
cides with the maximum of the measurement-induced classical
Fisher information [38]. Based on quantum Fisher informa-
tion, we propose a simple and intuitive measure for quantum
non-Markovianity. The main idea is to exploit the variation
of the Fisher information of parameters encoded in quantum
states in the course of evolution, and to formulate a witness
of quantum non-Markovianity in terms of violation of the
monotonicity of quantum Fisher information under conven-
tional quantum Markovian dynamics. Thus we call a dynamics
FI-Markovian if it always reduces the Fisher information of
parameters encoded in quantum states, and FI-non-Markovian
in the case of violation of this decreasing property. These will
be made more precise in mathematical terms shortly.

It is worth mentioning that the approach to quantum non-
Markovianity proposed here is quite different from the study
in Ref. [8], although both involve the notion of quantum Fisher
information. In Ref. [8], the quantum-Fisher-information flow
is decomposed into the contributions from different dissipative
channels for a class of non-Markovian master equations in
time-local forms. Our main results consist in the introduction
of an alternative notion of quantum Markovianity or non-
Markovianity and making comparison with existing ones. We
will show that while they coincide for many instances, they
exhibit subtle differences in general cases, which are illustrated
through several examples.

The remainder of the paper is organized as follows. In
Sec. II, we introduce a formulation for quantum non-
Markovianity from the perspective of quantum-Fisher-
information matrix. In Sec. III, several examples are analyzed
in detail in order to show the physical significance and relations
of the proposed approach with other ones. We conclude with
a summary in Sec. IV.

II. NON-MARKOVIANITY FROM FISHER-INFORMATION
PERSPECTIVE

Consider a two-dimensional quantum system evolving
under the dynamics � = {�t : t � 0} (a family of quantum
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operations, also called quantum channels, i.e., completely
positive, linear, and trace-preserving maps on quantum state
space). Without loss of generality, we assume that the initial
system state has the typical form ρ(0) = |�〉〈�| with

|�〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (1)

where θ ∈ [0,π ) and φ ∈ [0,2π ) are parameters which may
be regarded as encoding the amplitude and phase information,
respectively, |0〉 and |1〉 are the eigenvectors of the Pauli spin
matrix σ3. The state of the quantum system evolves as ρ(t) =
�t (ρ(0)) for t � 0. We have suppressed the dependence on
parameters θ and φ for notational simplicity.

To quantify the information content of all parameters
contained in the state ρ(t), we employ the quantum-Fisher-
information matrix

F (t) =
(

Fθ (t) Fθφ(t)

Fφθ (t) Fφ(t)

)

with Fθ (t) = trρ(t)L2
θ , Fφ(t) = trρ(t)L2

φ , and

Fθφ(t) = Fφθ (t) = 1
2 trρ(t)(LθLφ + LφLθ ),

where Lθ and Lφ are the symmetric logarithmic derivatives
for the parameters θ and φ defined by

∂

∂θ
ρ(t) = 1

2
[ρ(t)Lθ + Lθρ(t)],

∂

∂φ
ρ(t) = 1

2
[ρ(t)Lφ + Lφρ(t)],

respectively. Since L
†
θ = Lθ and L

†
φ = Lφ , the quantum-

Fisher-information matrix F (t) is Hermitian. The essential
feature of this matrix is that it sets a lower bound to the
mean-square error of any unbiased estimator for the parameters
through the Cramér-Rao inequality [35,36].

To focus on the dynamics (i.e., temporal evolution with
time parameter t), we get off the dependence of the Fisher-
information matrix on particular values of parameters θ and φ

in the initial state by averaging, that is, we perform integration
with respect to the uniform distribution d
 = 1

4π
sin θ dθ dφ

of the parameters θ ∈ [0,π ), φ ∈ [0,2π ) on the unit Bloch
sphere, and thus come to the following averaged Fisher-
information matrix

F̄ (t) =
(

F̄θ (t) F̄θφ(t)

F̄φθ (t) F̄φ(t)

)

with F̄θ (t) = ∫
Fθ (t) d
, F̄φ(t) = ∫

Fφ(t) d
, and F̄θφ(t) =
F̄φθ (t) = ∫

Fθφ(t) d
. The integrations are over θ ∈ [0,π ),
φ ∈ [0,2π ). The averaged Fisher-information matrix F̄ (t)
now depends explicitly only on the time t and the quantum
dynamics � = {�t : t � 0}, and can be served as an indicator
to characterize the dynamics from the information perspective.

