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Tunneling theory for tunable open quantum systems of ultracold atoms in one-dimensional traps
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The creation of tunable open quantum systems is becoming feasible in current experiments with ultracold
atoms in low-dimensional traps. In particular, the high degree of experimental control over these systems allows
detailed studies of tunneling dynamics, e.g., as a function of the trapping geometry and the interparticle interaction
strength. In order to address this exciting opportunity we present a theoretical framework for two-body tunneling
based on the rigged Hilbert space formulation. In this approach, bound, resonant, and scattering states are included
on an equal footing and we argue that the coupling of all these components is vital for a correct description
of the relevant threshold phenomena. In particular, we study the tunneling mechanism for two-body systems in
one-dimensional traps and different interaction regimes. We find a strong dominance of sequential tunneling of
single particles for repulsive and weakly attractive systems, while there is a signature of correlated pair tunneling
in the calculated many-particle flux for strongly attractive interparticle interaction.
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I. INTRODUCTION

The tunneling of particles, energetically confined by a
potential barrier, is a fascinating quantum phenomenon that
plays an important role in many physical systems. In nuclear
physics, the tunneling process was first discussed in the
context of α decay [1]. For multiparticle decay, the emission
process gets more involved as the interaction between the
emitted particles can strongly impact the decay probability.
The relative importance of sequential (i.e., successive single-
particle) and nonsequential decay channels is a pivotal question
for such many-body systems and the general phenomenon of
pairing in fermionic systems [2–6] becomes very relevant.
For example, the nuclear pairing interaction is known to
enhance the probability of two-proton radioactivity [7–10].
Furthermore, the Coulomb interaction between electrons plays
a crucial role in the double ionization of atoms [11,12],
although a full theoretical understanding of this two-body
decay is still lacking.

An exciting recent development in the context of multipar-
ticle tunneling is the experimental realization of few-body
Fermi systems with ultracold atoms [13,14]. These setups
are extremely versatile as they are associated with a high
degree of experimental control over key parameters such as the
number of particles and the shape of the confining potential.
In addition, the interaction between particles can be tuned
using Feshbach resonances [15], which in the case of trapped
particles turns into a confinement-induced resonance [16,17].
The resulting interparticle interaction is of very short range
compared to the size of the systems and can be modeled with
high accuracy by a zero-range potential. Such tunable open
quantum systems provide a unique opportunity to investigate
the mechanism of tunneling as a function of the trap geometry
and the strength of the interparticle interaction.

The dynamics of quantum tunneling can be naturally
modeled using time-dependent theoretical approaches. See,
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for example, Refs. [18–21] for studies of two-atom tunneling
with repulsive interactions and idealized geometries and
Refs. [10,22] for attractive interactions. Different dynamical
regimes of multiparticle tunneling through a thin barrier was
discussed in Refs. [23–25] with a focus on the effects of quan-
tum statistics. In addition, the single-particle and pair tunneling
of trapped fermionic atoms with attractive interactions were
recently studied employing a time-independent quasiparticle
formalism [26,27] in which the tunneling rate was obtained
using the semiclassical Wentzel-Kramers-Brillouin (WKB)
approximation. However, that approach suffers from the
uncontrolled approximation of artificially dividing the space
into different regions. The time-dependent approaches, on the
other hand, are not very reliable when the decay width is small
and they are not easily extended to many-particle systems.

The purpose of this Rapid Communication is to introduce
an alternative approach to the study of open quantum systems
with ultracold atoms. Our method is based on the rigged
Hilbert space formulation, which extends beyond the domain
of Hermitian quantum mechanics and includes also time-
asymmetric processes such as decays (see, e.g., Ref. [28]
and references therein). In nuclear physics this formulation
has been employed in the Gamow shell model [29–34] to
study threshold states and decay processes. Recently, it has
also been used to model near-threshold bound states of
dipolar molecules [35]. Here we focus on the basic example
of two interacting atoms in a one-dimensional (1D) trap
and we present results that highlight the importance of a
unified treatment of bound, resonant, and scattering states for
the proper description of tunneling phenomena in ultracold
atoms. We study in particular the decay mechanism and we
perform realistic calculations to make comparisons with recent
experimental data [14].

