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Entanglement replication via quantum repeated interactions
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We study entanglement creation between two independent XX chains, which are repeatedly coupled locally to
spin-1/2 Bell pairs. We show analytically that in the steady state the entanglement of the Bell pairs is perfectly
transferred to the chains, generating large-scale interchain pair correlations. However, before the steady state is
reached, within a growing causal region around the interacting locus the chains are found in a current driven
nonequilibrium steady state (NESS). In the NESS, the chains cross entanglement decays exponentially with
respect to the distance to the boundary sites with a typical length scale which is inversely proportional to the
driving current.
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Entanglement plays one of the major roles on the scene
of quantum engineering and quantum control [1,2]. This
purely quantum property is critical in quantum information
processing [3–5]. Hence entanglement is the center of attention
of numerous studies [6–10]. In a recent work, Zippilli and
co-workers studied the steady state entanglement replication
in two independent quantum many-body systems, both locally
driven by a common entangled field [8,11]. They showed
that the field can be tuned to perfectly replicate the driving
entanglement across the initially independent arrays through
the generation of a scale-free set of two-particle Bell states.

In this work, we study the dynamics of entanglement
replication between two XX-quantum spin chains each of
size N . The chains are both locally driven at one of their
boundaries by an entangled Markovian environment. Starting
from any Gaussian initial state, the system reaches, for t � τN

(with τN ∼ N3), a unique stationary state (already observed
in [8,11]) in which spins belonging to different chains are
perfectly entangled by pairs. During the relaxation toward the
stationary state, the system passes through a transient regime
for intermediate times τd � t � N/vc, where τd is a typical
microscopic relaxation time related to the local dissipative
coupling to the bath and vc is the typical sound velocity
within the chains. In this time regime, close to the interacting
boundaries the chains fall into a nonequilibrium steady state
(NESS) with a steady current jz∗ injected by the environment
into the chains. In the NESS, the entanglement between spins
belonging to different chains and facing each other decay
exponentially over a length scale ξ as we move away from
the interacting boundaries. This entanglement length scale ξ

is shown to be proportional to the inverse of the steady current
jz∗. Moreover, as the NESS extends ballistically through the
chains, local observables along the chains typically show a
scaling form Q(x,t) � fQ(x/t) where x is the distance from
the interacting boundaries.

The system is composed of two noninteracting XX chains
with Hamiltonian

HS = −K
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with S = {1,2, . . . ,N} ∪ {N + 3,N + 4, . . . ,2N + 2} and
S� = S\{N,2N + 2}. The hopping constant K is fixed to

1/2 such that the sound velocity vc = 1 into the chains.
Note that the total transverse magnetization Mz = ∑

n σ z
n

commutes with HS . As a consequence, we will show that
the external field does not affect the dynamics of the system,
when considering a Gaussian initial state. The Markovian
environment with which the system interacts is described by
a repeated interaction process (RIP) [12–16] (see Fig. 1 for a
pictorial representation). More precisely, the environment is
made of an infinite set of identical and independent spin pairs,
with Hamiltonians H

(k)
B = −h(σ z

k,1 + σ z
k,2)/2 where k ∈ N∗,

such that the bath Hamiltonian is HB = ∑∞
k=1 H

(k)
B . Each bath

spin pair is prepared into a perfectly entangled Bell state
η = |�〉〈�| with |�〉 = 1√

2
(|↑↓〉 + |↓↑〉), where |↑〉 and |↓〉

are eigenstates of the σ z
k Pauli matrices. Therefore, the initial

state of the bath is given by the direct product ηB = ⊗
k∈N∗ η.

During the RIP the Bell pairs ηk will interact one after the
other, over a typical interaction time τ , with the XX chains.
The dynamics of the full system + environment is generated
by the time-dependent Hamiltonian H (t) = HS + HB + V (t),
where V (t) describes the system-environment coupling and is
given by V (t) = V (k) for t ∈ [(k − 1)τ,kτ [. The interaction
couples one spin of the pair, say σk,1, to the left chain only,
while the second one, σk,2, is only coupled to the right one and
that through a local isotropic XX coupling

V (k) = −γ
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Note that the coupling amplitude γ is taken to be the same for
the left and right chains.

The initial system + environment state is taken to be the
tensor product state 	(0) = 	S(0) ⊗ ηB where the system
density matrix 	S(0) is a fully factorized (thermal) mixture
	S(0) = ⊗

n∈S 	n with the single spin density matrix 	n =
(1n + μnσ

z
n )/2, where μn = Tr{σ z

n	n}. At μn = 1 (−1) the
density matrix 	n reduces to the pure state |↑〉〈↑| (|↓〉〈↓|).