Motivated by the intuitive and plausible idea that Markovian
dynamics usually leads to loss of information, and thus should
never increase the information content of the parameters
encoded in the states, it is desirable to define a quantum
dynamics to be Markovian in the sense of decreasing quantum-
Fisher-information (abbreviated as FI-Markovian) if the aver-
aged quantum-Fisher-information matrix F̄ (t) monotonously

decreases with time t � 0. In other words, if the derivative ma-
trix d

dt
F̄ (t) is always nonpositive definite, i.e., the eigenvalues

of the Hermitian matrix d
dt

F̄ (t), denoted as λ1(t) and λ2(t),
are nonpositive, then we say that � = {�t : t � 0} exhibits
FI-Markovianity. Any violation of this monotonicity is an
indication for FI-non-Markovianity.

To summarize, a dynamics � = {�t : t � 0} for qubit
systems is defined to be FI-Markovian if d

dt
F̄ (t) � 0 for all

t � 0. Otherwise, it is defined to be FI-non-Markovian. In this
context, a quantitative measure for FI-non-Markovianity may
be defined in terms of λ(t) = max{λ1(t),λ2(t)} as

NFI(�) =
∫

λ(t)>0
λ(t) dt.

Here we remark that one may, according to the context, define
other measures in a similar spirit.

The question immediately arises as to what are the
relationships between the present approach to quantum non-
Markovianity and other ones, e.g., the Breuer-Laine-Piilo
(BLP) characterization and the Luo-Fu-Song (LFS) character-
ization of quantum non-Markovianity [3,15]. We will illustrate
their similarities and differences in the next section. We recall
that the BLP characterization is proposed by Breuer, Laine and
Piilo in terms of distinguishability (i.e., trace distance) between
states which is monotonically decreasing under conventional
Markovian dynamics [3], while the LFS characterization is
from the point of view that the total correlations (i.e., quantum
mutual information) between the system and an arbitrary
ancillary always decrease under conventional Markovian
dynamics [15]. A violation of the monotonicity is regarded
as an indication for the corresponding characterization of
quantum non-Markovianity. The corresponding measures for
non-Markovianity, denoted as NBLP(�) and NLFS(�) for
convenience, are defined, respectively, as

NBLP(�) = sup
ρ,τ

∫
d
dt

tr|�t (ρ−τ )|>0

1

2

d

dt
tr|�t (ρ − τ )| dt,

with optimization being over all pairs of initial states of the
system, and

NLFS(�) = sup
ρsa

∫
d
dt

I (ρsa
t )>0

d

dt
I
(
ρsa

t

)
dt,

where ρsa
t = (�t ⊗ 1)ρsa , and the sup is over all bipartite

states ρsa on H ⊗ Ha , with Ha an arbitrary ancillary space
and 1 the identity operator on it. To simplify the optimization
involved in the last expression, a practical substitute of LFS
characterization, denoted as LFS0, is proposed as [15]

NLFS0 (�) =
∫

d
dt

I (ρsa
t )>0

d

dt
I
(
ρsa

t

)
dt,

where ρsa
t = (�t ⊗ 1)|〉〈|, and |〉 is an arbitrary maxi-

mally entangled state.

III. COMPARISON

Let us consider several typical examples and compare
the Fisher-information characterization of quantum non-
Markovianity with the above two well-established approaches,
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i.e., the BLP characterization [3] and the LFS0 characterization
[15].

Example 1. Consider the qubit quantum dynamics � =
{�t : t � 0} with the evolving state ρ(t) = �t (ρ(0)) described
by the differential equation

d

dt
ρ(t) = γ (t)[σ3ρ(t)σ3 − ρ(t)],

with
∫ t

0 γ (s) ds � 0 and σ3 the third Pauli spin matrix.
Notice that the initial state of the system ρ(0) = |�〉〈�|

is parametrized in Eq. (1), thus the evolving state can be
expressed as

ρ(t) = �t (ρ(0))

= 1

2

(
1 + cos θ e−iφf (t) sin θ

eiφf (t) sin θ 1 − cos θ

)

with f (t) = e−2
∫ t

0 γ (s) ds . The quantum-Fisher-information ma-
trix can be readily evaluated as

F (t) =
(

1 0

0 f 2(t) sin2 θ

)
,

and the averaged Fisher-information matrix is

F̄ (t) =
(

1 0

0 2
3f 2(t)

)
.

The derivative of the above matrix is

d

dt
F̄ (t) =

(
0 0

0 − 8
3γ (t)f 2(t)

)
.

