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Institute of Physics, Faculty of Physics, Astronomy and Informatics Nicolaus Copernicus University, Grudzia̧dzka 5/7, 87-100 Toruń, Poland
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We analyze the random unitary evolution of a qubit within the memory kernel approach. We provide sufficient
conditions which guarantee that the corresponding memory kernel generates physically legitimate quantum
evolution. Interestingly, we are able to recover several well-known examples and to generate new classes
of nontrivial qubit evolution. Surprisingly, it turns out that a class of quantum evolutions with a memory
kernel generated by our approach gives rise to the vanishing of a non-Markovianity measure based on the
distinguishability of quantum states.
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I. INTRODUCTION

The dynamics of open quantum systems plays an important
role in the analysis of various phenomena like dissipation,
decoherence, and dephasing [1,2]. The usual approach to the
dynamics of an open quantum system consists of applying the
Born-Markov approximation [1], which leads to a local master
equation for the Markovian semigroup

ρ̇t = L[ρt ], (1)

where ρt is the density matrix of the investigated system and L

is the time-independent generator of the dynamical semigroup
defined as follows:

L[ρ] = −i[H,ρ] + 1

2

∑
α

([Vα,ρV †
α ] + [Vαρ,V †

α ]). (2)

Here H denotes the effective system Hamiltonian, and Vα

represents noise operators [3,4]. We call Eq. (2) the Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) form. The solution
of Eq. (1) defines the Markovian semigroup

ρt = �t [ρ] = etLρ, (3)

where ρ is an initial state. The dynamical map �t = etL

is completely positive and trace preserving (CPTP) [1,3–5].
The Born-Markov approximation assumes weak interaction
and a separation of time scales between the system and
its environment. Such an approach works perfectly well
for many quantum optical systems [6–8]. When the above
assumption is no longer valid the description based on Eq. (1)
is not satisfactory. Recent technological progress and modern
laboratory techniques call for a more refined approach which
takes into account memory effects completely neglected in
the description based on Markovian semigroups. In recent
years we observed intense research activity in the field of
non-Markovian quantum evolution (see the recent review [9],
a collection of articles [10], and a recent comparative analysis
[11]).

There are basically two approaches which generalize the
standard Markovian master equation (1): a time-local approach
replaces L by a time-dependent generator Lt . Interestingly, if
for all t the time-dependent generator has the standard GKSL
form (8), then �t = T exp(

∫ t

0 Ludu) defines the so-called di-
visible dynamical map [12,13] which is often considered as the
generalization of Markovianity (see [14] for a generalization
of the notion of divisibility). The second approach is based on

the nonlocal Nakajima-Zwanzig equation [15] (see also [16]),

ρ̇t =
∫ t

0
Kt−τ ρτ dτ, (4)

in which quantum memory effects are taken into account
through the introduction of a memory kernel Kt . This means
that the rate of change of the state ρt at time t depends on its
history (starting at t = 0). The Markovian master equation
(1) is reobtained when Kt = 2δ(t)L. The time-dependent
kernel is usually referred to as the generator of the non-
Markovian master equation. Equation (4) applies to a variety
of situations (see. e.g., [17]). Because of the convolution
structure of Eq. (4) the time-local approach is often called
a time-convolutionless approach [1,18,19]. The structure and
the properties of Eq. (4) were carefully analyzed in [20–29]. In
particular the generalization of the Markovian evolution to the
so-called semi-Markov was investigated within the memory
kernel approach by Budini [21] and Breuer and Vacchini [23]
(see also discussion in [28]).

In the present article we study random unitary evolution
of a qubit within the memory kernel approach. In particular
we address the following problem: What is the structure of the
corresponding memory kernel Kt which leads to the legitimate
CPTP dynamical map �t? The article has the following
structure: In Sec. II we recall basic facts about random unitary
evolutions and in Sec. III we formulate a sufficient condition
for Kt to guarantee legitimate physical evolutions. In Sec. IV
we examine the issue of Markovianity. Surprisingly, it turns
out that a subclass of quantum evolutions with memory kernel
generated by our approach gives rise to the vanishing of a
non-Markovianity measure based on the distinguishability of
quantum states [30]. Section V illustrates our approach with
several examples. Final conclusions are collected in Sec. VI.

