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Real photons from vacuum fluctuations in optomechanics: The role of polariton interactions
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We study nonlinear interactions in a strongly driven optomechanical cavity, in regimes where the interactions
give rise to resonant scattering between optomechanical polaritons and are thus strongly enhanced. We use
a Keldysh formulation and self-consistent perturbation theory, allowing us to include self-energy diagrams at
all orders in the interaction. Our main focus is understanding how nonequilibrium effects are modified by the
polariton interactions, in particular the generation of nonzero effective polariton temperatures from vacuum
fluctuations (both in the incident cavity drive and in the mechanical dissipation). We discuss how these effects
could be observed in the output spectrum of the cavity. Our work also provides a technical toolkit that will be
useful for studies of more complex optomechanical systems.
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I. INTRODUCTION

The rapidly growing field of cavity optomechanics seeks
to understand the interaction between photons and mechanical
motion in driven electromagnetic cavities, hopefully in truly
quantum regime [1,2]. The past few years have seen many
breakthroughs, including laser cooling of mechanical motion
to the ground state [3,4], and the optomechanical generation
of squeezed light leaving the cavity [5-7]. Although the
basic radiation pressure interaction between a mechanical
resonator and cavity photons is intrinsically nonlinear, almost
all the remarkable achievements in the field to date rely on
working in strongly driven regimes where the dynamics is
essentially linear. To see truly nonlinear effects in the simplest
setting, one needs to achieve a single photon, single-phonon
optomechanical coupling g which exceeds both the mechanical
frequency wy, and the cavity damping rate « [8—11]. With
the exception of experiments using cold atoms [12,13], this
parameter regime remains challenging for experiments.

Nonlinear effects which only require g ~ « can be achieved
in slightly more complex settings where the nonlinear interac-
tion becomes resonant. This can occur in an optomechanical
setup with two optical modes [14,15]. Alternatively, this can
occur in a standard single-mode optomechanical cavity which
is driven, such that the interaction becomes resonant in a basis
of dressed states (so-called optomechanical polaritons). This
occurs both in regimes of weak driving [16,17] and strong
driving [17]; similar physics can also occur in membrane-in-
the-middle—style optomechanical systems [18]. Note that such
strong driving regimes, where the drive-enhanced optome-
chanical coupling exceeds dissipative rates, has been achieved
in several experiments [19-21].

In this paper, we both expand upon and extend the results
previously reported in Ref. [17]. We consider a standard
single-cavity optomechanical system that is driven (possibly
strongly) in a regime where the nonlinear interaction is
resonantly enhanced. We again address this system using
a Keldysh formulation [22,23] and perturbation theory; we
begin this paper by providing a more complete discussion of
this approach to optomechanics, emphasizing the subtleties
involved in treating dissipation. Our work thus contributes
to a growing body of work using the Keldysh technique
to address various quantum optics contexts [24-28]. Unlike
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our previous study, we go beyond a simple lowest-order
treatment and introduce a self-consistent perturbation theory.
This corresponds to an infinite partial resummation of self-
energy diagrams, and extends the range of couplings and
temperatures that we can address.

Our work also address a new set of physical phenomena.
Reference [17] focused on understanding the cavity density
of states (DOS), the quantity probed in optomechanically
induced transparency (OMIT) experiments [19,29-31]. Here,
we instead focus on the nonequilibrium state of this system:
What are the effective temperatures of the optomechanical
polaritons? Of particular interest is how vacuum fluctuations
can result in nonzero effective temperatures. Such effects
are often termed “quantum heating” [32-36]; the simplest
example is the amplification of zero-point fluctuations by a
parametric amplifier. Although often described using disparate
terms, this physics has been studied in a wide variety of
systems ranging from driven nonlinear oscillators [32-35],
superconducting circuits [37,38], and circuit quantum elec-
trodynamics [39] to phase transitions in driven-dissipative
many-body systems [27]. It also sets a limit to the minimum
mechanical temperature achievable using cavity cooling [40].