According to the approach introduced in Sec. II, � = {�t :
t � 0} is FI-Markovian if and only if γ (t) � 0 for all t � 0.
Once γ (t) < 0 for some time t , the quantum dynamics exhibits
FI-non-Markovianity. This result is in accordance with the
BLP characterization and the LFS0 characterization in view
of the results in Ref. [15], that is, in this instance, the three
approaches to quantum Markovianity coincide: This quantum
dynamics is FI-Markovian if and only if it is BLP-Markovian,
and which in turn is equivalent to LFS0-Markovian.

The measure for FI-non-Markovianity in this case is

NFI(�) = −8

3

∫
γ (t)<0

γ (t)f 2(t) dt.

Example 2. Consider the qubit quantum dynamics � =
{�t : t � 0} with the evolving state given by the following
master equation:

d

dt
ρ(t) = − i

2
s(t)[σ+σ−,ρ(t)]

+ γ (t)

(
σ−ρ(t)σ+ − 1

2
{σ+σ−,ρ(t)}

)
,

where s(t) = −2Im Ġ(t)
G(t) , γ (t) = −2Re Ġ(t)

G(t) , and G(t) is deter-
mined by

Ġ(t) = d

dt
G(t) = −

∫ t

0
dsf (t − s)G(s), G(0) = 1,

with f (τ ) = ∑
k |gk|2ei(ω0−ωk)τ a two-point correlation

function.
The evolution of the density matrix ρ(0) = |�〉〈�| as in

Eq. (1) reads

ρ(t) = �t (ρ(0))

= 1
2

(
2 − |G(t)|2(1 − cos θ ) G∗(t)e−iφ sin θ

G(t)eiφ sin θ |G(t)|2(1 − cos θ )

)
.

The quantum-Fisher-information matrix can be evaluated as

F (t) =
(|G(t)|2 0

0 |G(t)|2 sin2 θ

)
,

and the corresponding averaged Fisher-information matrix is
given by

F̄ (t) =
(

|G(t)|2 0

0 2
3 |G(t)|2

)
.

The derivative of the above matrix is

d

dt
F̄ (t) = d

dt
|G(t)|

(
2|G(t)| 0

0 4
3 |G(t)|

)
.

It is clear that d
dt

F̄ (t) � 0 is equivalent to d
dt

|G(t)| � 0.
Once there exists some time t > 0 such that d

dt
|G(t)| > 0,

the dynamics is FI-non-Markovian. Now combining the
results in Ref. [15], we conclude that the three kinds of
quantum non-Markovianity (i.e., FI-non-Markovianity, BLP-
non-Markovianity, and LFS0-non-Markovianity) all coincide.

The measure of FI-non-Markovianity is

NFI(�) = 2
∫

d
dt

|G(t)|>0
|G(t)| d

dt
|G(t)| dt.

Example 3. Consider the dynamics � = {�t : t � 0} of a
qubit system with

ρ(t) = �t (ρ(0)) =
3∑

i=0

pi(t)σiρ(0)σi, t � 0,

where pi(t) � 0,
∑3

i=0 pi(t) = 1, σ0 = 1 (identity matrix),
and σi, i = 1,2,3, are the Pauli spin matrices. This dynamics
is a random unitary dynamics (Pauli channel) and has been
exploited in Ref. [19] to demonstrate the nonequivalence
between LFS0-Markovianity and BLP-Markovianity.

We are restricted to the case pi(t) = αi[1 − p0(t)],
i = 1,2,3, and α1 = α2 = α ∈ [0,1/2], then α3 = 1 − 2α ∈
[0,1]. Put H (α) = −2α ln α − (1 − 2α) ln(1 − 2α) (natural
logarithm) and q(t) = 1 − p0(t).

Our main comparison results may be summarized as
follows: The quantum dynamics � = {�t : t � 0} is

(1) BLP-Markovian if and only if q̇(t) � 0 and

q(t) � BLP(α) := min

{
1

2(1 − α)
,

1

4α

}
; (2)

(2) FI-Markovian if and only if q̇(t) � 0 and

q(t) � FI(α) := min

{
1

2(1 − α)
,h(α)

}
, (3)
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FIG. 1. (Color online) Graphs of BLP(α), FI(α), and LFS0(α).
Note that BLP(α) = FI(α) < LFS0(α) for α ∈ (0,1/3), while
BLP(α) < FI(α) < LFS0(α) for α ∈ (1/3,1/2], and these three
curves coincide when α = 0 and α = 1/3. All quantities are
dimensionless.

where h(α) is implicitly given in the Appendix with the graph
depicted in Fig. 2.