II. RANDOM UNITARY QUBIT EVOLUTION

A quantum channel E : B(H) → B(H) is called random
unitary [31] if its Kraus representation is given by

E[X] =
∑

k

pk UkXU
†
k , (5)

where Uk is a collection of unitary operators and {pk} stands for
a probability distribution. In this article we consider a random
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unitary dynamical map �t defined by

�t [ρ] =
3∑

α=0

pα(t) σαρσα, (6)

where σα are Pauli matrices with σ0 = I2 [32]. The initial
condition �t=0 = 1l implies pα(0) = δα0. Recently a time-
local description based on the following master equation was
analyzed [33,34]:

�̇t = Lt�t , (7)

where Lt is a time-local generator defined by

Lt [ρ] =
3∑

k=1

γk(t) (σkρσk − ρ) , (8)

with time-dependent decoherence rates γk(t). One asks the
following question: What are the conditions for γk(t) which
guarantee that the solution �t = exp(

∫ t

0 Lτdτ ) provides a
legitimate dynamical map? Note that the solution defines a
random unitary evolution with pα(t) given by

pα(t) = 1

4

3∑
β=0

Hαβλβ(t), (9)

where Hαβ is the Hadamard matrix

H =

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ , (10)

and λβ(t) are time-dependent eigenvalues of �t ,

�t [σα] = λα(t)σα, (11)

which read as follows: �0(t) = 1 and

λ1(t) = exp(−2[�2(t) + �3(t)]),

λ2(t) = exp(−2[�1(t) + �3(t)]), (12)

λ3(t) = exp(−2[�1(t) + �2(t)]),

with �k(t) = ∫ t

0 γk(τ )dτ . Now, the map (6) is completely pos-
itive (CP) iff pα(t) � 0, which is equivalent to the following
set of conditions for λs [33,34]:

1 + λ1(t) + λ2(t) + λ3(t) � 0, (13)

and

λ1(t) + λ2(t) � 1 + λ3(t),

λ3(t) + λ1(t) � 1 + λ2(t), (14)

λ2(t) + λ3(t) � 1 + λ1(t).

III. CONSTRUCTION OF LEGITIMATE
MEMORY KERNELS

In this article we analyze the nonlocal description based on
the following memory kernel equation:

�̇t =
∫ t

0
Kt−τ�τdτ, (15)

with

Kt [ρ] =
3∑

i=1

ki(t) (σiρσi − ρ) , (16)

where ki(t) (i = 1,2,3) represent nontrivial memory effects.
Note that Eq. (15) considerably simplifies after performing the
Laplace transform

�̃s = 1

s − K̃s

, (17)

where �̃s := ∫ ∞
0 e−st�tdt and similarly for K̃s . The question

we address is this: What are the conditions for ki(t) which
guarantee that the solution �t provides a legitimate dynamical
map?

Denoting by κα(t) the eigenvalues of Kt ,

Kt [σα] = κα(t)σα, (18)

Eq. (15) gives rise to the following set of equations:

λ̇i(t) =
∫ t

0
κi(t − τ )λi(τ )dτ, i = 1,2,3. (19)

Note that κ0(t) = 0 and hence λ0(t) = 1 = const. In terms of
the Laplace transforms λ̃i(s) and κ̃i(s) one finds

λ̃i(s) = 1

s − κ̃i(s)
. (20)

In terms of λ̃i(s) conditions (13) and (14) may be equivalently
reformulated as follows:

1

s
+ λ̃1(s) + λ̃1(s) + λ̃2(s) is CM, (21)

and
1

s
+ λ̃3(s) − λ̃1(s) − λ̃2(s) is CM,

1

s
+ λ̃2(s) − λ̃1(s) − λ̃3(s) is CM, (22)

1

s
+ λ̃1(s) − λ̃3(s) − λ̃2(s) is CM,

where CM stands for a completely monotone function [35],
i.e., a smooth function f : [0,∞) → R satisfying the condi-
tion

(−1)n
dn

dsn
f (s) � 0, s � 0, n = 0,1,2, . . . . (23)

The equivalence of conditions (14) and (22) results from the
following.