Over one time step of the RIP, the two chains, together with
the Bell pair with which they interact, formally constitute a
XX chain of size 2N + 2 with nonhomogeneous couplings.
This chain can be mapped to a free Fermi system through a
Jordan-Wigner transformation cn = ∏n−1

j=1(−σ z
j )σ−

n [17] with
2σ±

n = σx
n ± iσ

y
n . The c and adjoint c† satisfy the canonical
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FIG. 1. (Color online) Two noninteracting XX chains are coupled
on one edge, via a RIP, to one component of a Bell pair. The first chain
is labeled from 1 to N , and the second one from N + 3 to 2N + 2.

anticommutation relations {c†i ,cj } = δij and {c†i ,c†j } =
{ci,cj } = 0. To proceed further we separate the system
variables from the bath ones. We define the field operator
�† = (x†,f†) with x† = (c†1, . . . ,c

†
N,c

†
N+3, . . . ,c

†
2N+2) and f† =

(c†N+1,c
†
N+2). The total Hamiltonian takes the form H =

�†T � where T is a (2N + 2) × (2N + 2) matrix given by

T =
(

TS γ�

γ�† TB

)
−h1, TS =

(
A 0
0 A

)
, (3)

where A (of size N × N ) is given by Ai,j = −K(δi,j+1 +
δi,j−1) and � (of size 2N × 2) is given by �i,j = −(δi,Nδj,1 +
δi,N+1δj,2). As long as we are not interested in the fate of the
environment Bell pair, it is unnecessary to further specify the
2 × 2 matrix TB as it does not appear in the dynamical equation
which described the system evolution [14].

The initial state of the ensemble system + environment
being Gaussian [18], the total density matrix 	(t) and the
system density matrix 	S(t) = T rB{	(t)} remain Gaussian
during the time evolution generated by the free fermionic
Hamiltonian [19]. Thanks to Wick’s theorem, a full description
of the system is given in terms of its two point correlators
only. As a first step we define the (2N + 2) × (2N + 2)
correlations matrix G by Gi,j (t) = 〈�†

i �j 〉(t). Its evolution
over one time step is given by G(τ ) = e−iτT G(0)eiτT . The
magnetic field h appearing on the diagonal of T only, the
previous equation clearly indicates that h has no effect on
the system dynamics. Next we define the reduced 2N × 2N

correlations matrix GS by (GS)i,j (t) = 〈x†i xj 〉(t). When taking
the continuous time limit (τ → 0), one has to keep γ 2τ

constant [12]. This procedure leads to a differential equation
describing the evolution of the system in interaction with the
environment. The system correlation matrix obeys a Lindblad-
like differential equation[14]

∂tGS = −L
(
GS

) + �2�GB�†, (4)

with L(·) = i[TS,·] + �2{·,��†}/2 where � is the rescaled
coupling parameter. The 2 × 2 matrix GB is the correlation
matrix of a bath pair, explicitly given in the Bell state η

by (GB)i,j = 1/2 ∀i,j . Choosing the coupling parameter
� = γ

√
τ leads to the approximate solution for the discrete

case. Corrections of order 1/τ are, however, expected when
considering the discrete case.

In the following we use the concurrence as a measure of
the entanglement between two spins k,l ∈ S of the system.
For an arbitrary density matrix 	, representing the quantum
state of the two spins, the concurrence [20,21] is defined by
C = 2 max{0,λ1 − λ2 − λ3 − λ4} where the λ′s are the square
roots of the eigenvalues (in descending order) of the matrix
R = 		̃ with 	̃ = (σy ⊗ σy)	̄(σy ⊗ σy) and where 	̄ is the
complex conjugate of 	 (in the σ z diagonal base).

We start with the simplest case, where the chains are
reduced to two qubits. In such a case TS = 0, � = −12×2

and Eq. (4) becomes ∂tGS = −�2(GS − GB), with solu-
tion 〈c†1c4〉(t) = (1 − e−�2t )/2, 〈c†j cj 〉(t) = (1 + μje

−�2t )/2
for j = 1,4. From there, we can reconstruct the reduced
density matrix 	(1,4) and evaluate the concurrence:

C(1,4)(t)

= max

{
0,1 − e−�2t − 1

2

×
√[

2e−�2t + (μ1μ4 − 1)e−2�2t
]2 − (μ1 + μ4)2e−2�2t

}
.