(3) LFS0-Markovian if and only if q̇(t) � 0 and

q(t) � LFS0(α) := 1

1 + e−H (α)
, (4)

The graphs of the functions BLP(α), FI(α), and LFS0(α)
are depicted in Fig. 1 by dotted, dashed, and solid lines,
respectively.

Before proceeding to the derivation of the above results, let
us gain a more intuitive illustration and understanding of the
comparison among the three kinds of quantum Markovianity
and non-Markovianity. From Fig. 1, we have the following
observations:

(1) When α ∈ [0,1/3], BLP(α) is equal to FI(α), and both
are smaller than LFS0(α). That is to say, in this interval, BLP-
Markovianity coincides with FI-Markovianity, but differs from
(and actually implies) LFS0-Markovianity.

(2) When α ∈ (1/3,1/2], the three curves are different
from each other, from which it follows the differences
among the three characterizations of quantum Markovianity.
Since BLP(α) < FI(α) < LFS0(α), we have in this in-
stance the following hierarchial relations: BLP-Markovianity
implies FI-Markovianity, which in turn implies LFS0-
Markovianity, but the converse is not true. Put it alternatively,
when α ∈ (1/3,1/2], LFS0-non-Markovianity implies FI-non-
Markovianity, which in turn implies BLP-non-Markovianity.

To summarize, in this example, BLP-Markovian is the most
restrictive, and LFS0-Markovian is the most general, while
FI-Markovian lies in between. To illustrate more concretely
the hierarchial structure of the three kinds of Markovianity,

TABLE I. Comparisons between BLP-Markovianity, FI-
Markovianity, and LFS0-Markovianity [noting that all require
q̇(t) � 0].

Markovianity α = 1/4 α = 1/3 α = 2/5

BLP q(t) � 2/3 q(t) � 3/4 q(t) � 0.625
FI q(t) � 2/3 q(t) � 3/4 q(t) � 0.672
LFS0 q(t) � 0.739 q(t) � 3/4 q(t) � 0.742

we consider the specific values of α = 1/4, 1/3, 2/5, then

BLP
(

1
4

) = FI
(

1
4

) = 2
3 < LFS0

(
1
4

) ≈ 0.739,

BLP
(

1
3

) = FI
(

1
3

) = LFS0
(

1
3

) = 3
4 ,

BLP
(

2
5

) = 0.625 < FI
(

2
5

) ≈ 0.672 < LFS0
(

2
5

) ≈ 0.742.

The comparison is listed in Table I.
We have illustrated the difference and a hierarchical

aspect involving our FI approach compared with two existing
approaches to quantum non-Markovianity through specific ex-
amples. For other general dynamics, the detailed hierarchical
structure may change, and the point is that these three kinds of
non-Markovianity are different. It will be desirable to further
investigate their relationships.

IV. CONCLUSION

We have employed quantum Fisher information to charac-
terize quantum Markovianity and non-Markovianity from an
information perspective. More precisely, we have introduced
the notion of FI-Markovianity for quantum dynamics by
exploiting the temporal decreasing property of quantum Fisher
information of the parameters encoded in initial states. The
physical significance, similarities, and differences of this
approach with exciting ones, namely, the BLP and LFS0

approaches, are illustrated and compared by virtue of several
examples. Although these approaches coincide and thus
yield the same characterization of quantum Markovianity in
many special cases, they are different in general. For some
random unitary dynamics, we have revealed the hierarchial
relationships between them, and further illustrated that the
FI-Markovianity stands in between the BLP-Markovianity and
the LFS0-Markovianity. The hierarchial structure may change
for other general dynamics.

Quantum Fisher information is a fundamental quantity
in quantum metrology with deep significance and wide
applications. Quantum non-Markovianity may be an
important resource for quantum tasks. Our Fisher-information
approach to quantum non-Markovianity may shed alternative
light on the engineering of quantum non-Markovianity for
information processing.

We may consider more general parametrizations other than
the canonical one in Eq. (1), but as long as the Jacobian
between different parametrizations is nonsingular, the analysis
and results will be similar. Finally we remark that although we
have focused on the dynamics of qubit systems, it is plain
that the method can be extended to higher dimensional cases,
though the computation will be much more complicated.
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APPENDIX

Here we derive the criteria, inequalities (2), (3), and (4), for
BLP-Markovianity, FI-Markovianity, and LFS0-Markovianity,
respectively. Inequalities (2) and (4) follow from Ref. [19] by
straightforward manipulation of the expressions. We only need
to establish inequality (3). We now investigate the condition
for FI-Markovianity of the dynamics � = {�t : t � 0}. The
initial state ρ(0) = |�〉〈�| parametrized as in Eq. (1) will
evolve to

