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Nuclear structure corrections to energy levels of light muonic atoms are derived with particular attention to the
nuclear mass dependence. The obtained result for the 2P -2S transition of 1.717(20) meV serves for determination
of the nuclear charge radius from the spectroscopic measurement in muonic deuterium.
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In order to resolve discrepancies for the proton charge
radius [1–3], spectroscopic measurements in light muonic
atoms, such as μD, μ3He, and μ4He have been performed [4]
for the comparison of nuclear charge radii with those obtained
from traditional atomic spectroscopy or electron scattering
from nuclei. The nuclear charge radius can be determined from
spectroscopic measurements, provided the atomic structure
is well known and the influence of nuclear excitation on
atomic levels is properly accounted for. The atomic structure
is well understood because one can calculate within quantum
electrodynamics the atomic levels with very high precision, up
to the value of fundamental constants. Much more problematic
is the accurate description of nuclei and their electromagnetic
interactions with surrounding electrons and muons, because of
the difficulty in solving quantum chromodynamics in the low
energy scale.

The nuclear polarizability effects in muonic atoms have
been studied for some time. In 1977, Friar in [5] calculated
the nonrelativistic nuclear electric dipole polarizability and
Coulomb corrections for muonic helium. Eighteen years later,
Leidemann and Rosenfelder in [6] calculated the inelastic
contribution for μD in a more general approach by construc-
tion of the forward two-photon scattering amplitude for the
deuteron. More recently, we calculated in [7] nuclear structure
effects in muonic deuterium using a perturbative formalism
and have shown the absence of the Zemach correction. The
results of this perturbative approach have been confirmed by
Friar in [8] using zero-range nucleon potentials. A systematic
dispersion relation approach was used in [9] to obtain the
complete two-photon exchange contribution, but the result
suffered from insufficient inelastic scattering data from the
deuteron. Recently, a perturbative approach has been pursued
by independent derivation and numerical calculations for μHe
in [10] and μD in [11].

In this work we include higher order terms in the expansion
in a small parameter being the nuclear excitation energy
over the muon mass, and recalculate all other contributions
with special emphasis on the nuclear mass dependence and
separation of the so-called pure recoil corrections. Since the
nuclear effects are the main source of theoretical uncertainties
in muonic atoms, we aim to calculate them as accurately
as possible, in order to extract precise nuclear charge radii
from the muonic atom spectroscopy. Our main limitation will
come from the simplified model of nuclear interaction with
the electromagnetic field which assumes certain commutation
relations, from the neglect of possible corrections to the electric
dipole operator and from the uncertainty regarding the neutron
polarizability.

In the following we derive general formulas for the nuclear
polarizability shift using various perturbative expansions. We
aim to improve results obtained in Refs. [7,10,11] by correcting
mass dependencies and including higher order terms. Let
us first introduce the notation used. Positions of the muon
and nucleons are �r,�ra . Corresponding relative positions with
respect to the nuclear mass center are �ρ, �ρa . Momenta of
the muon and nucleons are �p, �pa . Relative nucleon momenta
are �qa = �pa − �P ma/M , where the total nuclear momentum
is �P with the nuclear mass M = ∑

a ma . The canonical
commutation relations[

ri
a,p

j

b

] = iδabδ
ij (1)

for relative coordinates are the following:

[
ρi

a,q
j

b

] = i

(
δab − mb

M

)
δij . (2)

We assume that the nuclear Hamiltonian is of the form

H̃N =
∑

a

�p 2
a

2 ma

+ Vnucl

=
�P 2

2 M
+

∑
a

�q 2
a

2 ma

+ Vnucl =
�P 2

2 M
+ HN, (3)

where ma is a proton or a neutron mass. In what follows
we will neglect the isospin number, so we will assume that
each nucleon is a proton or a neutron. Under this assumption
the electromagnetic interaction is local and is much easier
to deal with. Later on, when matrix elements are calculated
for the deuteron, the correct isospin number is assumed.
This simplified treatment is because the full description of
nuclear electromagnetic interactions, including separation of
the center-of-mass motion [12], have not yet been presented
in the literature.