(5)

Interestingly enough, one observes a finite delay time T ,
defined as the waiting time needed to generate entanglement
[C(1,4)(t) = 0 for all t < T ], for initially mixed states (for
μn �= ±1). On the contrary, when the two spins are initially
prepared in a pure state, then T vanishes. As an example, in
the case of opposite initial magnetizations μ1 = −μ4 = μ one

has T = �−2 ln(1 +
√

1−μ2

2 ), which vanishes as (1 − |μ|)1/2

for μ → ±1. This finite waiting time T observed for mixed
initial states can be interpreted as the time needed for
quantum correlations to overcome the thermal fluctuations,
before the entanglement can start to grow more or less
with the same functional dependence as in the pure initial
state case. At long times, independently of the system
initial state, the concurrence C(1,4)(t → ∞) = 1 reflecting the
fact that the system correlation matrix GS(t → ∞) = GB .
Consequently, in the steady state, the non vanishing system’s
density matrix coefficients are given by 	

(1,4)
23 = 	

(1,4)
32 = −1/2,

	
(1,4)
22 = 	

(1,4)
33 = 1/2 corresponding to the Bell state |�−〉 =

1√
2
(|↑↓〉 − |↓↑〉). In other words, the RIP leads to a transfer

of the entanglement from the reservoir to the system.
We consider now the most interesting case of two chains of

equal size N . The chains are supposed to be prepared into the
same factorized homogeneous state, with initial magnetization
μ on each site. The hopping constant K in (1) is fixed to 1/2
such that the sound velocity vc = 1 into the chains.

Transient NESS. For sufficiently large system sizes N

and times t < N , close to the boundaries directly in contact
with the environment the system behaves like a semi-infinite
one: no excitations have enough time to travel from one

040303-2



RAPID COMMUNICATIONS

ENTANGLEMENT REPLICATION VIA QUANTUM REPEATED . . . PHYSICAL REVIEW A 91, 040303(R) (2015)

(a) (b)

(c) (d)

FIG. 2. (Color online) Time evolution of the magnetization and
current for different positions for two chains of size N = 300, � =
0.5 with initial magnetization equal to 1.

boundary to the other. In this regime, the system approaches
locally a NESS with a finite flux of excitations injected at
the contact point with the environment and traveling into
the chains away from the system-environment interaction
site. This flux of particles propagates the new state into
the chains, modifying the values of the local quantities and
eventually generating correlations. During this process, the
transversed magnetization converges algebraically towards a
constant value mz∗: mz(p,t) − mz∗ ∝ t−2, as illustrated in
Fig. 2(a). Outside the immediate vicinity of the boundary
point p = 0 (which corresponds to the sites directly in
contact with the bath), the deviation from the asymptotic
flat stationary magnetization profile takes the scaling form
mz(p,t) − mz∗ = fm(p/t), as clearly seen in Fig. 2(c). The
local magnetization current jz(p,t), which is defined through
the continuity equation ∂tm

z(x,t) + ∂xj
z(x,t) = 0, decays as

t−3 toward an asymptotic value jz∗ as shown in Fig. 2(b) for
different locus p along the chains. Since the current jz(p,t)
satisfy the continuity equation, it takes also a scaling form
jz(p,t) = fj (p/t) as seen in Fig. 2(d).

For t < N , the repeated interactions with the environment
generate in the chains steady longitudinal and cross entangle-
ment in the vicinity of the contact point within a region which
grows linearly in time. This entanglement is measured respec-
tively by the longitudinal Cl(p) and cross Cc(p) concurrences.
The latter is defined between two spins facing each other (one
on site N − p and the other on N + 3 + p as parametrized
in Fig. 1). The former is measured between two neighboring
sites p and p + 1 on a given chain. Numerical results obtained
from exact diagonalization (see [22] for details) are shown
in Fig. 3 for μ = 1. Mimicking the behavior of the local (in
chain) quantities like the magnetization and the current, the
longitudinal concurrence Cl(p,t) converges toward a steady
value by following a scaling form Cl(p,t) = fCl

(p/t), which
is clearly visible in Fig. 3(b). Along the repeated interaction
process, as already stated cross entanglement is generated
between the two chains measured by Cc(p,t) and which
converges algebraically toward a steady valueCc(p). For μ = 1
the steady cross concurrence Cc(p) decays exponentially with
the distance p from the contact point as seen in Figs. 3(a)

(a) (b)

(d)(c)

FIG. 3. (Color online) (a) Concurrence in the pairs p as a
function of time. The size of the chains is N = 60 and the system
reservoir coupling is � = 0.5. (b) Longitudinal concurrence profile
at different times as a function of the rescaled parameter p/t of
a chain of size N = 500 and � = 0.5. (c) Logarithm of the pair
concurrence at t = N as a function of the pair p for three different
values of � and N = 60. (d) Inverse of the stationary current j z∗ and
entanglement length ξ taken at t = N as a function of the logarithm
of the dissipation coupling � for two chains of size N = 60. β � 5.67
is a proportionality coefficient. For all plots, the initial magnetization
of the chains is μ = 1.

and 3(c):

Cc(p) ∝ exp (−p/ξ ) . (6)

The decay is over a typical length scale ξ (�) which seems to
be inversely proportional to the steady current jz∗(�) as seen
in Fig. 3(d). The relation ξ (�) ∝ 1/jz∗(�) is particularly good
for small and large values of �. Deviations can be observed for
values around � = 1. Note the symmetry jz∗(�) = jz∗(1/�)
as in [14].