ρ(t) = �t (ρ(0))

= 1
2

(
1 + r(t) cos θ s(t)e−iφ sin θ

s(t)eiφ sin θ 1 − r(t) cos θ

)
,

with r(t) = 1 − 4αq(t), s(t) = 1 − 2(1 − α)q(t). The
quantum-Fisher-information matrix can be evaluated as

F (t) =
(

Fθ (t) 0

0 Fφ(t)

)
,

with

Fθ (t) = 1 − u(t)

1 + k(t) cos2 θ
,

Fφ(t) = s2(t) sin2 θ,

where u(t) = 8αq(t)[1 − 2αq(t)], and

k(t) = (3α − 1)[1 − (1 + α)q(t)]

(1 − α)[1 − (1 − α)q(t)]
.

The averaged quantum-Fisher-information matrix

F̄ (t) =
(

F̄θ (t) 0

0 F̄φ(t)

)

can be evaluated as

F̄φ(t) = 1

2

∫ π

0
s2(t) sin3 θ dθ = 2

3
s2(t),

and

F̄θ (t) = 1 − 1

2

∫ π

0

u(t)

1 + k(t) cos2 θ
sin θ dθ,

=
{

1 − u(t), k(t) = 0,

1 + u(t)
2

∫ π

0
d cos θ

1+k(t) cos2 θ
, k(t) �= 0.

Furthermore, for the case k(t) �= 0, using the following integral
formula (a > 0)

∫
dx

ax2 + b
=

⎧⎨
⎩

1√
ab

arctan
√

a
b
x + C, b > 0,

1
2
√−ab

ln
∣∣∣√

ax−√−b√
ax+√−b

∣∣∣ + C, b < 0,

where C is an arbitrary constant, we get

F̄θ (t) =
⎧⎨
⎩

1 − u(t)√
k(t)

arctan
√

k(t), k(t) > 0,

1 − u(t)
2
√−k(t)

ln
∣∣∣ 1+√−k(t)
−1+√−k(t)

∣∣∣, k(t) < 0.

If we put f (α,q) = ∂F̄θ

∂q
, then from the derivative

d

dt
F̄θ (t) = f (α,q)q̇(t),

we conclude that d
dt

F̄θ (t) � 0 is equivalent to q̇(t) � 0,

f (α,q) � 0, or q̇(t) � 0, f (α,q) � 0. The expression of
f (α,q) can be derived as follows. If k(t) > 0,

f (α,q) = −f1(t)
arctan

√
k(t)√

k(t)

+ f2(t)u(t)

(
arctan

√
k(t)

k(t)
− 1√

k(t)[1 + k(t)]

)
,

and if k(t) < 0,

f (α,q) = −f1(t)

2
√−k(t)

ln |K(t)|

− f3(t)u(t)

(
ln |K(t)|

2k(t)
+ 1√−k(t)[1 + k(t)]

)
,

with

f1(t) = 8α − 32α2q(t),

f2(t) = α(1 − 3α)√
k(t)(1 − α)[1 − (1 − α)q(t)]2

,

f3(t) = α(3α − 1)√−k(t)(1 − α)[1 − (1 − α)q(t)]2
,

K(t) = 1 + √−k(t)

−1 + √−k(t)
.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.4
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1
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FIG. 2. Graph of h(α). The quantities are dimensionless.
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It can be verified that ∂f (α,q)
∂q

is always non-negative, that is,
f (α,q) is a monotonically increasing function of q with given
α ∈ [0,1/2], and the condition f (α,q) � 0 can be expressed
as q(t) � h(α), which satisfies f (α,h(α)) = 0. The expression
of h(α) is complicated, with its graph shown in Fig. 2 as the
solid curve.

Moreover, from

d

dt
F̄φ(t) = −8

3
(1 − α)(1 − 2(1 − α)q(t))q̇(t),

it follows that d
dt

F̄φ(t) � 0 is equivalent to q̇(t) � 0, q(t) �
1

2(1−α) or q̇(t) � 0, q(t) � 1
2(1−α) .

We conclude that the dynamics � = {�t : t � 0} is FI-
Markovian if and only if q̇(t) � 0, q(t) � min{h(α), 1

2(1−α) } or

q̇(t) � 0, q(t) � max{h(α), 1
2(1−α) }. Since �0 = 1, q(0) = 0,

and 0 � q(t) � 1, the above condition actually means that
q̇(t) � 0 and

q(t) � min

{
1

2(1 − α)
,h(α)

}
= FI(α).
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