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We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality
and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks,
stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being
highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime
dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states.
These magic states have an appealingly simple form, and our proof shows that they are “balanced” with respect
to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the
average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that
may have implications for cryptography.
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I. INTRODUCTION AND MOTIVATION

In the context of fault-tolerant quantum computing using
error-correcting codes, there exist single-particle pure states,
“magic states,” with desirable properties. Having access to
a supply of these states expands the sets of robustly imple-
mentable operations to encompass a universal gate set. More-
over, impure versions of these states can be purified using only
the fault-tolerant operations provided by the error-correcting
code. There is a privileged family of magic states, well defined
for both qubits and qudits of odd prime dimension p, whose
structure reflects a group-theoretical object called the Clifford
hierarchy. Here we will show that the utility of these magic
states extends beyond the arena of quantum computation;
they essentially provide optimal strategies for both (i) a
nonlocal game wherein both Alice and Bob each use p Pauli
measurements and (ii) a cryptographically motivated scenario
wherein we try to minimize the average entropic uncertainty
with respect to a set of p mutually unbiased measurements.
Qudits can have operational advantages for nonlocal or
cryptographic tasks in terms of tolerating inefficiencies or
the addition of white noise [1–3], but the geometry of state
space becomes notoriously complex when we venture past the
qubit Bloch sphere. In this work we prove that the optimal
states have a simple structure and furthermore that these states
have connections to group-theoretical and number-theoretical
structures. These ideas may prove useful elsewhere.

Given the fundamental importance of the Clauser-Horne-
Shimony-Holt [4] (CHSH) game in quantum information
theory [5–7], it is well motivated to study generalizations to
different numbers of measurement settings, parties, and so on.
By preserving the structure of the CHSH game while enlarging
the size of the input-output alphabet to d symbols (using
qudits), we can examine how the quantum advantage scales
with dimension or investigate new features that arise due to
additional degrees of freedom. Buhrman and Massar [8] stud-
ied such a generalization and found bounds on the allowable
quantum value. Ji et al. [9] constructed a Bell operator from
qudit Pauli measurements, whose maximization describes a
quantum strategy for the qudit CHSH game. For small prime
dimensions they analyzed classical (i.e., local hidden variable)
and quantum values. A follow-up work by Liang et al. [10]

expanded on this analysis and broadened the numerical search
to allow non-Pauli measurements. Most recently Bavarian and
Shor [11] looked at a generalized CHSH game wherein the
alphabet consists of all field elements Fq where q is a prime
power, and proved a generalization of Tsirelon’s bound using
Information Causality [12]. As was done by Ji et al. [9], we
will restrict our analysis to projective Pauli measurements.
Quantifying nonlocality is a tricky task, particularly if one
is motivated by operational considerations. For example, an
experimental test may achieve higher statistical significance
via lower statistical error [13] or higher statistical strength via
larger statistical divergence with any classical model [14]. One
conceptually simple metric for nonlocality is to measure the
amount by which a Bell inequality is violated. If Bell inequality
violation is the only figure of merit, then restricting to Pauli
measurements is suboptimal; larger violations are possible
with non-Pauli measurements whenever p > 3. Nevertheless,
we remain particularly interested in nonstabilizer states, mea-
surements (see, e.g., Ref. [15]), or transformations that emerge
as privileged with respect to their stabilizer counterparts, due to
some geometrical or operational relationship. This is motivated
in part by the clean mathematical and conceptual framework
provided by the so-called “stabilizer subtheory” [16–18]
of quantum mechanics for odd-dimensional qudits, loosely
speaking, states and operations far outside this subtheory are
highly nonclassical [19].

Mutually unbiased bases (MUBs) are a crucial component
in a variety of quantum-informational settings. They are neces-
sary for the creation of maximally strong entropic uncertainty
relations [20], which describe limits on the allowed probability
distributions associated with multiple measurements on quan-
tum states. In cryptographic scenarios, uncertainty relations
can be used to bound an eavesdropper’s knowledge of quantum
states transmitted between two parties. In [21] Amburg et al.
motivate the study of “MUB-balanced states,” i.e., pure states
for which, relative to a complete set of d + 1 MUBs, the list of
probabilities of the d outcomes of one of these measurements is
independent of the choice of measurement, up to permutations.
Recent work by Appleby et al. [22] suggests that MUB-
balanced states exist only in odd prime-power dimensions of
the form d = 3 mod 4. A MUB-balanced state is automatically
also a collision-entropic minimum uncertainty [22,23] (or
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maximally certain [24]) state, important in cryptography, but
balancedness is a stricter condition than minimum uncertainty.
From a foundational point of view, MUB-balanced states are
analagous to harmonic oscillator eigenstates insofar as the “di-
rection” of a measurement is unimportant. Our results include
a concise proof that magic states are balanced with respect to
p out of a total of p + 1 total bases in a complete set of MUBs.
This suggests that magic states may be relevant in quantum
cryptography, in analogy with the Breidbart basis for qubits.
We also comment on the connection between magic states and
the Sato-Tate distribution that arises in number theory.

II. BACKGROUND MATERIAL

A. Prerequisites and notation

The Weyl-Heisenberg operators D(x|z) are a generalized
p-dimensional version of qubit Pauli operators,

D(x|z) = ω2−1xz
∑

k

ωkz|k + x〉〈k| = ω
xz
2 XxZz

with

X|j 〉 = |j + 1〉 Z|j 〉 = ωj |j 〉 (ω = e2πi/p), (1)

where we always treat expressions like 1
a

to mean the mu-
tiplicative inverse a−1 ∈ Zp = {0,1, . . . ,p − 1}. The choice
of phase has the convenient feature that Dn

(x|z) = D(nx|nz), and
we use symplectic notation to keep track of X and Z powers
separately, so that multiqudit operators look like

D(x1|z1) ⊗ D(x2|z2) = D(x1,x2|z1,z2).