II. THEORETICAL FORMALISM

We consider a system of interacting two-component
fermions in a finite-depth potential trap. The trap does not
support any single-particle (SP) bound states, but is just deep
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R. LUNDMARK, C. FORSSÉN, AND J. ROTUREAU PHYSICAL REVIEW A 91, 041601(R) (2015)

0 5 10 15
x (μm)

0

100

200

300

400

500
V

(x
)
(n

K
k

B
) (a)

er

0 2

−0.020

−0.015

−0.010

−0.005

0.000

Im
(k

)
( μ

m
−

1
)

2.6 2.7 2.8 2.9

Re(k) (μm−1)

Resonance

4 6 8 10

(b)

SP eigenstates (ui)
mom. states (ki)

FIG. 1. (Color online) (a) Trap potential, indicating the position
of SP and two-body resonance states. (b) Complex-momentum
contour and Berggren basis states, highlighting the position of the
SP resonance pole.

enough to support a SP quasibound state with a finite lifetime.
For definiteness, we employ a 1D potential corresponding to
the experimental setup in Ref. [14], as illustrated in Fig. 1(a).
Let us denote this potential by V (x), with x the degree of
freedom in the direction of the trap. The interaction between
fermionic atoms in different hyperfine states is modeled by
the zero-range potential V δ(x,x ′) = gδ(x − x ′), with g the
tunable interaction strength. The fermions will be referred
to according to their hyperfine spin state as spin-up (↑)
and spin-down (↓), thus making an obvious connection with
systems of spin-1/2 particles (e.g., electrons or nucleons). In
this Rapid Communication we will restrict ourselves to the
simplest instance of such a tunable open quantum system, the
case of two interacting fermions in different spin states in an
open 1D potential trap. However, we want to stress that the
formalism can be applied to higher-dimensional traps and to
systems with more particles.

The Hamiltonian for the two-particle system is

H =
2∑

i=1

[
− �

2

2m

d2

dx2
i

+ V (xi)

]
+ gδ(x1 − x2), (1)

with m the mass of the particle. Let us first consider the
situation of two noninteracting particles, i.e., g = 0. In this
case, the ground state of the system |�(0)〉 corresponds to
the two distinguishable fermions both occupying the resonant
(quasibound) state |ures〉 of the SP Hamiltonian: h(x) =
−�

2/(2m)d2/dx2 + V (x). In this configuration, both particles
are localized in the trap for a finite amount of time, before
tunneling out through the potential barrier. The decaying SP
state |ures〉 can be described as a Gamow state [1]. Such
a state behaves asymptotically as an outgoing wave with a
complex energy e = er − iγr/2. The imaginary part of the
energy corresponds to the decay width γr and gives the half-life
of the SP state t1/2 = ln (2)�/γr and the SP tunneling rate
γ1 = γr/�.

We will obtain solutions of the two-body Hamiltonian (1)
for finite values of the interaction strength g using an expansion
of SP states in the so-called Berggren basis [36]. This complex-
momentum basis includes S-matrix poles (bound and resonant
states) as well as nonresonant scattering states associated
with the potential V (x). The use of this basis is key to our
approach as it allows us to consistently include the continuum
when finding eigensolutions of the open quantum system.
It constitutes a rigged Hilbert space and the corresponding
completeness relation is a generalization of the Newton
completeness relation [37] (defined only for real energy states)
and reads