We start derivation from the second-order Coulomb inter-
action in the nonrelativistic approximation

δE = 〈φφN |δV 1

EN + E0 − HN − H0
δV |φ φN〉, (4)

where

δV =
Z∑

a=1

α

| �ρ − �ρa| − Z α

ρ
, (5)

and where H0 is the nonrelativistic Hamiltonian of the muon
with the reduced mass

H0 = �p 2

2 mr

− Z α

ρ
. (6)
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The distance of protons from the nuclear mass center ρa is
much smaller than that of the muon ρ, so the dominating
contribution comes from the electric dipole excitations

δE = α2〈φ φN |
�d · �ρ
ρ3

1

EN + E0 − HN − H0

�d · �ρ
ρ3

|φ φN 〉,
(7)

where �d = ∑Z
a=1 �ρa. Denoting the nuclear excitation energy

by E, the nonrelativistic polarizability correction is

δE = α2

3

∫
ET

dE|〈φN | �d|E〉|2〈φ| �ρ
ρ3

1

E0 − H0 − E

�ρ
ρ3

|φ〉.
(8)

The nuclear excitation energy E is much larger than a typical
muonic atomic excitation energy, thus one may perform
the large E expansion of the muonic matrix element. The
corresponding formula for this expansion is

〈φ| �ρ
ρ3

1

H0 − E0 + E

�ρ
ρ3

|φ〉

= 4πφ2(0)

√
2mr

E
+ c1

(Zα)4m4
r

E
+ c2

(Zα)5m4
r

E

√
2mr

E

+ c3
(Zα)6m5

r

E2
, (9)

where

φ2(0) = (mrZα)3

πn3
δl0, (10)

c1(2P − 2S) = − 1

12
− 1

2
ln

(
2mr (Zα)2

E

)
, (11)

c2(2P − 2S) = 19

32
+ π2

12
, (12)

c3(2P − 2S) = −7

6
+ ζ (3)

2
+ 5

8
ln

(
2mr (Zα)2

E

)
(13)

From this expansion, the leading electric dipole polarizability
contribution is [5]

δ0E = −4πα2

3
φ2(0)

∫
ET

dE

√
2mr

E
|〈φN | �d|E〉|2, (14)

while Coulomb corrections are

δC1E = Z4α6m4
r

6

∫
ET

dE

E

[
1

6
+ ln

(
2mr (Zα)2

E

)]

×|〈φN | �d|E〉|2 , (15)

δC2E = −Z5 α7m3
r

6

(
19

32
+ π2

12

) ∫
ET

dE

(
2 mr

E

)3/2

× |〈φN | �d|E〉|2. (16)

δC3E is small and thus can be neglected for light muonic atoms.
The dipole operator �d in the above is the position of protons
with respect to the nuclear mass center. However, one may
expect some corrections to �d. Indeed the chiral effective field
theory predicts various relativistic corrections to the electric
dipole operator. We do not calculate them here and therefore

associate a relative uncertainty of 1%, which is twice the
binding energy per nuclear mass.

In the evaluation of further corrections we neglect Coulomb
corrections, and so assume the on-mass-shell approximation
for the muon. All corrections can therefore be expressed in
terms of the two-photon forward-scattering amplitude. Let us
consider again the related muonic matrix element P for the
nonrelativistic two-Coulomb exchange

P = 〈φ| α

| �ρ − �ρa|
1

(H0 − E0 + E)

α

| �ρ − �ρ ′
b|

|φ〉. (17)

Using the on-mass-shell approximation and subtracting the
point Coulomb exchange it becomes

P = α2 φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2(
E + k2

2mr

)−1

× (ei�k( �ρa−�ρ ′
b) − 1). (18)