The rank-1 projector onto the ωV eigenspace of D(1|B) (in
other words, the projector onto the V th vector of the B-th
Weyl-Heisenberg basis) is given by∣∣ψV

B

〉〈
ψV

B

∣∣ = 1

p

∑
j

ω−jV D
j

(1|B), (2)

so that ∣∣ψV
B

〉 = 1√
p

∑
k∈Fq

ω( 1
2 Bk2−V k)|k〉. (3)

The p2 states {|ψV
B 〉,B,V ∈ Zp}, along with those of the

computational basis, comprise both (i) a complete set of
mutually unbiased bases and (ii) the complete set of stabilizer
states (Pauli eigenstates), for a single qudit.

Consider the family of magic states f and magic gates M

(diagonal in the computational basis) [25–27]

|fa,b,c〉 = 1√
p

∑
k

ωak3+bk2+ck|k〉 p > 3 (4)

= Ma,b,c|+〉 a ∈ Z∗
p, b,c ∈ Zp, (5)

where |+〉 is the equal-weighted superposition of all com-
putational basis states and Z∗

p = {1,2, . . . ,p − 1}. Note that
the above expressions require a minor modification for the
smallest prime dimensions [27], i.e.,

|fa,b,c〉 =
{ 1√

2
(|0〉 + γ a+2b+4c|1〉) p = 2,

1√
3
(|0〉 + ξ 2a+6b+3c|1〉 + ξa+6b+6c|2〉) p = 3,

(6)

where γ = e2πi/8 and ξ = e2πi/9 and a ∈ Z∗
p, b,c ∈ Zp. For

a fixed value a ∈ Z∗
p the magic states, in addition to the

computational basis, form a complete set of MUBs since
|〈fa,b,c|fa,b′,c′ 〉| = δb,b′δc,c′ + (1 − δb,b′ )/

√
p [28,29]. Finally,

define the Jamiołkowski state |Ja,b,c〉 as that which is created
by applying a magic gate to one half of a Bell pair:

|Ja,b,c〉 = Ip ⊗ Ma,b,c|�〉, |�〉 =
∑

j

|jj 〉√
p

. (7)

Clearly |Ja,b,c〉 is isomorphic to a single-qudit magic state
|fa,b,c〉 under the identification |jj 〉 ∈ Cp2 ↔ |j 〉 ∈ Cp.

The group of operations generated by (tensor products of)
the Weyl-Heisenberg operators in Eq. (1) is the Pauli group (we
denote it C1 for reasons that will become clear). The set of uni-
taries that map the Pauli group into itself under conjugation is
the Clifford group (C2). The unitaries that map the Pauli group
into the Clifford group, under conjugation, define [30] the third
level of the Clifford hierarchy, C3, and so on. Overall we have

Ck := {U |UC1U
† ⊆ Ck−1}, (8)

where C1 ⊂ C2 ⊂ C3 · · · but the sets Ck>3 no longer form a
group. The operations in the first two levels arise naturally in
the context of fault-tolerant quantum computation, whereas an
operation from third level is typically also required to enable
universal quantum computation. Properties of C3 for multiple
qubits are discussed in Ref. [30] whereas the diagonal single-
qudit subset of C3, as discussed in Ref. [27], is given by Ma,b,c

above. It is in this sense that we say states |fa,b,c〉 and |Ja,b,c〉
reflect the structure of (the third level of) the Clifford hierarchy.

B. Generalizing the CHSH game

The familiar two-qubit CHSH inequality takes the form
〈B〉LHV

max � 2 with a Bell operator

B = XX + XY + YX − YY =
1∑

x,y=0

ωxyAxBy (9)

where

{A0,A1} = {B0,B1} = {X,Y } (10)

and ω = −1 is a pth root of unity. The maximum expectation
value using local hidden variables (LHV) is 2, whereas
quantum mechanics can achieve 2

√
2, which is the maximum

eigenvalue, λmax(B), of the Bell operator. The optimal shared
state that Alice and Bob can measure in this case is given by
|J1,0,0〉 from Eq. (7), i.e.,

〈B〉QM
max = 〈J1,0,0|B|J1,0,0〉 = 2

√
2. (11)

Generalizing the above CHSH Bell operator to qudits [9], we
find it convenient to define two closely related operators:

B∗ = 1

p

∑
n∈Z∗

p

∑
x,y∈Zp

ωnxyAn
xB

n
y , (12)

B = 1

p

∑
n,x,y∈Zp

ωnxyAn
xB

n
y , (13)

where ω = e2πi/p so that B = B∗ + pIp2 and consequently
λmax(B) = λmax(B∗) + p. The traceless version B∗ is more
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convenient to work with, but the maximal value of B is a more
useful quantity.

To aid our analysis we use the Pauli measurement operators
adopted in Ref. [9]:

Ax = ωx(2x+1)/2D(1|x), By = ωy(y+1)/4D(1|y/2), (14)

where x,y ∈ Zp, so that Ay/2 = By . The operators {D(1|j ),j ∈
Zp} are a generalization of the qubit measurements {X,Y } used
above insofar as they are the Pauli observables (excluding
Z) whose eigenbases form mutually unbiased bases. In the
qudit case, different orderings and phases of the measurement
operators can have an effect on the quantumly achievable
expectation value.

The expectation value of B from Eq. (13) can be related
to the quantum value, 0 � ν � 1, of a nonlocal game [5,6],
which takes the general form

ν =
∑

a,b,x,y∈Zp

P (x,y)V (a,b,x,y)P (a,b|x,y) (15)

for measurement settings (x,y), outcomes (a,b) and a predicate
or payoff function V ∈ {0,1}. By choosing a flat probability
distribution over all measurement settings, P (x,y) = 1/p2,
and a winning condition V (a,b,x,y) = δa+b+xy,0 we arrive at

ν = 1

p2
〈�|B|�〉 = 1

p2

∑
a + b + xy = 0

P (a,b|x,y), (16)

where the right-hand side of the above expression is a more
general form for CHSH-type games, amenable to POVMs
as well as projective measurements (see also a discussion in
Ref. [10]).