∑
n

|un〉〈ũn| +
∫

L+
dk|uk〉〈ũk| = 1, (2)

where |un〉 correspond to poles of the S matrix and the integral
of states along the contour L+, extending below the resonance
poles in the fourth quadrant of the complex-momentum plane,
represents the contribution from the nonresonant scattering
continuum [36]. In practice, the integral in (2) is discretized
in two steps. First, the contour L+ is truncated at k = kmax

and each segment is spanned by a Gauss-Legendre mesh
that gives a finite set of complex-momentum states {|ki〉}.
In the second step, the SP Hamiltonian is diagonalized in
order to obtain a finite set of SP basis states U1 ≡ {|ui〉} [32].
The two-particle basis T2 is then naturally constructed from
the SP basis for the spin-up and -down fermions as T2 ≡
U1(↑) ⊗ U1(↓). For the SP states along the complex contour,
the wave function diverges for x → ∞ and as a consequence,
the matrix elements of the two-body interaction in the Berggren
basis are not finite. We solve this issue by regularizing the
two-body matrix elements between states in T2 using an
expansion in the harmonic-oscillator (HO) basis [31]. Note
that our Hamiltonian (1) matrix in this rigged Hilbert space
will be non-Hermitian, but complex symmetric. The spectrum
will include bound, resonant, and scattering many-body states.
Resonance solutions |�res〉 are characterized by outgoing
boundary conditions and a complex energy E = Er − i�r/2,
where �r is the decay width due to the emission of particles out
of the trap. The resonant solution will be identified in the many-
body spectrum as the state with the largest overlap (in modulus)
with |�(0)〉, referred to as the pole approximation [29]. With
this goal in mind we employ the Davidson algorithm for
diagonalization [38–40], which allows us to target a desired
eigenpair. Note that results for low-energy resonances should
be independent of the particular choice of L+ as long as the
Berggren completeness relation (2) holds, i.e., kmax and the
number of discretization points both need to be large enough.

Concerning the tunneling rate, we want to stress that there
is a priori no simple relation between the decay width and the
half-life for a many-body system, contrary to the case of a SP
Gamow state. Assuming exponential decay we would estimate
the tunneling rate γ� = �r/� = −2Im(E)/�. However, having
access to the resonant wave function �res(x1,x2) ≡ �res(x),
we can alternatively compute the decay rate using an integral
formalism [9]. The rate of particle emissions can be obtained
by integrating the outward flux of particles at a large distance
xout from the center of the trap and normalizing by the number
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of particles on the inside

γflux = �

imN (xout)

∑
i

∫ xout

0

∏
j �=i

dxj

[
�∗

res(x)
d

dxi

�res(x)

−
(

d

dxi

�∗
res(x)

)
�res(x)

]
xi=xout

, (3)

with N (xout) = ∫ xout

0

∏
j dxj |�res(x)|2.

III. RESULTS

In the experimental setup of Ref. [14], the fermions are
trapped in an effective 1D optical trap created by a tightly
focused laser beam (Rayleigh range xR) combined with a
linear magnetic potential (magnetic field gradient B ′) giving
the potential

V (x) = pV0

(
1 − 1

1 + (x/xR)2

)
− cB,σ μBB ′x. (4)

The depth pV0 of the trapping potential depends on the
number of particles that are in the trap. In addition, the
parameter cB,σ ≈ 1, although the exact value depends on both
the magnetic-field strength and the spin of the particle. For
comparison with experimental results we will use molecular
units, in which energy is given in nK kB , time in μs, and dis-
tance in μm. In these units we have � = 7638.2 nK kB μs, the
Bohr magneton μB = 6.7171 × 108 nK kB T−1 and �

2/m =
80.645 nK kB μm2, where m is the mass of a 6Li atom.

In Fig. 1(a) we show for illustrative purposes the trap po-
tential with pV0 = 2.123 × 103 nK kB , xR = 9.975 μm, B ′ =
18.90 × 10−8 T μm−1, and cB,σ = 1, which closely resemble
the parameters extracted from experimental data (see also the
discussion below). In order to handle the linear term B ′x
we truncate the potential at xcut, sufficiently far away from
the relevant trap region. In practice, this is achieved by
applying a positive energy shift Eshift so that V (xcut) + Eshift =
0. The energy shift is subtracted at the end and we have verified
that the fluctuations in the SP energy (tunneling rate) with the
choice of Eshift was less than 0.04% (2%).