Theorem 1: Bernstein’s theorem. A function f : [0,∞) →
R is completely monotone on [0,∞) if and only if it is a
Laplace transform of a finite non-negative Borel measure μ on
[0,∞); i.e., f is of the form

f (s) =
∫ ∞

0
e−st dμ(t). (24)

Note that the initial condition p0(0) = 1 and pk(0) = 0 for k =
1,2,3 is equivalent to λk(0) = 1 due to the following theorem.

Theorem 2: Initial value theorem. Let f̃ (s) be the Laplace
transform of f (t). Then the following relation is true:

lim
t→0

f (t) = lim
s→∞ sf̃ (s). (25)
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It is equivalent to

lim
s→∞ sλ̃k(s) = 1, (26)

for k = 1,2,3. This way we have proved the following theorem.
Theorem 3. The map �̃s represented by the spectral

decomposition

�̃s[ρ] = 1

2

3∑
α=0

λ̃α(s)σαtr[σαρ], (27)

with λ̃0(s) = 1/s, defines the Laplace transform of a legitimate
map �t if and only if conditions (21), (22), and (26) are
satisfied.

It is worth emphasizing that there are few analytical tools
for dealing with CM functions, which is due to the fact that an
infinite set of conditions (23) must be verified. Nevertheless,
we found an important class of CM functions giving rise
to CPTP dynamics with a straightforward interpretation. To
present them, let us first observe that CM functions have the
following two properties, which will not be proved.

Property 1. Let f and g be arbitrary completely monotone
functions. Then

(1) f · g is CM,
(2) αf + βg is CM for any α,β > 0.
Property 2. If s0 � 0 then 1

s+s0
is CM.

We are now ready to prove our main result.
Theorem 4. Let W (s) be a function such that 1

s
1

W (s) is CM.
Then the functions

κ̃k(s) = − s

akW (s) − 1
, k = 1,2,3, (28)

with a1,a2,a3 > 0 such that

1

s

(
4 − 1

W (s)

[
1

a1
+ 1

a2
+ 1

a3

])
is CM, (29)

and

1

a1
+ 1

a2
� 1

a3
,

1

a2
+ 1

a3
� 1

a1
, (30)

1

a3
+ 1

a1
� 1

a2

define a legitimate memory kernel

K̃s[ρ] = 1

2

3∑
k=1

κ̃α(s)σktr[σkρ], (31)

i.e., the corresponding λ̃k(s) satisfy conditions (21), (22), and
(26).

Proof. Note that formula (28) implies

λ̃k(s) = 1

s

(
1 − 1

akW (s)

)
, (32)

and hence

1

s
+ λ̃3(s) − λ̃1(s) − λ̃2(s) = 1

s

1

W (s)

(
1

a1
+ 1

a2
− 1

a3

)
,

(33)

which proves that 1
s

+ λ̃3(s) − λ̃1(s) − λ̃2(s) is CM due to the
fact that 1

s
1

W (s) is CM. Similarly one proves the remaining
conditions (14). �

Note that, since 1
s

1
W (s) is CM, due to the Bernstein theorem,

it is the Laplace transform of a positive function. Hence,

W (s) = 1

f̃ (s)
, (34)

where f̃ (s) is the Laplace transform of f (t) satisfying∫ t

0 f (τ )dτ � 0 for all t � 0. One finds

κ̃k(s) = −sf̃ (s)

ak − f̃ (s)
. (35)

Note that condition (29) implies(
1

a1
+ 1

a2
+ 1

a3

) ∫ t

0
f (τ )dτ � 4. (36)