The maximum classical value 〈B〉LHV
max is given by finding

local hidden variable assignments

�a = (a0, . . . ,ax, . . . ,ap−1) ∈ Zp
p,

�b = (b0, . . . ,by, . . . ,bp−1) ∈ Zp
p

that tell Alice and Bob which element of the spectrum of their
observable they should output for a given measurement setting,
i.e.,

Ax → ωax , By → ωby .

The best choices of �a and �b maximize the quantity

〈B〉LHV
max = 1

p

p−1∑
n,x,y=0

ωnxy(ωax )n(ωby )n

=
∑

a,b,x,y∈Zp

δax+by+xy,0;

i.e., they give the best classical strategy for participants trying
to maximize the number of instances where a + b + xy =
0 mod p. Liang et al. [10] provide an explicit classical strategy
achieving

〈B〉LHV
max � 3p − 2.

Turning to quantum strategies, Bavarian and Shor’s re-
sult [11] (restricted to q = p) says that the quantum value (16)

of a generalized CHSH game is bounded above (via Informa-
tion Causality [12]) by

ν � IC(p) := 1

p

(
1 + p − 1√

p

)
. (17)

Clearly this implies 〈B〉QM
max � p2IC(p), but it also applies to

more general scenarios wherein Alice and Bob use POVMs. It
is also shown [11] that classical strategies can achieve �( 1√

q
)

if q = p2k or O( 1√
qqε0 ) if q = p2k−1 for a very small (� 1

700 )
positive constant ε0. This classical bound was subsequently
improved upon by Lunghi et al. [31]. The moral is that
we might not expect a classical-quantum separation in the
asymptotic limit. Liang et al. [10] used the Navascues-Pironio-
Acin [32] hierarchy to numerically bound the quantum value ν

from above and it appears that the values so obtained coincide
with IC(p) for p = 5,7.

C. Entropic uncertainty relations and eavesdropping

Fix the notation for the mutually unbiased basis (MUB)
expansion of a generic operator K acting on a qutrit state
space as follows:

K ↔
⎛
⎝c0,∞ c0,0 c0,1 c0,2

c1,∞ c1,0 c1,1 c1,2

c2,∞ c2,0 c2,1 c2,2

⎞
⎠ ,

where

cV,B = 〈
ψV

B

∣∣K∣∣ψV
B

〉 [∣∣ψV
B

〉
from Eq. (3)

]
and the infinity basis label corresponds to the computa-
tional basis, i.e., |ψV

∞〉 = |V 〉. The generalization to higher
dimensions is obvious. The coefficients cV,B correspond to
probabilities when K is a normalized density operator, and
the probability distribution associated with a basis B is given
by {c0,B,c1,B, . . . ,cp−1,B}. Inverting this decomposition, we
find [33]

K =
∑
B,V

cV,B

∣∣ψV
B

〉〈
ψV

B

∣∣ − Tr(K)Ip.

With the above decomposition in hand we can characterize
a density matrix ρ in terms of its associated probability
distributions. The Renyi entropy of order 2 (i.e., the collision
entropy) with respect to a particular basis B is given by
HB

2 (ρ) = − log(
∑

V c2
V,B ), whereas the min-entropy is given

by HB
min(ρ) = − log maxV cV,B [23,24]. (The choice of base

is irrelevant for now but we adopt the base 2 for numerical
calculations in Sec III and Table II.) For an arbitrary pure state
|φ〉 ∈ Cp this can be rewritten as

HB
2 (|φ〉) = − log

(∑
V

∣∣〈φ∣∣ψV
B

〉∣∣4

)
,

HB
min(|φ〉) = − log max

V

∣∣〈φ∣∣ψV
B

〉∣∣2
,

which obey

log(p) � HB
2 (|φ〉) � HB

min(|φ〉) � 0.

Typically we are interested in total or average entropies across
a number of different measurement bases. The trade-offs
that arise when we try to minimize entropy across multiple
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measurement bases gives insights into the structure of quantum
state space.

For a complete set of p + 1 unbiased measurement bases,
the total collision entropy associated with any pure state is
bounded from below by [23,34]∑

B∈{∞,Zp}
− log

∑
V

∣∣〈φ∣∣ψV
B

〉∣∣4 � −(p + 1) log
2

p + 1
. (18)

The factor of 2 in the numerator arises from the surprising fact
that

∑
B,V |〈φ|ψV

B 〉|4 = 2 for any pure state |φ〉. The above
inequality is saturated whenever

∑
V |〈φ|ψV

B 〉|4 is independent
of the basis B, as occurs for SIC-POVM fiducial states [34].
For this reason fiducial states qualify as “minimum-uncertainty
states” (not all minimum uncertainty states are fiducial vectors,
however). MUB-balanced states [21] have the same probability
distribution for all p + 1 bases and consequently also saturate
this lower bound.

Now, instead of collision entropy, consider the total min-
entropy across a number of unbiased measurement bases. The
following min-entropic uncertainty relation was proven for
dimensions of the form d = 2n in Ref. [24] and generally in
Ref. [35]:∑

B∈{∞,Zd }
HB

min(|φ〉) � −(d + 1) log

[
1

d

(
1 + d − 1√

d + 1

)]
.