Here, we show that quantum heating effects in an optome-
chanical system lead to observable signatures in the output
spectrum of the cavity, i.e., the spectrum of output light that
would be measured using a photomultiplier. Unlike an OMIT
experiment, such an experiment probes both the DOS of
the cavity (as modified by the optomechanical interactions),
as well as the effective temperature of the optomechanical
polaritons. This “quantum heating” is already present at the
level of the linearized theory of the optomechanical cavity;
here, we investigate how it is modified by the nonlinear
interactions. Our work is timely, given that the generation
of real photons from mechanical vacuum fluctuations was
recently probed experimentally by Lecocq et al. [41].

A. Main findings

Our work has many technical aspects to it that will
hopefully be an aid in further studies of nonlinear quantum
optomechanics (e.g., optomechanical lattices [42—46]). It also
predicts several additional physical phenomena, in particular:
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1. Polariton thermalization

In the standard linearized theory of a driven optomechanical
cavity, quantum heating leads to very different effective tem-
peratures for the two polariton modes (i.e., normal modes of
the linearized theory) [cf. Egs. (24)]. The nonlinear interaction
tends to dilute this effect, as it allows energy exchange between
the polaritons and favors their thermalization. We study this
competition in detail for two representative cases: a laser drive
at the red-mechanical sideband (see Fig. 8), and a laser drive
detuned further to the red where nonlinear effects are more
important (see Fig. 10). The effects of the nonlinear interaction
on this quantum heating physics can be seen experimentally in
the cavity output spectrum by tuning the nonlinear interactions
into and out of resonance (see Fig. 9).

2. New instabilities

For a red-detuned laser, we find that a leading-order
treatment of the nonlinear interaction suggests a different kind
of parametric instability not present in the linearized theory,
where one polariton mode acts as an incoherent pump mode
for the other (see Sec. VD). Including higher-order terms
stabilizes the system as expected (see Fig. 11).

3. Two-phonon cavity heating

We show that nonlinear heating of the cavity (as manifest
in the cavity spectrum) is greatly enhanced for red-detuned
laser drives near the second mechanical sideband (a detuning
A =~ —2wy); this is a simple consequence of the lower op-
tomechanical polariton being mostly phononic in this regime,
causing effects to be enhanced by the typically large phonon
lifetime (see Fig. 12).

B. Organization of the paper

The remainder of this paper is organized as follow. We
begin in Sec. II by introducing the basic driven optomechanical
system studied in this work, and reviewing the linearized
theory. We also pay careful attention to the coupling to
dissipative baths, and to how quantum heating effects can arise
even without nonlinearity. In Sec. III, we introduce the basic
aspects of the Keldysh technique as applied to optomechanics,
focusing first on the linearized system. In Sec. IV, we
develop a Keldysh perturbation theory to treat the nonlinear
optomechanical interaction, and introduce our self-consistent
approach. In Sec. V, we discuss how the nonlinear interaction
modifies the nonequilibrium physics of the system. We present
a physical picture where interaction effects can be mapped onto
a coupling to additional “self-generated” dissipative baths. We
also investigate in this section the new kind of parametric
heating which arises with a red-detuned laser. In Sec. VI,
we discuss the observable consequences of our predictions
on the cavity output spectrum. We present our conclusions in
Sec. VIL
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FIG. 1. (Color online) (a) A generic optomechanical cavity: a
cavity mode of frequency w¢ and damping rate « is driven by a laser
at frequency w, , and is coupled via radiation pressure to a damped
mechanical mode (resonance frequency wy, damping rate y). The
temperature of the mechanical bath is 7),. (b) The single-photon
optomechanical interaction g can be made resonant in the basis of
optomechanical polaritons; the resulting enhanced interaction shown
schematically and described in Eq. (8).

II. SYSTEM, TREATMENT OF DISSIPATION,
AND LINEARIZED THEORY

A. Hamiltonian in the polariton basis

We consider a standard optomechanical system where the
frequency of a driven cavity mode is modulated linearly by the
position of a mechanical resonator (Fig. 1). The Hamiltonian
governing its dynamics is given by [1,2]

H = wca'a + wyb'b + galab + b")
+i(@me " at — H.c.) + Huiss. 1)

Here, @ is the cavity mode, with frequency we and b the
mechanical mode with frequency ws. The parameter g is the
single-photon optomechanical coupling and @;, is proportional
to the amplitude of a classical drive at frequency w; . Finally,
Hgiss describes dissipation due to the coupling to bosonic
environments (both for the mechanics and the cavity). Going
into a rotating frame at the drive frequency and displacing the
cavity field by its classical value, induced by the coherent drive
{i.e.,a(r) — e ''[a + d(t)]}, the Hamiltonian of Eq. (1) can
be expanded into a quadratic part, known as the linearized
optomechanical Hamiltonian, and a nonlinear interaction term
such that

H = I—AIL + ]‘AINL + I:IdiSSv (2a)
AL = —Ad'd + oub'h + G(d + db + b, (2b)
Hn. = gd'd(b" + b). (20)

In the above, we have defined the laser detuning A = w; —
wc¢ and the many-photon coupling constant G = ag; we take
a,g > 0 without loss of generality.!