This integral can easily be performed analytically, but we
will choose another way, which will be convenient when
relativistic corrections are included. We will calculate directly
the expansion coefficients in powers of E. There are two
characteristic integration regions: k ∼ √

E m and k ∼ m,
where m is the muon mass. In the first integration region, where
k is small, one performs an exponent expansion in powers of
�k ( �ρa − �ρ ′

b). The leading quadratic term is the electric dipole
contribution

P0 = −4π

3
α2φ2(0)

√
2mr

E

( �ρa − �ρ ′
b)2

2

→ 4π

3
α2φ2(0)

√
2mr

E
�ρa �ρ ′

b (19)

and it has already been accounted for in Eq. (14). The term
with the fourth power of nucleon distances is

PQ = −2 π

15
m2

r α
2φ2(0)

√
E

2mr

( �ρa − �ρ ′
b)4. (20)

The corresponding correction to energy is

δQE = 2π

15
m2

r α
2φ2(0)

∫
ET

dE

√
E

2mr

×
[

10

3
〈φN |

∑
a

ρ2
a |E〉2

− 8 〈φN |
∑

a

ρi
a|E〉 〈E|

∑
b

ρ2
b ρi

b|φN 〉

+ 4 〈φN |
(∑

a

ρi
a ρj

a − δij ρ2
a/3

)
|E〉2

]
(21)

= δQ0E + δQ1E + δQ2E.

These parts are due to the electric monopole, dipole, and the
quadrupole nuclear excitations, correspondingly.

In the second integration region, where k ∼ m is large, one
performs an expansion in powers of not exactly E, but of the
total nuclear energy Ẽ,

Ẽ = E + k2

2M
, (22)

040503-2



RAPID COMMUNICATIONS

NUCLEAR STRUCTURE EFFECTS IN LIGHT MUONIC ATOMS PHYSICAL REVIEW A 91, 040503(R) (2015)

which happens to be much more appropriate. The first
expansion term is

P = π

3
mα2φ2(0)|�ra − �r ′

b|3 (23)

and the corresponding correction to energy

δZE = −π

3
mα2φ2(0)

Z∑
a 	=b

〈|�ra − �rb|3〉 (24)

is the modified Zemach moment. The second expansion term
for k ∼ m is

P = α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2(2m

k2

)2

ei�k(�ra−�r ′
b)Ẽ. (25)

The corresponding nuclear matrix element

〈φN |ei�k·�ra (H̃N − EN )e−i�k·�rb |φN 〉 = k2

2mN

δa,b (26)

is proportional to k2, so the k integral vanishes after subtraction
of singular terms. As a result, no corrections to the modified
Zemach moment are found.

Consider now correction due to the finite nucleon size.
The proton and neutron charge distribution enters through the
convolution with the Coulomb potential in Eq. (5). Since their
charge radii are much smaller than that of nuclei, one can
perform an expansion of the electric form factors in powers of
k2. When k ∼ √

Em, the electric dipole polarizability Eq. (14)
is modified by

PFS = α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2(
E + k2

2mr

)−1

× k2

(
r2
Ea + r2

Eb

)
6

[�k ( �ρa − �ρ ′
b)]2

2

= −4 π

9

(
r2
Ea + r2

Eb

)
m2

r α2 φ2(0)

√
E

2 mr

( �ρa − �ρ ′
b)2.

(27)

The corresponding correction to energy is

δFSE = −16πα2

9
φ2(0)m2

r

∫
ET

dE

√
E

2mr

〈φN | �d|E〉〈E|�δ|φN 〉,

(28)

where �δ = ∑
a r2

Ea �ρa . When k ∼ m the Zemach contribution
is corrected by

δFZE = −π

3
mα2φ2(0)

∑
a

Z∑
b

r2
Ea

3

〈 �∇2
a

∣∣�ra − �rb|3〉

= −4 π

3
m α2 φ2(0)

∑
a

Z∑
b

r2
Ea 〈|�ra − �rb|〉. (29)

The case a = b is considered separately as it involves a
momentum exchange, which is of the order of the inverse
of the proton size. When a large momentum is exchanged,
the nucleon binding energy can be neglected and the muon
sees free nucleons. The individual Zemach radii and nucleon

polarizabilities are combined together into effective Dirac-
delta type interactions and are accounted for in δN,P E in
Eqs. (46) and (47).