The SP Schrödinger equation is solved using the method
described above. The discrete set of complex-momentum
states {|ki〉} that span the contour L+ is shown as blue dots in
Fig. 1(b). The energy shift that was used is Eshift = 500 nK kB .
The resulting set of eigenstates (green circles) lies very close
to the contour with the exception of one isolated state. The
former states correspond to nonresonant scattering solutions,
while the latter is a resonance. Together, these eigenstates form
the complete set of SP basis states {|ui〉} that will be used in
the many-body calculation.

The number of points on the contour is increased until
convergence of the SP resonance energy is achieved. Note
that the resonance pole will always remain fixed while the set
of scattering states will depend on the choice of the contour
L+. For illustration purposes, the contour shown in Fig. 1
consists of only Npts = 100 basis states while full calculations
were performed with Npts = 240–320. For this set of potential
parameters we find e = (301.415 − 0.085i) nK kB , which
translates into a tunneling rate γ1 = 22.38 s−1.
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FIG. 2. (Color online) Two-fermion resonance state as a function
of the interaction strength g for cB = 1. (a) Interaction energy (5)
compared with the corresponding energy obtained using the pole
approximation. (b) Tunneling rates obtained from the imaginary
part of the resonance energy (from the full calculation and the pole
approximation, respectively) compared with the rate obtained from
the flux calculation (3).

We now consider the solution of the interacting two-fermion
system, projected on the full Berggren basis. We define the
interaction energy as

Eint ≡ Re(E) − 2er , (5)

where Re(E) = Er is the real part of the resonance energy.
Results for the two-particle resonance state as a function of
the interaction strength g are shown in Fig. 2. For g = 0, the
two fermions tunnel out independently and the tunneling rate
is equal to γ = 2γ1 = 44.76 s−1. However, as the interaction
becomes more attractive, the real part of the resonance energy
decreases and the effective barrier seen by the two particles
increases. As a consequence, the tunneling rate decreases as
can be seen in Fig. 2(b).

Along with the full calculations, we show in Fig. 2 also
results obtained in the pole approximation, which corresponds
to the single configuration where the two distinguishable
fermions occupy the SP resonant state. This comparison
clearly demonstrates the importance of continuum correla-
tions. The resonance energy and width are both decreased
due to configuration mixing between the SP resonance pole
and nonresonant scattering states. In particular, the energy
width, which translates into a decay rate, is very sensitive to
these correlations. These results highlight the importance of
properly taking the openness of the system into account.

The agreement between the tunneling rate computed from
the decay width of the resonance and from the flux formula (3)
demonstrates the quality of our numerical approach. It also
shows that the tunneling is well approximated by an expo-
nential decay law for this system. The numerical precision
of results obtained in our approach was studied in a series
of convergence studies for systems with different interaction
strengths (g = +100, −20, −100 nK kB μm). We varied the
number of discretization points, modified the contour in the
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complex-momentum plane, or changed the number of HO
states in the computation of interaction matrix elements (for
a detailed discussion of these studies, see Ref. [40]). An
uncertainty in the numerical results for a specific coupling
coefficient was then extracted based on the amplitudes of
variations when these model-space parameters were varied
one by one. Adding these amplitudes in quadrature gave an
uncertainty in the real part of the interaction energy on the
order of �2% for the entire range of interaction strengths.
However, the precision of the computed imaginary energy
was found to have a lower bound since variations of the
computed decay rate was never smaller than 0.5 s−1. This
becomes obvious when the interaction is strongly attractive
and the ratio of imaginary and real energies turns out to
be very small. On the other hand, for larger decay rates
the variations were on the order of �1%. In combination
we have �γ = max(0.01γ,0.5 s−1). This observation can be
qualitatively understood in the following way: The precision
of the computed (complex) energy is not strongly dependent
on the value of g. For the most repulsive interactions, the
values of the real and imaginary parts are much larger than this
precision. However, as the interaction becomes more attractive,
the imaginary part rapidly decreases. With the precision of the
total (complex) energy almost constant, this creates a much
larger (relative) uncertainty for the tunneling rate in this region.
The estimated uncertainties from these numerical studies are
shown as shaded bands in both panels of Fig. 2, but is only
visible in the tunneling rate for the most attractive interactions
(g � −60 nK kB μm).