Hence, to summarize, our class is characterized by a single
function f (t) and three numbers a1,a2,a3 > 0 such that F (t) =∫ t

0 f (τ )dτ � 0 and conditions (30) and (36) hold. One finds
for pα(t):

p1(t) = 1

4

(
1

a2
+ 1

a3
− 1

a1

)
F (t),

p2(t) = 1

4

(
1

a3
+ 1

a1
− 1

a2

)
F (t), (37)

p3(t) = 1

4

(
1

a1
+ 1

a2
− 1

a3

)
F (t),

and p0(t) = 1 − p1(t) − p2(t) − p3(t). In particular, taking
a1 = a2 = a and a3 = ∞ one finds

κ̃1(s) = κ̃2(s) = −sf̃ (s)

a − f̃ (s)
, κ̃3(s) = 0, (38)

and hence

k̃1(s) = k̃2(s) = 0, k̃3(s) = 1

2

sf̃ (s)

a − f̃ (s)
(39)

gives rise to the legitimate memory kernel

Kt [ρ] = k3(t)(σ3ρσ3 − ρ), (40)

with arbitrary f (t) and a > 0 satisfying the additional condi-
tion

0 � F (t) :=
∫ t

0
f (τ )dτ � 2a, (41)

for all t � 0. The corresponding solution reads

p0(t) = 1 − 1

2a
F (t),

p1(t) = p2(t) = 0, (42)

p3(t) = 1

2a
F (t).

This approach resembles very much the semi-Markov con-
struction [23,28]: For any f (t) � 0 satisfying

∫ ∞
0 f (t)dt � 1

the memory kernel (40) with

k̃3(s) = sf̃ (s)

1 − f̃ (s)
(43)
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gives rise to CPTP evolution. In this case one finds

p0(t) = 1
2 [1 + λ1(t)],

p1(t) = p2(t) = 0, (44)

p3(t) = 1
2 [1 − λ1(t)],

where

λ̃1(s) = λ̃2(s) = f̃ (s) + 1

f̃ (s) − 1
. (45)

It is therefore clear that our approach goes beyond the semi-
Markov construction.

Let us recall that Markovian semigroup generated by

L[ρ] = 1

2

3∑
k=1

γk[σkρσk − ρ]. (46)

The corresponding Bloch equation reads

ẋk(t) = − 2

Tk

xk(t), (47)

where xk := tr[ρσk] and the relaxation times are defined via

T1 = 1

γ2 + γ3
, T2 = 1

γ3 + γ1
, T3 = 1

γ1 + γ2
. (48)

It is well known [5] that complete positivity is equivalent to
the following set of conditions upon Tk:

1

T1
+ 1

T2
� 1

T3
,

1

T2
+ 1

T3
� 1

T1
, (49)

1

T3
+ 1

T1
� 1

T2
.

It is therefore clear that condition (30) is an analog of condition
(49). Note that condition (30) means that there exist b1,b2,b3 >

0 such that

1

2

1

a1
= 1

b2
+ 1

b3
,

1

2

1

a2
= 1

b3
+ 1

b1
, (50)

1

2

1

a3
= 1

b1
+ 1

b2
.

Now, it terms of b1,b2,b3 our result may be reformulated as
follows.

Corollary 1. For any b1,b2,b3 > 0 and the function f (t)
satisfying

0 � F (t) :=
∫ t

0
f (τ )dτ �

(
1

b1
+ 1

b2
+ 1

b3

)−1

, (51)

and

lim
s→∞ f̃ (s) = 0, (52)

the memory kernel defined by

κ̃k(s) = − sf̃ (s)

ak − f̃ (s)
(53)

defines legitimate quantum evolution. Moreover, one has

pk(t) = 1

bk

F (t), (54)

and p0(1) = 1 − p1(t) − p2(t) − p3(t).
Let us observe that it is very hard, in general, to invert

formula (35) to the time domain. Now, we provide a family of
W (s) which enables one to easily compute κi(t) and have the
memory kernel in time domain.