'The mean value of & (@) is determined by solving the classical
equations of motion following from Eq. (1). We also shift the
mechanical lowering operator blie., (13) = 0 in Egs. (2)] to account
for the static radiation pressure force. We also redefine the detuning
accordingly.
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Our general approach is to diagonalize the quadratic part
of the Hamiltonian Hp (thus treating it exactly), and then
treat the terms due to nonlinear interaction (I:INL) as a
perturbation. Unlike treatments based on polaron-transformed
Hamiltonians [8,9], we do not require the coherent driving
of the cavity to be so small that it too can be treated
perturbatively. We focus exclusively on a red-detuned laser
(A < 0), and only require the cavity drive to be weak enough
so that G* < —wy A /4 = G2, For drives stronger than this
critical value (or for a blue-detuned laser), the linearized
coherent Hamiltonian ﬁL is unstable, and corresponds to a
detuned parametric amplifier driven beyond threshold. This
critical value also coincides with the onset of the well-known
static optomechanical instability [1,47]. Operating near this
instability has been investigated as an alternative promising
way to enhance the nonlinear interaction [18]. Note that this
instability is also closely analogous to the superradiant phase
transition in the driven Dicke model studied in [27].

Focusing on A < 0 and G?> < —wy A /4, Eq. (2b) can be
diagonalized via a Bogoliubov transformation to yield

A=) E,elé,. 3)
o=%

Here, ¢ destroys an excitation in the eigenmode of Hy with
energy E1 > 0, given by

By = [+ a7 (0 - 52) — 1662a0m] "

V2
“4)

Note that £_ tends to zero as G approaches the critical value at
the instability G. As I:IL does not conserve the total number
of photons and phonons, the operators ¢_,¢; mix photon and
phonon annihilation and creation operators:

b=ay ¢ +ap by +ap & +a e,  (5a)

d=oq_ ¢ +agbp+ag_ & +agél.  (5b)

The coefficients a/4,+ and &/ + are functions of A/wy
and G/wyy; their explicit form in the case A = —w)y, is given
in Egs. (A1)—(A4) of Appendix A. As the excitations described
by ¢_,¢+ have both phononic and photonic components, we
refer to them as polaritons in what follows.

Having diagonalized the linearized optomechanical Hamil-
tonian, we now express the nonlinear Hamiltonian ﬁNL in the
polariton basis. We obtain interactions that do not conserve the
total number of polaritons

Ay = Z (g2, etelel, + g8 elel e, +He)
o=t

+(A_é_ + Asé, +He). (6)

Here, the constants g:é[f,/, and A, are all proportional to g [see
Eqs (A7)—-(A9) of Appendix A]. Note that the linear terms in
HNL (ox Ap) arise from normal ordering HNL in the polariton
basis; physically, while the zero-polariton state is the vacuum
of I:IL, this is no longer true when we include the nonlinear
interaction.
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B. Resonant polariton interactions

As discussed in previous works [16,17] (and later in [48]),
we can enhance the effects of even a weak single-photon
coupling g by tuning G and A such that the nonlinear processes
in Eq. (6) that scatter a + polariton into two — polari-
tons (o g§7+) become resonant. This requires E,[A,G] =
2E_[A,G]; for a given laser detuning in the range A €
[—2wp, — wp /2], this can always be achieved by tuning
G = Ges[ A], where