Consider now corrections from the two-Coulomb exchange
using the relativistic (Dirac) Hamiltonian for the muon.
Equation (18) is replaced by

P = α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2

ei�k·(�ra−�r ′
b)

×
(

Ek + m

2 Ek

1

Ẽ + Ek − m
+ m − Ek

2 Ek

1

Ẽ + Ek + m

)
,

(30)

where Ek = √
k2 + m2. When k ∼ √

2 m E one employs a
small k expansion. The leading term coincides with Eq. (18).
The next term is

P = −α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2

ei�k·(�ra−�r ′
b) Ẽk2

(2mẼ + k2)2
.

(31)
Only the quadratic term in nuclear distances contributes, and
after subtraction of large k singularities the corresponding
correction to energy

δRE = 2πα2

3
φ2(0)

∫
ET

dE

√
E

2mr

|〈φN | �d|E〉|2

×
(

1 − 5
m

M

)
+ O

(
m

M

)2

(32)

is in agreement with the former result of Ref. [7] in the infinite
nuclear mass limit.

When k ∼ m one can perform the Taylor expansion of the
integrand of Eq. (30) in powers of Ẽ. The term without Ẽ,

P = α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2

ei�k·(�ra−�r ′
b) 2m

k2
, (33)

is exactly the same as in the nonrelativistic limit, and has
already been accounted for. The linear in Ẽ term in Eq. (30) is

P = −α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2

ei�k·(�ra−�r ′
b)Ẽ

× m(4m2 + 3k2)

Ekk4
. (34)

The corresponding nuclear matrix element can be transformed
using Eq. (26), so correction to energy becomes

δ′
CE =

∑
a

α2φ2(0)
∫

d3k

(2π )3

(
4π

k2

)2
m(4m2 + 3k2)

2mNEkk2
, (35)

a recoil correction for each individual nucleon. So, for k ∼ m

the muon sees individual nucleons and this correction becomes
the sum of nucleon recoil corrections

δ′
CE = − 4

3m
α2φ2(0)

(
Z

mN

− Z2

M

)
(36)

with subtracted muon-nucleus recoil correction to avoid the
double counting with the so-called pure recoil correction. This
is because recoil corrections are by definition included in the
Lamb shift as a QED correction for a point nucleus.
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The Coulomb exchange is not a complete correction; there
are single and double transverse photon exchange corrections,
and their calculation is more complicated. The main reason
for this is the overlap of the nuclear recoil and nuclear
polarizability corrections. Let us repeat now the calculation
by replacing the two-Coulomb exchange amplitude, Eq. (30),
by a complete two-photon exchange.

When k ∼ E or k ∼ √
E m one can use a dipole approxima-

tion, where the coupling of the nucleus to the electromagnetic
field is −�d · �E( �R), as in Eq. (6). Correction to energy due to
two-photon exchange in the dipole approximation is [13]

δE = −e4 φ2(0)
1

3

∫
ET

dE〈φD| �d|E〉2
∫

d ω

2 π i

×
∫ ε d3k

(2π )3

1

E + ω + k2/(2M)

(
1 + 2ω4

(ω2 − k2)2

)

× 4

(ω2 + 2mω − k2)(ω2 − 2mω − k2)
. (37)

The leading nonrelativistic term agrees with that in Eq. (14),
while the leading relativistic correction agrees with Eq. (32).
The higher order correction (in powers of E/m) is

δ′
RE = 4

3
α2φ2(0)〈φN | �d (HN − EN )

m

×
[

1 + ln
(HN − EN )