Theorem 5. Let W (s) be a polynomial

W (s) = (s + z1) · · · (s + zn), (55)

with zi > 0. If a1,a2,a2 satisfy (30) and
n∏

i=1

zi � 1

4

(
1

a1
+ 1

a2
+ 1

a3

)
, (56)

then κi(t) defined via Eq. (28) define a legitimate memory
kernel.

Proof. It is clear that it is enough to prove condition (21).
Lemma 1. One has the following decomposition:

1

s
∏n

i=1(s + zi)
= A

(
1

s
−

n∑
i=1

∏i−1
j=1 zj∏i

j=1(s + zj )

)
, (57)

where

A = 1∏n
i=1 zi

. (58)

For the proof see the Appendix. Now we show that condition
(21) holds. According to Eq. (57) one has

1

s
+ λ̃1(s) + λ̃2(s) + λ̃3(s)

= 1

s

(
4 −

[
1

a1
+ 1

a2
+ 1

a3

]
1

W (s)

)

= 1

s

(
4 −

[
1

a1
+ 1

a2
+ 1

a3

]
1∏n

i=1 zi

)

+
[

1

a1
+ 1

a2
+ 1

a3

]
1∏n

i=1 zi

n∑
j=1

∏j−1
i=1 zi∏j

i=1(s + zi)
. (59)

A second term in Eq. (59) is CM due to the fact that it is a
sum of CM functions. Hence, if condition (56) is satisfied then
condition (21) holds. �

Note that

κ̃i(s) = − s

akW (s) − 1
= − 1

ak

s

(s − s1) · · · (s − sm)
, (60)

where {s1, . . . ,sm} are the roots of the polynomial akW (s) − 1.
It is therefore clear that formula (60) may be easily inverted to
the time domain.

Remark 1. Note that W (s) defined in Eq. (55) implies that
1

W (s) is CM and hence 1
s

1
W (s) is CM as well.

IV. CHECKING FOR NON-MARKOVIANITY

Let us recall that according to [30] the evolution represented
by �t is non-Markovian if the condition

d

dt
||�t [ρ1 − ρ2]||tr � 0 (61)
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is violated for some initial states ρ1 and ρ2. One defines [30]
a well-known non-Markovianity measure

NBLP[�t ] = sup
ρ1,ρ2

∫
d

dt
||�t [ρ1 − ρ2]||tr dt, (62)

where the integral is evaluated over the region where
d
dt

||�t [ρ1 − ρ2]||tr > 0 (and BLP stands for Breuer-Laine-
Piilo). Now, it has been proved [33] that for random unitary
qubit evolution if all eigenvalues λk(t) � 0, then condition
(61) is equivalent to

d

dt
λk(t) � 0, k = 1,2,3. (63)

Proposition 1. For a1,a2,a3 satisfying conditions (30) and
W (s) = 1

f̃ (s)
, where f̃ (s) is CM and∫ t

0
f (τ )dτ � amin, amin = min{a1,a2,a3}, (64)

the corresponding memory kernel gives rise to the dynamical
map �t such that NBLP[�t ] = 0.

Proof. Let us observe that condition (64) implies condition
(29). Indeed, from condition (64) one has(

1

a1
+ 1

a2
+ 1

a3

) ∫ t

0
f (τ )dτ � 3, (65)

and hence condition (29) follows. Now, observe that

λk(t) = 1 − 1

ak

∫ t

0
f (τ )dτ � 0,

due to condition (64). Hence, it is sufficient to show that
d
dt

λk(t) � 0. It is clear d
dt

λk(t) � 0 if and only if 1 − sλ̃k(s) is
CM and hence taking into account Eq. (20) it is equivalent to
the requirement that −κ̃k(s)λ̃k(s) is CM. One has, therefore,

−κ̃k(s)λ̃k(s) = f̃ (s)

ak

, (66)

which ends the proof since f̃ (s) is CM and ak > 0. �
Remark 2. If W (s) = (s + z1) · · · (s + zn) with zk > 0 and

a1,a2,a3 satisfying conditions (30) together with
n∏

i=1

zi � 1

ak

, k = 1,2,3, (67)

then the corresponding dynamical map �t satisfies
NBLP[�t ] = 0.