Ges[A] = (7N

Once G is tuned to achieve this resonance condition,
one can show using standard perturbation theory that all
nonresonant nonlinear processes are suppressed by a factor
of k/(E; — E_) « k/wy compared to the resonant process,
where « is the cavity damping rate (see [17] for more details).
In addition, in this regime, the relative modification of the
polariton energies and wave functions due to the linear terms
in Eq. (6) are strongly suppressed by a factor of (g/wy)>.
Thus, if we focus on parameters near this resonant regime,
in the resolved sideband regime (x/wy < 1), and for weak
nonlinear interaction (g/wy < 1), we can both ignore the
renormalization of polariton energies and wave functions, and
make a rotating-wave approximation on Eq. (6), keeping only
the resonant interaction. The coherent system Hamiltonian in
this regime thus reduces to

Hor =) Eoélée +g(he_é_ +He), 8)

o=%

where § = g8_ 4 1is the effective nonlinear coupling [see
Eq. (A8) in Appendix A]. Shown in Fig. 2(a) is the dependence
of Gy as a function of laser detuning A, as well as the behavior
of g on A, when G is tuned to be G . For the rest of this paper,
we focus on the dynamics governed by the effective coherent
Hamiltonian ﬁeff.

C. Coupling to dissipative reservoirs

We now turn to a more careful consideration of the effects
of dissipation on our system. As is standard in optomechanics,
both the mechanics and the cavity are taken to be linearly
coupled to independent, Markovian bosonic baths (i.e., baths
with constant DOS over the frequency range of interest). This
is analogous to the approach taken in input-output treatment of
dissipation (see, e.g. [49,50]). As we are interested in possibly
large many-photon optomechanical couplings G, care must
still be taken, as the eigenstates of our coherent Hamiltonian
are polaritons, not individual photons or phonons; similar
issues have recently been addressed in strongly-coupled circuit
QED systems [51]. Moreover, the strong driving of the cavity
can also lead directly to “quantum heating” effects, which
manifest themselves directly in the treatment of the cavity
dissipation. We describe these effects more in what follows.

1. Cavity dissipation in the presence of optomechanical
coupling and driving

Consider first the interaction between the cavity and
its dissipative reservoir. In the original laboratory frame,

033836-3



MARC-ANTOINE LEMONDE AND AASHISH A. CLERK

- -

0.3

0.2
- ——-Gres/wm

0.1F _
—gl/g

0.0 . . . . . . AR
-20 -1.8 -16 -14 -1.2 -1.0 -0.8 -0.6
A/WM
1. T
(b) 0
0.8

0.6
0.4F
0.2

00k oy s
20 1.8 1.6 -14 -12 -1.0

208 0.6

(€)0.025
0.020F
0.015
0.010
0.005
0000 ™™ 1T 10 05 0%

A/wM

FIG. 2. (Color online) (a) G, the value of the many-photon
coupling which leads a resonant nonlinear interaction, as a function of
laser detuning A [cf. Eq. (7)]; the corresponding effective nonlinear
coupling g [cf. Eq. (8)] is also plotted. (b), (c) Coefficients relating the
optomechanical polaritons (eigenstates of the linearized Hamiltonian)
to original photon and phonon operators [cf. Egs. (5)] as a function
of laser detuning A with G = Gs[A]. In (b), we plot the “normal”
coefficients which relate polariton destruction operators to photon
and phonon destruction operators, i.e., ap, = (0,01&,5710,0), with
|0,0) being the polariton vacuum. In (c), we plot the “anomalous”
coefficients, i.e., &, , = (0,0|6(,13|0,0); these coefficients are directly
related to the existence of “quantum heating” effects in the linearized
theory [cf. Eq. (15)].

the cavity-bath interaction will have the following generic
form [49]:

N an oA [ K A oA
HK:ijfjlfj’ ,im=l,/EZ(f;—fj)(ﬂ+aT),
J J

€))

where fAj is the anihiliation operator for cavity-bath mode j
(frequency w;), « the damping rate of the photons inside the
cavity, and p¢ is the bath DOS. As we consider a Markovian
bath, we take « and p¢ to be frequency independent.

We next transform to an interaction picture at the drive
frequency via the unitary

O=exp|—ioptafa+> fIfi || @0
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Note that we transform both cavity and bath operators. The
result is that in our interaction picture, terms in Eq. (9) which
conserve excitation number are time independent, whereas
the remaining excitation nonconserving terms are rapidly
oscillation at a frequency +2w; & +2w¢ (wc > |A]). Since
wc is much larger than all other energy scales in the rotating
frame (i.e., wc > E,,|Al,wum,g,k), and since the bath oscil-
lators necessarily have positive energies w; > 0, these rapidly
oscillating terms can never become resonant. We can thus
safely make a rotating-wave approximation, and drop them.