ε

]
�d|φN 〉. (38)

Using the commutation relations of Eq. (2) the nuclear matrix
element is

4

3
〈φN | �d (HN − EN ) �d |φN 〉 = 2

(
Z

mN

− Z2

M

)
, (39)

and this correction can be rewritten in the form

δ′
RE = 2

m
α2φ2(0)

(
1 + ln

2Ē

m
+ ln

m

2ε

)(
Z

mN

− Z2

M

)
,

(40)
where

ln Ē = 〈φN | �d (HN − EN ) ln(HN − EN ) �d |φN 〉
〈φN | �d (HN − EN ) �d |φN 〉 . (41)

The identity (39) is an approximate one. The electric dipole
operator does not commute with the nuclear potential. Ne-
glected terms can be interpreted as if due to �A2 vertex with
pions.

When k ∼ m the complete two-photon exchange is a recoil
correction from individual protons [see Eq. (32) of Ref. [14]],

δHE = 4π2α2

mmN

φ2(0)
∫

ε

d3k

(2π )3

×
[
k4 + 6k2m2 + 8m4

k6
√

k2 + m2
− 1

k3

]
. (42)

The contribution beyond the previously considered
Coulomb part, Eq. (36), is

δ′
HE = 2

m
α2φ2(0) ln

2ε

m

(
Z

mN

− Z2

M

)
, (43)

where we again subtract the corresponding nuclear recoil
correction. The ln ε dependence cancels out with that in

Eq. (40), as it should, and the sum of higher order corrections
is

δHOE = δ′
CE + δ′

RE + δ′
HE

= 2

m
α2φ2(0)

(
1

3
+ ln

2Ē

m

)(
Z

mN

− Z2

M

)
. (44)

These are all nuclear structure corrections up to the order
α5 m2/M . In some cases, such as for the deuteron nucleus,
where the magnetic moment is relatively large, higher order
effects due to the second-order magnetic interaction α5m3/M2

may play a role. The corresponding correction for the deuteron
was obtained in Ref. [7],

δME = 8πα2

3
φ2(0)

(
gp − gn

4mp

)2

×
∫

ET

dE

√
E

2mr

〈φN |�sp − �sn|E〉2, (45)

but the numerical value, as was pointed out in [11], was in
error, so we correct it here and present our updated value in
Table I.

There are, in addition, contributions due to intrinsic elastic
and inelastic two-photon exchanges with individual nucleons,
which include the third Zemach moment and the nucleon
polarizability. While the contribution from the proton is well
known from studies on muonic hydrogen [15], 
E(2S) =
−36.9(2.4) μeV, less is known about the contribution from
the neutron. Following [9], we assume that this contribution
is as large as the inelastic part for the proton 13.5 μeV,
and associate 50% uncertainty. Therefore, the contribution
from intrinsic nucleon polarizabilities and elastic two-photon

TABLE I. Nuclear structure corrections in muonic deuterium for
2P -2S transition. Fundamental physical constants are from Ref. [19],
and r2

p = 0.84092 fm2, r2
n = −0.1161 fm2. δ

(0)
C from [11] includes

only the logarithmic part of δC1E, which we find here to be a good
approximation.

Correction Value in meV Eq. Ref. [11] [11]-AV18

δ0E 1.910 (14) δ
(0)
D1 1.907

δC1E − 0.255 (15) → δ
(0)
C − 0.262

δC2E − 0.006 (16) → δ
(0)
C

δQ0E − 0.042 (21) δ
(2)
R2 − 0.042

δQ1E 0.139 (21) δ
(2)
D1D3 0.139

δQ2E − 0.061 (21) δ
(2)
Q − 0.061

δFSE 0.020 (28) δ
(2)
NS 0.015

δFZE − 0.018 (29) δ(1)
np − 0.017

δRE − 0.026 (32) → δ
(0)
L + δ

(0)
T − 0.017

δHOE 0.004 (44) → δ
(0)
L + δ

(0)
T

δME − 0.008 (45) δ
(0)
M − 0.008

δP E 0.043(3) (46) 0.0135
δNE 0.016(8) (47) 0.0135

E 1.717(20) 1.681(20)
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exchanges is