A. Density and tunneling mechanism

The density and stationary outgoing particle flux can be
seen in Fig. 3 for attractive and repulsive interactions. The par-
ticles are localized around the trap minimum (at approximately
x = 4 μm). For the repulsive interaction shown in Fig. 3(a) we
can clearly observe the emerging fermionization [41–43] of the
two distinguishable particles by the development of an x1 = x2

valley in the density distribution.
The flux provides interesting insights into the tunneling

mechanism. For the repulsive and the slightly attractive
scenarios, shown in Figs. 3(b) and 3(d), the outgoing flux
is mainly concentrated in two bands, corresponding to one
particle staying in the trap and the other one leaving it.
This indicates a strong predominance of sequential tunneling.
However, for the most attractive case, shown in Fig. 3(f),
we have significant outward flux in the x1 ≈ x2 region. This
signals that the two fermions can leave the trap simultaneously
at a short distance from each other. Unfortunately, the region of
strong attraction, where pair tunneling appears as an important
decay channel, is also characterized by the smallest total
tunneling rates. Therefore, there is significant numerical noise
for these particular results. We stress, however, that the general
conclusion of increasing pair tunneling remains true, although
quantitative results cannot be obtained.

B. Comparison with experimental data

The tunneling of few fermions from low-dimensional traps
was measured by Zürn et al. [14]. The experimental trap was
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FIG. 3. (Color online) (a), (c), and (e) Density contour plots
and (b), (d), and (f) logarithm of the outward particle flux for
repulsive (g = +g0), slightly attractive (g = −0.1g0), and strongly
attractive (g = −g0) interactions (with g0 = 100 nK kB μm) from top
to bottom, respectively.

highly elongated with a much stronger confinement in the
perpendicular direction ω‖/ω⊥ ≈ 1/10. Still, for very strong
attraction the size of the dimer can become comparable to b⊥,
the length scale of the ignored (transverse) trap dimensions. In
such a situation, the 1D approximation could be questioned.
Following Ref. [42], we have verified that we remain in the
effectively one-dimensional region with a1D/b⊥ ≈ 3 for g =
−100 nK kB μm, which is the largest attraction considered in
this Rapid Communication.

The data analysis of Ref. [14] is quite complicated and
involves the use of the WKB approximation to extract the trap
potential parameters. More precisely, pV0 and B ′ in Eq. (4)
were adjusted such that the SP tunneling rates obtained in
the WKB approximation matched the experimental results.
Using the set of parameters given in Ref. [14] as input to our
exact diagonalization approach leads to good agreement for
the SP energies (with a difference of at most a few percent),
while SP tunneling rates were almost two times larger than
the ones published in Ref. [14]. As a consequence, we have
adopted the strategy of refitting the parameters p and B ′ to
reproduce measured SP tunneling rates. Resulting changes of
these parameters, compared to the WKB analysis, are on the
order of ∼0.1%. From this one can conclude that the tunneling
rate is very sensitive to small shifts in the trapping potential,
that continuum couplings are very important, and that the
uncontrolled WKB approximation may be inadequate to use
in a fitting procedure.

Using this set of parameters, we compute the energies
and the tunneling rates for the two-particle system. For these
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TABLE I. Energy and tunneling rate for two atoms in a trap
as a function of the interaction strength g. Experimental results are
from [14]. Each case corresponds to a different trapping potential, as
described in the text.

g (nK kB μm) Eint (nK kB ) γ� (s−1) γexpt (s−1)