With this rotating-wave approximation, the cavity-bath
Hamiltonian then becomes time independent. Re-writing the
cavity annihilation operator as per Eq. (2b), one obtains a
standard rotating-wave system-bath interaction

A, = Z(w,- —op)flfi = Zw]f £ oan

Hmt A'dA Ac? 12
,/mc Z fi (12)

Note crucially that in this final rotating frame, the trans-
formed bath frequencies @; can be negative (they extend down
to —w;). While this may seem innocuous, things become
more interesting when we rewrite this interaction in terms
of polariton operators [cf. Egs. (5)]:

A = /Mp Zf(ozdacg—l—ozdg )+He (13)

The anomalous terms which create or destroy two excitations
here should not be dropped; as the polariton energies E, <
wr ~ wc, these terms can be resonant in our interaction
picture, as bath modes having &; <0 can be involved.
Physically, such processes involve the creation of both a
polariton and a bath excitation, while at the same time a
(classical) drive photon is absorbed. Such heating processes
thus involve the interplay of the system drive and the bath
zero-point fluctuations, and are at the heart of quantum
activation [32-35].

2. Quantum heating and effective temperature

The anomalous, excitation nonconserving terms in Eq. (13)
can lead to polariton heating even if the cavity dissipation
is at zero temperature. We can naturally associate an effective
temperature to this heating by computing golden rule transition
rates [50]. Consider first the lower-energy — polaritons. I:I,im
will cause transitions uphill in energy between an initial state
having N — 1 polaritons and a final state having N polaritons
atarate 'y y_; o Nl|ay |2. Similarly, it will cause transitions
downhill in energy from the N to N — 1 polariton state at a
rate Ty_j n o¢ N|ag _|?. If these transitions were due to a
bath in true thermal equilibrium at temperature 7, detailed
balance dictates that I'y y_1/'n_1.y = exp(—E_/kgT). In
our case, we can use the ratio of these rates to define the
effective temperature 7 of the cavity dissipation as seen by
the — polaritons:

T (14)

Pyoiv o

_ cav
o E-/ksTe
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If these transitions were the only dynamics of the — polaritons,
they would indeed cause them to reach a thermal state at
temperature 7°*, with a thermal occupancy
cav 1 a(%
nglE_,T""] = = ‘ . (15)

E_/kpT™ _ 2 _ 2
e 1 ay  —ay

We thus see the two crucial ingredients needed to obtain a
nonzero effective temperature in a bosonic system where the
physical bath temperature is zero. We needed both coherent
drive (yielding effective negative energy bath modes in our
interaction picture) and coherent parametric-amplifier type
interactions (i.e., coherent interactions which do not conserve
particle number, and hence yield @; — # 0). In a completely
analogous fashion, one can also associate an effective temper-
ature T7* describing the quantum heating of the + polaritons.
We stress that these effective temperatures have nothing to do
with nonlinear interactions.

For a concrete example of this effective temperature
physics, consider the special case of a cavity drive at the red
mechanical sideband A = —wy,. One finds [cf. Egs. (Al)-
(A4)]

(1 — JTE2G/wy)*

4TE2G]wy
Note that ng[E_,T°®] diverges when G approaches the
onset of parametric instability G — wy/2. In this limit,
E_ — 0, and the divergence of ng[E_,T*] is equivalent to
a fixed effective temperature 7% >~ wy; /4 = |A|/4 near the
instability. Such behavior is generic for quantum heating near
parametric instabilities.

The type of quantum heating phenomena described here is
generic, and is found in a variety of related systems, though
the generic nature of the mechanism is often not appreciated.
Analogous effective temperatures also arise in mean-field
treatments of driven dissipative phase transitions. For example,
the study of the driven-dissipative Dicke model in Ref. [27]
finds an effective temperature near the transition identical to
that quoted after Eq. (16). The physical origin is analogous
to that in our system: it arises from the interplay of coherent
parametric-amplifier interactions combined with a coherent
linear driving.

nplEx, T{" | Am—wy = (16)

3. Mechanical dissipation

We now turn to the interaction between the mechanical
resonator and its dissipative bath. The starting interaction is
analogous to Eq. (9) for the cavity dissipation