Remark 3. It was shown [14,36] that BLP condition (61) is
equivalent to so-called P divisibility. This means that

�t = Vt,s�s, (68)

and for any t > s the propagator Vt,s is positive (but not
necessarily completely positive).

Interestingly, our construction provides a class of legitimate
random unitary qubit evolutions generated by the nontrivial
memory kernel but still satisfying BLP condition (61) (cf. also
[37]). It is clear that to violate condition (61) one needs a
more refined construction such that 1

W (s) is not CM but 1
s

1
W (s)

is already CM. It deserves further analysis.
Consider now the question of CP divisibility which is fully

controlled by the local decoherence rates in Eq. (8). One may

easily compute them in terms of f (t):

γ1(t) = f (t)

4

( −1

a1 − F (t)
+ 1

a2 − F (t)
+ 1

a3 − F (t)

)
,

γ2(t) = f (t)

4

(
1

a1 − F (t)
− 1

a2 − F (t)
+ 1

a3 − F (t)

)
,

γ3(t) = f (t)

4

(
1

a1 − F (t)
+ 1

a2 − F (t)
− 1

a3 − F (t)

)
.

The dynamical map �t is CP divisible iff γk(t) � 0 for k =
1,2,3. Let us assume that

a1 � a2 � a3. (69)

Proposition 2. If a1,a2,a3 and f (t) � 0 satisfy conditions
(29) and (30) the corresponding memory kernel,

κ̃k(s) = − sf̃ (s)

ak − f̃ (s)
, (70)

leads to a CP-divisible dynamical map iff

F (t) � a1 −
√

(a2 − a1)(a3 − a1). (71)

Proof. Due to condition (69) it is sufficient to show that
γ1(t) � 0 which, for f (t) � 0, is equivalent to

−1

a1 − F (t)
+ 1

a2 − F (t)
+ 1

a3 − F (t)
� 0. (72)

Let us assume that F (t) < a1, which means that γ1(t) is not
singular. Inequality (72) is satisfied iff

F (t) ∈ (−∞,F−] ∪ [F+, + ∞)

with

F± = a1 ±
√

(a2 − a1)(a3 − a1).

Now, taking into account that F (t) < a1, one finally proves
condition (71). �

Proposition 2 shows that positivity of the function f (t) is
not sufficient for CP divisibility. One needs an extra condition
(71) which involves not only f (t) but {a1,a2,a3} as well.

V. EXAMPLES

Example 1. Consider the simplest case with a polynomial
of degree 1,

W (s) = s + z, (73)

with z > 0. One finds

κ̃k(s) = − s

ak(s + z) − 1
, (74)

and the inverse Laplace transform gives

κk(t) = −1

z

(
δ(t) −

[
z − 1

ak

]
e
−[z− 1

ak
]t
)

. (75)

Note that if ak = 1/z, then the dynamics is purely local. One
easily finds

λk(t) = 1 − 1

zak

(1 − e−zt ), (76)
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and finally the solution for pk(t) is defined by Eqs. (37) with

F (t) = 1

z
(1 − e−zt ). (77)

Note that condition (56) implies the following relation
between z and a1,a2,a3:

4z � 1

a1
+ 1

a2
+ 1

a3
, (78)

which guarantees that p0(t) � 0. In the symmetric case a1 =
a2 = a3 = a one finds p1(t) = p2(t) = p3(t) =: p(t) with

p(t) = 1

4za
[1 − e−zt ], (79)

and p0(t) = 1 − 3p(t) with 4za � 3. One finds that asymp-
totically

p0(t) → 1 − 3

4za
. (80)

Note that for za > 1 one has asymptotically p0(∞) < 1/4.
This property cannot be reproduced within the local approach
with regular generators Lt . Indeed, it follows from Eq. (9) (see
also [33] for more details) that

p0(t) = 1
4 [1 + λ1(t) + λ2(t) + λ3(t)], (81)

and, hence, using conditions (14), one finds

p0(t) � 1
4 . (82)

This example shows that local and memory kernel approaches
may lead to essentially different evolutions.