δP E = −8Z4

n3
δl0

m3
rN

m3
rH

36.9 meV, (46)

δNE = −8(A − Z)Z3

n3
δl0

m3
rN

m3
rH

13.5 meV. (47)

The final expression for the nuclear polarizability combined
with the elastic contribution but with subtracted nuclear recoil
of order α5m2/M is


E = δ0E + δCE + δRE + δQE + δFSE + δFZE

+ δME + δP E + δNE + δHOE + δZE, (48)

and the elastic contribution for the neutron using Galster
parametrization [16] is found to be negligible.

Numerical results for muonic deuterium are obtained by
using the AV18 potential [17] with the help of a discrete vari-
able representation [18] method for solving the Schrödinger
equation, and are presented in Table I. They are generally
in agreement with our previous calculations [7] with few
exceptions. Differences are due to improved mass dependence
of corrections beyond the nonrelativistic dipole term. We also
corrected the magnetic contribution, which previously was in
error, and included higher order correction δHOE, and most
importantly the polarizability of the neutron. We have also
included, following Refs. [10,11] finite size corrections δFS

and δFZ, although our results are slightly different.
In comparison to Refs [10,11], we agree with their

numerics, agree with the use of reduced mass in δQE, but
disagree with their mass dependence of all other higher order
corrections. Moreover, our formula for the finite size correction
δFS slightly disagree with the corresponding δ

(2)
NS due to the

opposite sign for the neutron radius contribution. Our δRE

differs from the corresponding δ
(0)
LT , apart from mass depen-

dence, due to the fact that for the large momentum exchange
k ∼ m, the dipole approximation does not hold and we account
for this in δHOE. Finally, we consider the elastic contribution
of the proton structure correction to be a part of the overall

nuclear structure correction, in contrast to Refs. [9,11]. Our
argument is the following. The nuclear structure contribution
to high extent is given by the forward two-photon scattering of
the nucleus. When momentum exchange is much larger than
the nuclear binding energy, muon sees individual nucleons
and the total scattering amplitude is a coherent sum of total
scattering amplitudes from each nucleon. By total we mean the
elastic and inelastic contributions, since this division is a pure
convention. Therefore, both contributions should be included
in the calculation of the Lamb shift, and we include them, for
convenience, in the part called the nuclear structure correction.

Considering the uncertainty related to numerical evaluation
of matrix elements, Ref. [11] has performed calculations with
AV18 potentials and with various orders of chiral effective
field theory, finding 0.6% dependence on the potential used.
Our numerical values, when the same formulas are used,
are in perfect agreement with those of Ref. [11]. Since we
neglect possible corrections to the electric dipole moment,
which in fact depends on the model potential, we do not
associate additional uncertainty beyond that assumed for the
electric dipole polarizability. Regarding uncalculated higher
order terms, the most significant seems to be the Coulomb
correction to δQE in Eq. (21), which we estimate by about
0.005 meV. Therefore, the final uncertainty is determined by
50% of the estimated neutron polarizability, 1% of 
E due
to neglect of corrections to the electric dipole moment, and
0.005 meV due to neglected higher order terms.

Our final result for the nuclear structure correction 
E

is not in perfect agreement with that of Ref. [11], as
explained above, mostly due to inclusion of the proton elastic
contribution. In spite of other small discrepancies with [11],
the presented perturbative approach seems to be more efficient
than the dispersion relation approach of Ref. [9]. If further
improvements are required, the best way is probably by joining
within the dispersion relation approach, the inelastic scattering
data at high energies with nuclear model calculations at low
energies, to account properly for the high energy structure of
the deuteron.
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