45 At A Aine . | Y At AN R
H, = Za)jgjgj, Hytzl om Z(gj — gj)(b_i_bf)’
] J

J

A7)

where ¢; is a bath annihilation operator, y the mechanical
damping rate, and py, is the constant DOS of the (Markovian)
bath. In what follows, we consider the mechanical bath to be
at temperature Ty, and define the mean number of excitations
inside the bath at wy, as

¥ = nplwy, T, (18)

with ng[w,T] being the Bose-Einstein distribution.
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As the mechanics is undriven, the bath Hamiltonian and
bath-system interaction are unchanged under the transforma-
tion of Eq. (10) to the rotating frame at the laser frequency. This
time, we rewrite the interaction in terms of polariton operators
using Eqs. (5) before making further approximations. This
difference from the treatment of cavity dissipation stems from
the fact that unlike wc, wy is comparable to E,. It is thus
crucial to go to the eigenstates basis of polaritons before
assessing which terms may be safely dropped. In the polariton
basis, we have

4 st s T )E. 4 of
S0 Z (@) = 8.0 + @0 )(Eo +E1). (19)

j,o==%

HM =i

We can now consider the role of terms in Eq. (19) that do not
conserve excitation number. In contrast to our treatment of the
cavity dissipation, here such anomalous terms can be dropped
in a rotating-wave approximation. As there is no mechanical
drive, there are no effective negative-energy mechanical bath
modes, and hence these terms can never be made resonant.
Thus, we finally obtain a simple rotating-wave interaction
between the mechanical bath and the polaritons:

gine _; [V 5 ete
Byt =i Z [(eo + @)8}é, +Hel. (20)

j.o=%

As there are no excitation nonconserving terms in Eq. (20),
it is easy to confirm that the effective temperature of the
mechanical dissipation seen by the polaritons is simply equal
to the physical temperature of the mechanical dissipation.
As already emphasized, quantum heating requires both the
presence of coherent parametric-amplifier (paramp) type in-
teractions and the presence of a coherent drive. Here, while the
coherent paramp interactions are present, there is no coherent
driving of the mechanics; as such, there is no quantum heating
effects involving the mechanical bath. We see that even if
both the cavity and mechanical baths have identical physical
temperatures, the polaritons see them as having different
effective temperatures. The driven nature of the system thus
gives us interesting nonequilibrium physics even at the level
of the linearized (i.e., quadratic Hamiltonian) theory.

We end this section with a caveat on the validity of treating
dissipation via Markovian baths. For the cavity dissipation,
this is an excellent approximation, as we are always probing
the bath in a narrow interval of width ~E, around wc, an
interval over which the bath DOS can be treated as constant
(recall that E, < wc¢). In contrast, a similar statement does
not hold for the mechanical dissipation: we will be probing the
mechanical bath at frequencies E, which could be significantly
different from the mechanical frequency wy. As such, it is
not a priori obvious that the bath spectral density can be
treated as flat. For simplicity, we will nonetheless use the
Markov bath approximation for the mechanics in what follows
(consistent with the majority of works in optomechanics).
For the weak dissipation limit of interest, the main effects
of a nonflat bath spectral density could be easily incorporated
into our calculations. One would simply make the mechanical
contribution «), to the intrinsic polariton decay rates [cf.
Eq. (23)] proportional to the mechanical bath density of states
at the relevant polariton energy.
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D. Lindblad master equation and effective polariton dissipation

For further insight, it is useful to use the form of the system-
bath couplings in Egs. (12) and (20) to derive an approximate
Linblad master equation for the dynamics of polaritons in
our system. While we do not use such a master equation in
our analysis, it provides a useful comparison point. Using the
standard derivation (see, e.g., [49]) valid for weakly coupled
Markovian baths, we obtain

p(t) = —ilHetr, p(1)]

K- -0 A 9a o K=20 Aty

+ 5 (a_+1)D[e_1p + 5 n_D[¢_]p,

Ky g A 141 K+ -0 prat1a
+ 5@ + DD + Al DIeL1s. @D

with the Lindblad superoperator D[¢, ]p defined as

DI&s1p = 28 p()e) — eléo p() — p)elé,.  (22)
The effective polariton damping rates appearing in Eq. (21)

are

Ko = Y( Qo + @po) + K(Olia — dﬁyg) = iemech 4 e,

(23)