Later we will interested in the case there we omit the
computational basis and restrict to prime-dimensional systems
so the relevant lower bound becomes∑

B∈Zp

HB
min(|φ〉) � −p log

[
1

p

(
1 + p − 1√

p

)]
. (19)

As well as constraining quantum state space, the above
entropic quantities have an operational meaning in the context
of cryptography [20,23,36,37]. As explained in, e.g., Ref. [38],
if the four possible signal states transmitted from Alice to Bob
in the BB’84 quantum key distribution protocol [39] are the
eigenstates of σx and σy , then the optimal measurement basis
(see Fig. 1) for Eve’s intercept-resend attack is the basis of
magic states {|f1,0,0〉,|f1,0,1〉} better known as {|H 〉,|H⊥〉} in
the context of quantum computation or the Breidbart basis

|+

|0

|1

|f1,0,0

FIG. 1. The Breidbart basis {|f1,0,0〉,|f1,0,1〉} (which is equal to
{|H 〉,|H⊥〉} in the magic state notation of Bravyi and Kitaev [54])
constitutes the optimal measurement basis for Eve if her goal is
to infer as much information about Alice’s state as possible. The
cryptographic protocol [38–40] assumes Alice is sending one of the
four equatorial Pauli eigenstates.

in cryptographic settings [38–40]. This basis, which can be
thought of as splitting the difference between the σx and
σy bases, allows Eve to ascertain Alice’s information with
probability 1

2 (1 + 1√
2
) ≈ 85% (which is the optimal value of

the CHSH nonlocal game), and the state |H (⊥)〉 minimizes
the average min-entropy for the X and Z basis measure-
ments [20,41]. Finding higher-dimensional analogues of the
Breidbart basis motivated Amburg et al. [21] to investigate
MUB-balanced states. We shall see how qudit magic states
obey many of the same desirable properties of the Breidbart
basis.

III. RESULTS

Our results are broken up into two subsections, the first
of which concerns nonlocality, while the second concerns
entropic uncertainty. In the first subsection, we find a simple
expression for the eigenbasis of the CHSH-Bell operator (13),
which, after the application of a result from number theory,
allows us to place good bounds on the quantum value of
the restricted (to Pauli measurements) CHSH game. In the
second subsection, we examine magic states in terms of their
ability to minimize the total (or average) entropy across a
number of different measurement bases. For this purpose we
use collision entropy and min-entropy, both of which have
operational significance in cryptographic settings. Among the
subset of qudit states that we call equatorial states, magic states
always minimize the collision entropy, and for small prime
dimension they also simultaneously minimize the min-entropy.

A. Optimal strategy for CHSH game and bounds
on the achievable value

Rewrite the Bell operator B∗ of Eq. (12) in the Weyl-
Heisenberg basis using Eq. (14),

B∗ = 1

p

∑
n∈Z∗

p,x,s∈Zp

(
ωs(s+ 1

2 )D(1,1|x,s−x)
)n

, (20)

and note that conjugation by a Clifford gate C† has the effect

C†Dn
(1,1|x,s−x)C = Dn

(1,0|s,s−x),

where

C := CSUM12 =
∑

k

|k〉〈k| ⊗ Xk : |j,k〉 → |j,k + j 〉

is the generalized CNOT (Controlled-NOT) operator. Under
this unitary operation the Bell operator becomes

C†B∗C = 1

p

∑
n∈Z∗

p,x,s∈Zp

(
ωs(s+ 1

2 )D(1,0|s,s−x)
)n

(21)

= pS∗ ⊗ |0〉〈0| (22)

with

S∗ = 1

p

∑
n∈Z∗

p,s∈Zp

(
ωs(s+ 1

2 )D(1|s)
)n

(23)
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and

S = 1

p

∑
n,s∈Zp

(
ωs(s+ 1

2 )D(1|s)
)n

(24)

so that S = S∗ + pIp and λmax(S) = λmax(S∗) + p as before.
By the definition of stabilizer projectors in Eq. (2) we have

S =
∑
B

∣∣ψ−B(B+ 1
2 )

B

〉〈
ψ

−B(B+ 1
2 )

B

∣∣; (25)

i.e., S is a sum of projectors, one from each of the noncom-
putational bases. The final step is to note that λmax(B∗) =
λmax(pS∗ ⊗ |0〉〈0|) = λmax(pS∗) so that

λmax(B) = pλmax(S). (26)

Overall, we find that the maximizing eigenvector of the Bell
operator B gives an expectation that is the same as maximizing
a simple single-qudit operator S. Moreover, S is a sum of p

stabilizer projectors, one from each of the noncomputational
stabilizer bases. We will show that S is maximized by a magic
state |fa,b,c〉 as in Eq. (4). It follows that the optimum quantum
strategy for our restricted CHSH game is for Alice and Bob to
measure a shared state |Ja,b,c〉 of Eq. (7) since

〈Ja,b,c|B∗|Ja,b,c〉 = 〈fa,b,c,0|C†B∗C|fa,b,c,0〉
= p〈fa,b,c,0| (S∗ ⊗ |0〉〈0|) |fa,b,c,0〉
= p〈fa,b,c|S∗|fa,b,c〉
= pλmax(S∗).

In Sec. IV we prove that the magic state |fa,b,c〉, with a =
−1/12 and b = −1/8 is a maximizing eigenvector for the
single-qudit operator S for p > 3. Moreover, we show that
all magic states are balanced with respect to Alice and Bob’s
measurements projectors given in Eq. (2), i.e.,{∣∣〈ψV

B

∣∣fa,b,c

〉∣∣,V ∈ Zp

}
independent of basis B. (27)

Our proof provides an explicit expression showing exactly how
probabilities |〈ψV

B |fa,b,c〉|2 are permuted between different
bases. For the magic state |f−1/12,−1/8,c〉 under consideration,
the overlap with vector VB in basis B is constant whenever

VB = −B
(
B + 1

2

)
. (28)

Combining this with Eq. (25) we find

λmax(S) =
∑
B

∣∣〈ψ−B(B+ 1
2 )