Example 2. Consider now the same polynomial W (s) =
s + z but let z = 2c > 0. Moreover,

a1 = a2 = 1

c
, a3 = 1

2c
. (83)

One finds

κ̃1(s) = κ̃2(s) = − sc

s + c
, κ̃3(s) = −2c,

and hence

κ1(t) = κ2(t) = −cδ(t) + c2e−ct , κ3(t) = −2cδ(t).

Finally, one finds the following formula for the memory
kernel:

Kt [ρ] = c

2
δ(t)[σ1ρσ1 + σ2ρσ2 − 2ρ]

− c2

2
e−ct [σ3ρσ3 − ρ]. (84)

One has

λ1(t) = λ2(t) = 1
2 (1 + e−2ct ), λ3(t) = e−2ct .

Interestingly, this evolution reproduces the time-local descrip-
tion with

γ1(t) = γ2(t) = c

2
, γ3(t) = − c

2
tanh(ct), (85)

as discussed in [34]. It was shown [36] that �t is a convex
combination of two Markovian semigroups �

(1)
t and �

(2)
t

generated by

Lk[ρ] = c

2
[σkρσk − ρ], k = 1,2, (86)

that is,

�t = 1
2 (etL1 + etL2 ). (87)

This simple example shows that a convex combination
of Markovian semigroups leads to a quantum evolution
displaying essential memory effects.

Example 3. Consider now a polynomial of degree 2,

W (s) = (s + c1)(s + c2), (88)

with c2 > c1 > 0. Our construction gives rise to a legitimate
memory kernel if conditions (30) hold and

4c1c2 � 1

a1
+ 1

a2
+ 1

a3
. (89)

One finds

κ̃k(s) = − 1

ak

s

(s + c1)(s + c2) − 1
ak

= − 1

ak

s

(s + s1)(s + s2)
, (90)

with

s1 + s2 = c1 + c2, s1s2 = c1c2 − 1

ak

.

Hence, the solution has the form (37) with the function F (t)
given by

F (t) = 1

c2 − c1

(
1

c1
[1 − e−c1t ] − 1

c2
[1 − e−c2t ]

)
. (91)

Example 4. Let

W (s) = s2 + ω2. (92)

Note that 1
s

1
W (s) is CM since

1

s

1

W (s)
= 1

ω

1

s

(
ω

s2 + ω2

)

is the Laplace transform of
∫ t

0 sin(ωτ )dτ which is positive for
all t � 0. Condition (29) implies

1

a1
+ 1

a2
+ 1

a3
� 2ω2. (93)

The corresponding eigenvalues of the memory kernel read

κi(t) = − 1

ai

cos

(√
ω2 − 1

ai

t

)
, (94)

for ω2 � 1/ai , and

κi(t) = − 1

ai

cosh

(√
1

ai

− ω2 t

)
, (95)
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for ω2 < 1/ai . Moreover, one finds

λk(t) = 1 + 1

akω2
[cos(ωt) − 1], (96)

and hence

p1(t) = 1

4ω2

(
1

a2
+ 1

a3
− 1

a1

)
[1 − cos(ωt)],

p2(t) = 1

4ω2

(
1

a3
+ 1

a1
− 1

a2

)
[1 − cos(ωt)], (97)

p3(t) = 1

4ω2

(
1

a1
+ 1

a2
− 1

a3

)
[1 − cos(ωt)],

together with p0(t) = 1 − p1(t) − p2(t) − p3(t). In particular
taking

a1 = a2 = 1

ω2
, a3 = ∞, (98)

one finds

κ1(t) = κ2(t) = −ω2, κ3(t) = 0, (99)

and hence

k1(t) = k2(t) = 0, κ3(t) = ω2

2
, (100)

which proves that the constant (time-independent)