For 0 < μ < 1 [23], the behavior of Cc(p) is a bit more
involved and it is reported in Fig. 4 for two different values
of �, different positions p, and as a function of μ. We see
that the cross concurrence decreases, until it reaches 0, as
the initial magnetization μ decreases. The value of μ below
which a given pair p disentangles converges rapidly toward the
saturation value μ = 1 as the pair label p is increased. This
means that at finite initial temperature (μ < 1) very few pairs

(a) (b)

FIG. 4. (Color online) (a) Cross concurrence in different pairs as
a function of the initial magnetization μ for � = 1/2. (b) Same as
(a) for � = 2. The size of the chains is N = 60. The dots are the
numerical results and the dashed line is the theoretical prediction.
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are entangled in the NESS. For � = 1/2 we also see that there
is a threshold value μthre below which there is no more cross
entanglement. On the contrary, at larger dissipation rate �, for
example � = 2, the first pair is always entangled to a very
high value (close to one) whatever the initial magnetization is,
the price to be paid being that the remaining pairs are already
disentangled for values of μ < 0.9.

This intriguing behavior of the cross concurrence can be
explained in the following way (at least for the first pair p = 0):
assuming that the magnetization of spins N and N + 3 in
the NESS is proportional to the initial magnetization of the
chain, mN,N+3 = (1 − α)μ, and that the fermionic correlator
is proportional to the Bell pairs correlations, 〈c†NcN+3〉 =
α〈c†N+1cN+2〉 = α/2, where the coefficient α is a function
of �. It follows by solving locally the steady Lindblad
equations that the cross concurrence of the first pair p = 0 is
given by

Cc(0) = max
{
0,α − 1

2

√
g(α,μ)

}
(7)

with g(α,μ) = (1 − α)2(1 − μ2)[(1 + α)2 − μ2(1 − α)2]. For
μ = 1 one has Cc(0) = α, which fixes then the value of α for
a given �. Depending on the value of α there may or may
not exist a threshold value of μ, μthre defined by Cc(0) =
0 ∀μ < μthre, below which the entanglement in the first pair
is lost in the NESS. For α >

√
2 − 1 (which corresponds to

� � 0.5916), the first pair is always entangled in the NESS
whatever the value of μ. In Fig. 4 the theoretical prediction
(7) is plotted for the two different values of � and one can see
that it matches perfectly the numerical results.

After the NESS regime, the system undergoes a relaxation
regime which results from the superposition of constructive
and destructive interferences of excitations traveling up and
down the chains, being reflected by the boundaries many
times. This process leads to an exponential relaxation towards

the stationary state with a relaxation time diverging with
the system size (τ ∝ N3). In the following we focus on the
stationary state reached in the limit t → ∞ and satisfying
L

(
G∗

S

) = �2�GB�†.
Steady state. At very large times, due to multiple reflections

at the chain boundaries of the excitations injected by the bath,
the local NESS is progressively lost. The system converges
toward its real unique stationary state with a typical relaxation
time of order N3. This final stationary state can be obtained in
the following way: Split the correlation function GS,B into
a real and imaginary part, Gk = Nk + iJk (k = S,B) with
NT

k = Nk and J T
k = −Jk . The JS matrix contains currentlike

terms of the form i〈c†ncm − c
†
mcn〉 which have to vanish in the

steady state and the remaining matrix NS has to satisfy from
(4) the steady equations [TS,NS] = 0, {��†,NS} = 2�NB�†.
The only nonvanishing entries of the solution matrix NS are
the on-site densities 〈c†i ci〉 = 1/2 and the cross correlations
〈c†i c2N+3−i〉 = 1/2, ∀i ∈ S. It follows that only sites facing
each other are correlated and the steady state turns out to be
given by an alternation of pairs in the perfectly entangled
states |�±〉 = 1√

2
(|↑↓〉 ± |↓↑〉). The steady density matrix

factorizes into 	∗
S = ⊗p	p with 	2n = |�−〉〈�−| and 	2n+1 =

|�+〉〈�+|.
In summary the replication mechanism is perfect in the

steady state. However, and most interestingly, in an inter-
mediate NESS regime, for pure initial state (|μ| = 1), the
cross entanglement between the chains decays exponentially
with respect to the distance to the interacting locus. This
exponential decay is over a typical length scale which is
found to be inversely proportional to the driving current. At
finite temperatures (|μ| < 1) and at low enough dissipation
rate, there is a threshold magnetization below which the cross
entanglement between the chains is completely lost in the
NESS.
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