B

∣∣f−1/12,−1/8,c

〉∣∣2
(29)

= p|〈+|f−1/12,−1/8,c〉|2. (30)

All overlaps between (noncomputational) MUB vectors and
magic states take the same form, viz.,

∣∣〈ψV
B

∣∣fa,b,c

〉∣∣2 = 1

p

∣∣∣∣∣
∑

k

ωak3+(b−2−1B)k2+(c−V )k

∣∣∣∣∣
2

. (31)

The values of these overlaps are constrained by the Weil
bound [42,43], which says that a polynomial f of degree n

over a prime field Zp satisfies∣∣∣∣∣
∑

x

ωf (x)

∣∣∣∣∣ � (n − 1)
√

p (32)

TABLE I. Comparison of the bounds imposed by Information
Causality (first column) and Weil (second column) with the optimal
quantum and local hidden variable strategies (third and fourth
columns). The LHV lower bounds are reproduced from Ref. [10]
whereas the operator norm 〈B〉QM

max is attained by measuring the
maximally entangled states |Ja,b,c〉. Because we have restricted
ourselves to Pauli measurements, the quantity 〈B〉QM

max is less than
what is achievable in the unrestricted case.

p p(1 + p−1√
p

) 4p 〈B〉QM
max 〈B〉LHV

max

3 6.4641 – 6.4115 6
5 13.9443 20 13.0902 12
7 22.8745 28 19.4112 19
11 44.1662 44 34.6464 37
13 56.2666 52 48.3481 47
17 82.9697 68 55.1022 �66

19 97.4602 76 72.6084 �79

23 128.508 92 74.8954 �99

29 179.785 116 104.819 �135

provided p does not divide n. Applied to Eq. (30) the above
bound implies

〈B〉QM
max = λmax(S) � 4p. (33)

For p > 7 this bound is more restrictive than the Information
Causality bound. In Table I we compare this bound with
λmax(S) = 〈B〉QM

max and with the bound p(1 + p−1√
p

) imposed
by Information Causality.

The qutrit case must be handled individually; terms like
−1/12 are ill-defined and the Weil bound is not applicable.
One can explicitly check that the optimal quantum state for
Alice and Bob to measure is what we have come to expect,
i.e., a maximally entangled state that is isomorphic to a magic
state,

〈B〉QM
max = 〈J1,1,0|B|J1,1,0〉= 3

√
3 cos(π/18) = 6.4115. (34)

Liang et al. [10] have shown that this is truly the quantum
maximum; even allowing for POVMs this value cannot be
surpassed.

B. Minimum uncertainty equatorial states

Define a generalized equatorial state in terms of a vector of
phases �φ = (φ0 := 0,φ1, . . . ,φp−1),

|ψeq( �φ)〉 = 1√
p

p−1∑
k=0

eiφk |k〉. (35)

This state has p − 1 free real parameters, which is exactly
half the number of parameters that specify an arbitrary pure
state. This is already a very important class of states for
cryptographic protocols, e.g., optimal cloning procedures are
known for states of this form [44,45].

The total collision-entropic uncertainty across p noncom-
putational Pauli bases is bounded from below by

∑
B∈Zp

− log
∑
V

∣∣〈ψeq( �φ)
∣∣ψV

B

〉∣∣4 � −p log

(
2 − 1

p

p

)
(36)
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FIG. 2. (Color online) Total min-entropy across three different
bases: This plot shows contours of the total uncertainty for equatorial
qutrit states parameterized as |ψeq ( �φ)〉 = (1,ξ x,ξ y)/

√
3 with 0 �

x,y � 9 ∈ R and ξ = e2πi/9. The minimum uncertainty states occur
at the small white dots, which are integer values of x,y such that
x = 2a + 6b + 3c mod 9 and y = a + 6b + 6c mod 9 with a ∈ Z∗

3

and b,c ∈ Z3. In other words, magic states |fa,b,c〉 as defined in Eq. (6)
are minimum uncertainty states among the set of equatorial states.
This optimality of magic states |fa,b,c〉 holds numerically for prime
dimensions p ∈ {2,3,5,7} but not for p = 11 or p = 13.

since
∑

V |〈ψeq( �φ)|V 〉|4 = 1/p and we already know from
Eq. (18) that the sum over all p + 1 bases is identically 2
for any pure state. Because of the balancedness property of
|fa,b,c〉 proven in Sec. IV we have that

∑
V |〈fa,b,c|ψV

B 〉|4
is independent of B and therefore the above inequality is
saturated. In summary, of all equatorial states (35) it turns
out that magic states minimize the total collision entropy and
saturate the above entropic uncertainty relation.

Using magic states, we will not generally be able to saturate
the lower bound of Eq. (19) on the total min-entropy across p

mutually unbiased measurements. However, for small prime
dimensions, it is feasible to check numerically whether magic
states minimize the total min-entropy when we restrict to the
manifold of equatorial states defined in Eq. (35). To that end
define

�φmin = argmin
�φ

∑
B∈Zp

HB
min[|ψeq( �φ)〉]. (37)

For qutrits, see Fig. 2, we find that

�φmin = (0,φ1,φ2)

= 2π

9
(0,2a + 6b + 3c,a + 6b + 6c) , (38)

whereas for primes p = 5 or p = 7 we find

�φmin = (. . . ,φk, . . .) = 2π

p
(ak3 + bk2 + ck). (39)

TABLE II. Different characterizations of seven-dimensional
magic states: Magic states have surprising additional structure in
prime dimensions of the form p = 1 mod 3 [29], which opens the
door for operational inequivalence of magic states |fa,b,c〉 depending
on the value of the parameter a ∈ {1,2, . . . ,p − 1}. The nonzero
elements of Z7 can be partitioned into equivalence classes of cubic
residues and their cosets, i.e.,Z∗