Kt [ρ] = k

2
(σ3ρσ3 − ρ) (101)

provides a legitimate memory kernel for arbitrary k = ω2 > 0.
Moreover, one finds for the local decoherence rates

γ1(t) = ω sin(ωt)

4

( −1

a1ω2 − 1 + cos(ωt)

+ 1

a2ω2 − 1 + cos(ωt)
+ 1

a3ω2 − 1 + cos(ωt)

)
,

and similarly for γ2(t) and γ3(t). Note that if for some k

one has akω
2 < 1 then local decoherence rates are singular

and hence in this case the nonlocal approach is more
suitable.

VI. CONCLUSIONS

We analyzed random unitary evolution of a qubit within
a memory kernel approach. Our main result formulated in
Theorem 4 allows one to construct legitimate memory kernels
leading to CPTP dynamical maps. The power of this method
is based on the fact that (1) it allows one to reconstruct
well-known examples of legitimate qubit evolution and (2)
the structure of polynomials Wk(s) enables one to perform the
inverse Laplace transform and to find a formula for the kernel
in the time domain. The mathematical analysis heavily uses the
notion of completely monotone functions. These functions are
not commonly used in theoretical physics and knowledge of
their properties is rather limited. There are no known effective
methods allowing one to check whether a given function is
CM. We stress that Theorem 4 provides only a sufficient
condition, and further analysis is needed to cover physically
interesting cases which do not fit the assumptions of the
theorem. Interestingly, it turns out that the quantum evolution
with a memory kernel generated by our approach gives rise
to a vanishing non-Markovianity measure based on the distin-
guishability of quantum states [30]. We also have shown when
the corresponding dynamical map is CP divisible. It shows
that the evolution satisfying the nonlocal master equation does
not necessarily lead to a non-Markovian evolution. It would be
also interesting to analyze the relation between semi-Markov
evolution and the one governed by our approach in more detail.
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APPENDIX: PROOF OF LEMMA 1

Let us observe that Eq. (57) may be represented in the following form:

1

s
∏n

i=1(s + zi)
= A

∏n
i=1(s + zi) − s

(∏n
i=2(s + zi) + z1

∏n
i=3(s + zi) + · · · + ∏n−2

j=1 zj (s + zn) + ∏n−1
j=1 zj

)
s
∏n

i=1(s + zi)
, (A1)

therefore, to prove Lemma 1 it suffices to show that

n∏
i=1

zi =
n∏

i=1

(s + zi) − s

⎛
⎝ n∏

i=2

(s + zi) + z1

n∏
i=3

(s + zi) + · · · +
n−2∏
j=1

zj (s + zn) +
n−1∏
j=1

zj

⎞
⎠ . (A2)

We prove this by induction. For n = 1 it is clear that LHS = RHS = z1. We assume that Eq. (A2) is true for n and prove it is
also true for (n + 1). The left-hand side (LHS) may be written as

LHS =
n∏

i=1

zizn+1, (A3)
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while the right-hand side (RHS) reads

RHS =
n∏

i=1

(s + zi)(s + zn+1) − s

⎛
⎝ n∏

i=2

(s + zi)(s + zn+1) + z1

n∏
i=3

(s + zi)(s + zn+1) + . . .

+
n−2∏
j=1

zj (s + zn)(s + zn+1) +
n−1∏
j=1

zj (s + zn+1) +
n−1∏
j=1

zj · zn

⎞
⎠

= (s + zn+1)

⎛
⎝ n∏

i=1

(s + zi) − s

⎛
⎝ n∏

i=2

(s + zi) + z1

n∏
i=3

(s + zi) + · · · +
n−2∏
j=1

zj (s + zn) +
n−1∏
j=1

zj

⎞
⎠

⎞
⎠

− s

n−1∏
j=1

zj zn = s

n∏
i=1

zi + zn+1

n∏
i=1

zi − s

n∏
i=1

nzi, (A4)

which proves that RHS = LHS. �
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