−31.0 −8.4(2) 19.2(5) 22.2(10)
−41.5 −12.1(3) 12.5(5) 13.8(10)
−45.0 −13.6(3) 25.8(5) 9.7(3)
−99.9 −37.0(7) 0.4(5) 2.14(20)

calculations we used a complex-momentum contour with
slightly fewer discretization points (Npts = 200). Our pre-
dictions are presented in Table I compared to experimen-
tal data. The calculated tunneling rates are in acceptable
agreement with the measured ones. However, for one case
(g = −45.0 nK kB μm) the difference is almost a factor 3,
which is well beyond the expected precision of our method as
indicated by the uncertainty estimates of the tabulated results.
The fact that our tunneling rate is not monotonically decreasing
as the interaction becomes more attractive is due to the
extreme dependence on the SP potential. In particular, for each
value of g, the parameter cB,σ is slightly different. Moreover,
the spin dependence of this term gives rise to slightly different
trapping potentials for the two atoms. Unfortunately, this
parameter is not determined uniquely by the SP tunneling
data and we have therefore used cB,σ (g) as published in
Ref. [14]. Better agreement with the experimental results can
certainly be achieved by relaxing the predictive ambitions and
tuning this parameter for each specific interaction strength.
As a final note, our calculated interaction energies are about
three times larger than the values extracted (using WKB) from
experiment. We conclude that the WKB method should not
be expected to produce reliable estimates for this quantity and
that the analysis of experimental results for open quantum
systems is highly sensitive to the determination of trap
parameters.

IV. CONCLUSION

In this Rapid Communication we have introduced the rigged
Hilbert space formalism to the theoretical study of tunneling
in systems of ultracold atoms. We focused on the case of
two distinguishable particles in a one-dimensional trap. The
two-atom dynamics was solved for a wide range of interaction
strengths by using an expansion in the Berggren basis. The
computational cost of this approach is mainly associated with
the construction of the Hamiltonian matrix. Fortunately, the
two-body interaction matrix elements are directly proportional

to the interaction strength g and will only have to be computed
once for a specific model-space truncation. We computed the
energy and lifetime of two-body resonant states and could
highlight the importance of continuum correlations for the
proper description of such threshold phenomena. Moreover,
we were able to obtain the density and flux distributions. The
analysis of the outgoing particle flux indicated a predominance
of sequential single-particle tunneling, with signs of pair
tunneling for strongly attractive systems. The numerical
robustness of our method was discussed and our theoretical
predictions were compared with experimental results. We
found a quantitative agreement for tunneling rates in systems
with attractive interactions. However, interaction energies
differed significantly from those extracted from experimental
data using a WKB approach [14] and we emphasized that
these differences stem from the uncontrolled approximation
inherent to semiclassical approaches.

Our approach offers a number of key features. As we
use an expansion in a SP basis, the particle statistics of the
many-body states is treated exactly and the method can be
straightforwardly extended to systems with more atoms and
other shapes for the trapping potential. By working in a rigged
Hilbert space we actually compute the complex energies of
true many-body resonances, which gives us both the position
and the width. The numerical precision of the method will
be limited by the relative magnitude of real and imaginary
energies. Still, the two-body systems that are studied in this
work range from strongly repulsive to strongly attractive and
the associated decay rates span three orders of magnitude.
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[7] M. Pfützner, M. Karny, L. V. Grigorenko, and K. Riisager,
Rev. Mod. Phys. 84, 567 (2012).

041601-5

http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1103/PhysRev.108.1175
http://dx.doi.org/10.1016/0029-5582(59)90264-0
http://dx.doi.org/10.1016/0029-5582(59)90264-0
http://dx.doi.org/10.1016/0029-5582(59)90264-0
http://dx.doi.org/10.1016/0029-5582(59)90264-0
http://dx.doi.org/10.1038/224673a0
http://dx.doi.org/10.1038/224673a0
http://dx.doi.org/10.1038/224673a0
http://dx.doi.org/10.1038/224673a0
http://dx.doi.org/10.1103/RevModPhys.84.567
http://dx.doi.org/10.1103/RevModPhys.84.567
http://dx.doi.org/10.1103/RevModPhys.84.567
http://dx.doi.org/10.1103/RevModPhys.84.567


RAPID COMMUNICATIONS
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