7 = {1,6} ∪ {2,5} ∪ {3,4}. Depending
on which of the operationally relevant quantities (Wmin, Mana,
or

∑
B HB

min) we focus on, we find a different choice of optimal
equivalence class. The quantity Wmin denotes the minimal value of
the Wigner function of |fa,b,c〉 in phase space [17], while Mana
effectively describes the magnitude of the sum of all the negative
entries [18]. The last column describes the total min-entropy of
|fa,b,c〉 across all measurement bases {X,XZ, . . . ,XZp−1}. Note
that lower bound for arbitrary (not necessarily equatorial) states is
7.693 = −7 log[(1 + (7 − 1)/

√
7)/7] so the magic state performs

well.

a Wmin Mana
∑

B HB
min

1 −0.027 692 0.814 835 7.870 55
2 −0.089 915 0.814 835 12.3287
3 −0.034 531 0.896 212 9.351 25
4 −0.034 531 0.896 212 9.351 25
5 −0.089 915 0.814 835 12.3287
6 −0.027 692 0.814 835 7.870 55

This set of phases is exactly what defines the magic states
|fa,b,c〉 in (4) and (6) In some cases the total min-entropy they
achieve is quite close to the bound that applies to generic states,
e.g,

p = 3 :
∑

B∈Zp

HB
min|ψeq( �φmin)〉 = 1.468 (40)

(where we used log2), which is not much greater than the lower
bound

− 3 log2

[
1

3

(
1 + 2√

3

)]
= 1.4324. (41)

Similarly for p = 5 we get 4.667 > 4.2113 and for p = 7
(see Table II) we get 7.871 > 7.693. For p = 11 we find
a counterexample to the optimality of |fa,b,c〉, i.e., we find∑

B∈Zp
HB

min|fa,b,c〉 = 19.8465 > 15.994 but there is another
nonmagic equatorial state that achieves 17.7606. For p = 13
a magic state of the form |f4,b,c〉 achieves 23.471 > 20.6267,
but this can also be beaten by a nonmagic equatorial state that
achieves a total min-entropy of 23.1336.

Minimum uncertainty states are defined relative to a
particular notion of entropy and we have chosen two instances
that appear to have both operational and geometrical interpre-
tations. Besides the collision entropy H2 and the min-entropy
Hα=∞, the general Renyi entropy Hα is well defined for a
one parameter family α � 0, so it could be the case that
magic states also minimize uncertainty for other values of
α. Minimum uncertainty states can also be defined relative to
the Shannon entropy (see, e.g., Ref. [46]), but the results so
obtained are qualitatively very different.
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IV. THEOREMS AND PROOFS

This section contains the two key mathematical results and
their proofs. Many of their implications have already been
used in preceding sections. The definitions and notation were
established in Sec. II A:

Theorem 1. The magic state |fa,b,c〉, with a = −1/12 and
b = −1/8 is a maximizing eigenvector for the single-qudit
operator S (25) for all prime dimensions p > 3.

We claim that the eigenbasis that diagonalizes S is given
by the set of orthogonal magic states {|f−1/12,−1/8,c〉,c ∈ Zp}.
The proof is obtained by constructing a unitary U with these
states as columns and showing that conjugating S with U †

produces a diagonal matrix D:

Claim : D = U †SU =

⎛
⎜⎝

λ1(S) 0 0

0
. . . 0

0 0 λp(S)

⎞
⎟⎠ ,

where λi(S) are the eigenvalues in no particular order. Perform
matrix multiplication to find the explicit matrix elements dj,k

of our putative diagonal matrix, D, i.e.,

D =
∑
j,k

dj,k|j 〉〈k| = U †SU

=
⎛
⎝∑

g,h

ω
g3

12 + g2

8 +gh|g〉〈h|
⎞
⎠S

×
(∑

l,m

ω−( m3

12 + m2

8 +lm)|l〉〈m|
)

.

Next, insert

S = su,v|u〉〈v| =
∑
B

ω
B
2 (u2−v2)+B(B+ 1

2 )(u−v)|u〉〈v|,

which is a consequence of Eqs. (25) and (3). After some tidying
and relabeling we find

dj,k =
∑

A,B,C∈Zp

ω
1

12 (A3−C3)+( B
2 + 1

8 )(A2−C2)+( B
2 +B2)(A−C)+kC−jA.

Perform the linear substitution

(A,B,C) → (Ã + C̃,B̃ − Ã/2 − 1/4,Ã − C̃)

⇒ dj,k =
∑

Ã,B̃,C̃∈Zp

ω
C̃3

6 +C̃(− 1
8 +2B̃2−j−k)+Ã(k−j ),

which satisfies

dj,k �=j = 0

because ∑
Ã∈Zp

ωÃ(k−j ) = pδk,j .

Hence D is diagonal, as claimed. �
Theorem 2. All magic states |fa,b,c〉 are MUB-balanced

with respect to the mutually unbiased measurements
{X,XZ, . . . ,XZp−1}. Moreover, the VB-th coefficient in the
B-th basis is given by the V0-th coefficient in the X measure-
ment basis when VB = V0 + 1

12a
(B2 − 4Bb).

First, define the quantity Ta,b,c as

Ta,b,c = 1

p

∣∣∣∣∣
∑

k

ωak3+bk2+ck

∣∣∣∣∣
and note that, after a linear substitution k → k + r (where r is
some fixed element r ∈ Zp) that does not change the value of
the sum, we find

Ta,b,c = Ta,b+3ar,c+2br+3ar2 . (42)

Take the probability cV0,0 associated with an arbitrary vector
V0 in the first measurement basis, B = 0:

cV0,0 = ∣∣〈ψV0
0

∣∣fa,b,c

〉∣∣2 = 1

p

∣∣∣∣∣
∑

k

ωak3+bk2+(c+V0)k

∣∣∣∣∣
2

= Ta,b,c+V0 . (43)

Now consider a vector VB in any other basis B:

cVB,B = ∣∣〈ψVB

B

∣∣fa,b,c

〉∣∣2 = 1

p

∣∣∣∣∣
∑

k

ωak3+(b−B/2)k2+(c+VB )k

∣∣∣∣∣
2

= Ta,b−B/2,c+VB
. (44)

Then, with the aid of Eq. (42), we find the condition that makes
Eqs. (43) and (44) equal:

cV0,0 = cVB,B, ∀B ∈ Zp, (45)

⇒ VB = V0 + 1

12a
(B2 − 4Bb). (46)

�
A geometrical argument for the balancedness of magic

states was implicit in recent work of Blanchfield [47] (see
the proof of Theorem 1 therein) although that study concerned
relationships between different MUB constructions. Not only
have we proven that magic states |fa,b,c〉 are MUB-balanced,
we have shown exactly which permutation of probabilities
occurs when moving between bases.
This theorem applied to the magic state |f−1/12,−1/8,c〉 that
maximizes S gives

VB = 1

12(−1/12)
[B2 − 4B(−1/8)] = −B

(
B + 1

2

)
,

(47)

which makes intuitive sense given that

S =
∑
B

∣∣ψ−B(B+ 1
2 )

B

〉〈
ψ

−B(B+ 1
2 )

B

∣∣. (48)

Using the MUB decomposition introduced in the Sec. II C, the
single-qutrit operator S looks like

S = ∣∣ψ0
0

〉〈
ψ0

0

∣∣ + ∣∣ψ0
1

〉〈
ψ0

1

∣∣ + ∣∣ψ1
2

〉〈
ψ1

2

∣∣
⇒ S ↔

⎛
⎝1 5/3 5/3 2/3

1 2/3 2/3 5/3
1 2/3 2/3 2/3

⎞
⎠ ,

while the maximizing eigenstate takes the form

|f1,1,0〉〈f1,1,0| ↔
⎛
⎝1/3 0.7124 0.7124 0.0859

1/3 0.2017 0.2017 0.7124
1/3 0.0859 0.0859 0.2017

⎞
⎠ .
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V. SYMMETRIES, CYCLERS, AND SATO-TATE

In this section we outline some symmetries of the states
and operators that we have previously used. We then mention
a connection between our work and that of Amburg et al. [21].

To begin, there is an obvious asymmetry associated with
magic states |fa,b,c〉; they treat the computational basis differ-
ently to the remaining Weyl-Heisenberg (Pauli) bases. There
is nothing special about the computational Z basis; in fact we
can exhaustively create all p2(p2 − 1) single-qudit |f 〉-type
magic states by applying the Clifford unitary that maps Z → X

followed by (multiple applications) of the Clifford that maps
X → XZ. Any of these magic states will be balanced with
respect to all but one Pauli measurement bases. Conversely we
lose nothing by restricting our analysis to the equatorial class
of magic states that we have so far considered.

The b and c components of magic states are modified by
the action of Pauli operators,

|fa,b,c〉 = D(x|z)|fa,0,0〉,
(

x

z

)
=

( − b
3a

c − b2

3a

)
, (49)

whereas changing the value of a in |fa,b,c〉 requires at least
a Clifford operation. In fact, in Ref. [29] it was shown that
magic states |fa,b,c〉 and |fa′,b′,c′ 〉 with different values a �= a′
are connected via a Clifford if and only if these values lie
in the same equivalence class of cubic residues modulo p.
The noticeable effect of this is that in prime dimensions p =
1 mod 3 there are three equivalence classes of magic state
that have different operational and geometrical features. In
Table II we examine seven-dimensional magic states in terms
of different operationally relevant quantities and see interesting
differences arising from the inequivalent classes.

One of the main approaches to finding minimum uncer-
tainty states has been to find so-called MUB cyclers: a single
unitary that, when repeatedly applied to a basis state, maps
basis vectors from one basis to the next, eventually wrapping
around cyclically to return to the original basis. Eigenstates
of these unitaries are often minimum-uncertainty states. These
unitaries are known to not exist in prime dimensions, so the
unitary we define below is the best possible alternative (see
also Ref. [48]); it cycles through all but one of the bases.
Define a Clifford gate Ca,b,c as follows:

Ca,b,c = Ma,b,cXM
†
a,b,c, (50)

then it follows from the definitions that Ca,b,c|fa,b,c〉 = |fa,b,c〉.
Consider C := C−1/12,−1/8,c, then

Cr
∣∣ψ0

0

〉 = ∣∣ψVr

− r
2

〉
, Vr = r

2

(
− r

2
+ 1

2

)
, (51)

so that for p = 5 we find that repeated application of C takes
us through the basis indices (0,2,4,1,3,0,2,4, . . .). It is fairly
straightforward to prove the equivalent claim,

C
∣∣ψVs

− s
2

〉 = ∣∣ψVs+1

− s+1
2

〉 ∀s ∈ Zp, (52)

using the following argument:

MXM†∣∣ψVs

− s
2

〉 = MX
∣∣f 1

12 , 1−2s
8 ,−(c+VS )

〉
, (53)

= M
∑

k

ω
(k−1)3

12 + (k−1)2(1−2s)
8 −(k−1)(c+Vs )|k〉,

= M
∣∣f 1

12 ,− (2s+1)
8 , s

2 −(c+VS )

〉
, (54)

= ∣∣f0,− s+1
4 , s

2 −VS

〉
, (55)

= ∣∣ψVs− s
2

− s+1
2

〉 = ∣∣ψVs+1

− s+1
2

〉
. (56)

Hence, magic states are eigenstates of MUB-cycling Clifford
unitaries that cycle through p out of p + 1 bases.

For prime dimensions p > 3 magic states [as defined in
Eq. (4)] are equal weighted superpositions of roots of unity
with a cubic polynomial in the exponent. Exponential sums are
commonplace in number theory and many results are known.
The distribution

θa,c =
∑

k ωak3+ck

2
√

p
a ∈ Z∗

p, c ∈ Zp (57)

is real and lies in the range [−1,1] [49,50]. The behavior
of Eq. (57) for different values of a,c, and p is covered by
the Sato-Tate conjecture (see Ref. [49], Sec. 1.4). Hence,
magic states |fa,0,c〉 obey the same semicircular distribu-
tion of values − 2√

p
� 〈+|fa,0,c〉 � 2√

p
observed by Amburg

et al. [21,22,51] for their states |β〉 that are balanced with
respect to all p + 1 mutually unbiased bases. Also, θa,c be-
comes increasingly equidistributed as p grows to infinity [50]
meaning that the Weil bound [Eq. (33)] is saturated in this
limit.

VI. DISCUSSION AND CONCLUSIONS

Characterizing highly nonstabilizer states and their opera-
tional capabilities is important. Stabilizer states appear natu-
rally within the context of fault-tolerant quantum computation
and also as basis vectors for complete sets of mutually unbiased
bases. Here we have picked out a natural family of highly
nonstabilizer states and showed their optimality in terms of
both nonlocality and minimizing entropic uncertainty, where
we have restricted to Pauli measurements in both scenarios.
Finding concise optimal solutions to problems like these is of
independent interest.

Whenever Alice and Bob are restricted to using qudit
Pauli measurements we cannot ever observe nonlocality by
measuring a stabilizer state. This is due to the existence
of a local, noncontextual hidden variable model for non-
negatively represented states in a particular discrete Wigner
function [16,17,53]. By showing that magic states give the
maximal violation relative to a stabilizer CHSH scenario, this
gives an operational interpretation to the concept of being
highly nonstabilizer. Similarly, a stabilizer state is a maximally
uncertain state with respect to a set of mutually unbiased Pauli
bases. By showing that magic states minimize the entropic
uncertainty, this gives another operational characterization of
their highly nonstabilizer character.

One could argue the case for a number of different ways
of quantifying nonstabilizerness. The correct metric will most
likely depend on the exact nature of the task for which this
state or operation is a resource. In [18] two measures were
put forward that were tailored toward fault-tolerant quantum
computation via magic state distillation. The relative entropy
between the test state and the closest positively represented
state, as well as the sum negativity (the sum of all the negative
quasiprobabilities in the discrete Wigner function) of the state
were both highlighted. It is worth noting the disagreement
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in Table II between the state |f3,b,c〉 that Mana picks out as
opposed to the state |f1,b,c〉 that min-entropy picks out. Other
studies have characterized nonstabilizer states and operations
in terms of convex geometry [57] and in terms of frame
potentials [58].

For qubits, the Tsirelson bound for the CHSH scenario
can be saturated using Pauli measurements applied to a
particular maximally entangled state. The maximally nonlocal
state |J1,0,0〉 (11) can be understood as the image of a
“pi-over-eight” gate applied to one half of a Bell pair |�〉. It is
intuitively pleasing that this connection between optimality
and the Clifford hierarchy continues for all higher prime
values of p, as we have shown here. Less pleasing is that
the quantum advantage diminishes with increasing dimension,
and seems to disappear entirely for p � 11 [we highlight as
an interesting open question whether any alternate choice of
Pauli measurements (14) for Alice and Bob could result in
λmax(B) > 〈B〉LHV

max = 37]. For p < 11 it should be borne in
mind that Ref. [13] showed a clear operational advantage for
restricting to stabilizer measurements when statistical signif-
icance, rather than the amount of Bell inequality violation,
is adopted as the figure of merit. One possible practical
application of our results is the benchmarking of nonstabilizer
resources for fault-tolerant computation. Any imperfect |Ja,b,c〉
(or equivalently Ma,b,c) that still allows for violation of the
qudit Bell-CHSH inequality is also suitable for promoting
fault-tolerant Clifford gates to universal quantum computation
via magic state distillation [52]. This is a sufficient condition
but not necessary, as the distillation routines of Ref. [26] can
also enable universality with imperfect |Ja,b,c〉 that have lost
the ability to violate the Bell inequalities [9] that we used here.

The interrelationship between entanglement, nonlocality,
steering, complementarity, and uncertainty is a fascinating and
ongoing research program. Oppenheim and Wehner [55] have
shown that the presence of uncertainty limits the amount of
nonlocality, whereas Tomamichel and Hänggi [56] have shown

that uncertainty is necessary in order to observe nonlocality.
In the qubit case, the similarity between the Information
Causality bound of Eq. (17) and the entropic uncertainty
bound of Eq. (19) arises because of these links between
nonlocality and uncertainty. The fact that the qudit expressions
also have the same form suggests that this connection may hold
generally, although this is complicated by the fact that the qudit
CHSH game is no longer an XOR game [11].

There are some obvious avenues for further investigation.
Magic states |fa,b,c〉 reflect the structure of the third level
of the Clifford hierarchy and take a simple exponential
sum form for higher dimensions. Both of these facets are
amenable to further analysis using group-theoretical and
number-theoretical ideas. Moreover, they both suggest natural
generalizations for classes of states that may prove useful,
analagous to what we have proven here. The Clifford hierarchy
is well-defined for multiple particles (e.g., controlled-Clifford
gates are elements of the third level) but for single-particle
diagonal gates the relationship between hierarchy level and
the order of polynomials in the exponential sum is more
transparent. The Weil bound (33) suggests that states defined as
exponential sums of higher order polynomials may sometimes
perform better. Finally, as with all calculations over prime
fields, it is worth investigating how many of our results carry
over to the case where we consider systems of prime-power
dimensions q = pr by using the field Fq rather than Fp.
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