Here, we have introduced K:THECh («2™) as the contribution to the
damping rate of the o polariton coming from the interaction
with the mechanical resonator (cavity) dissipative bath. The
corresponding effective bath thermal occupancies are

1

g = —[y(@o +80)nplEo, Tul + K35, ] (242)
Kmechn Eg,T + Ky Ea’Tcav

_ K sl Ml + K B[ h ] (24b)

mech cav
Ky + k5

Here, T, is the (physical) temperature of the mechanical bath
[cf. Eq. (18)], T,7* is the temperature of the cavity bath as seen
by the o polariton [cf. Eq. (15)], and the different coefficients
«a are given in Eq. (5). As expected, Eq. (24b) represents a
bosonic mode coupled independently to two dissipative baths.
An analogous expression holds for the effective mechanical
occupancy used to describe cavity-cooling experiments [40].
Note that we have made a standard secular approximation,
allowing us to drop dissipative terms that do not conserve the
number of each polariton independently in Eq. (21); this is
valid for the regime of interest E,,|E; — E_| > k,y.

The thermal occupation number of the effective baths given
in Egs. (24) and their corresponding temperatures, defined
as nB[E(,,T(?] = ﬁg, are plotted in Fig. 3 as a function
of the detuning A. Anticipating our interest in nonlinear
interactions, for each A we adjust the control laser amplitude
so that G = Gy [i.e., the value that will make the nonlinear
interaction resonant, cf. Eq. (7)]; this can be done for any
A € [—2wy, — wy/2]. One sees that even when the physical
bath temperature is zero, quantum heating effects can yield
effective polariton temperatures as large as ~0.1 quanta (solid
curves). At nonzero physical temperature (dashed curves),
these quantum heating effects persist, but are swamped by the
contribution of mechanical noise at the edges of the detuning
range considered. This is simply because near the limits of the
detuning range, one polariton species is almost all phononic
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FIG. 3. (Color online) (a) Damping rates «, of the ¢ = = polari-
tons [cf. Eq. (23)] in the linearized theory (i.e., § = 0), as a function
of the detuning A. For each A, we tune the cavity control drive
to maintain G = Gys(A). Near A = —2wy, the — (4) polariton
damping tends to y (k) as it is mostly phononlike (photonlike);
the converse is true near A = —wy /2. (b) Thermal occupation
numbers 70 of the effective bath coupled to the o polaritons [cf.
Eq. (24)] also when § = 0 and G = Gy,. Here, ﬁa’f characterizes the
(physical) temperature of the mechanical bath [cf. Eq. (18)]. (c) The
temperatures corresponding to the thermal occupation 712 (kz = 1) in
the same regime as panels (a) and (b). For each curve, y /i = 10~
and wy /k = 50.

(see Fig. 2) and becomes very sensitive to thermal fluctuations
of the mechanical bath.

Returning to zero physical bath temperature, another
striking feature in Fig. 3(c) is the sudden drop in effective
temperature for the more phononlike polariton branch at the
edges of the detuning interval. As it will be of interest in
what follows, we discuss this behavior for detunings near
A = —2w), in more detail; here, one sees a sudden drop in
7% and T°. As A - —2wy;, Gres — 0, and the — polariton
becomes simply a phonon. Expanding 7% to lowest order in
Gres/wy for Tyy = 0 and y K «, one gets

lG;s
0 K _o» 9oy

N
K_ 8 Gies
y+9w12wK

K
(25)

We see there are two competing effects associated with
nonzero Gys. The numerator reflects the parametric heating
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associated with the linearized optomechanical interaction.
The denominator in contrast reflects that the phononlike
polariton has its lifetime decrease as Gy increases and it
becomes more photonlike; this is just standard optomechanical
optical damping. The result is that the net quantum heating is
maximized for [Gres/wp]> ~ y /K, corresponding to a laser
detuning A + 2wy ~ ¥ /k; the maximum occupancy 7° that
can be obtained is % [as seen in Fig. 3(b)].

III. KELDYSH DESCRIPTION OF THE LINEARIZED
SYSTEM

As shown in the previous section, the driven nature of
the system leads to nonequilibrium physics even at the level
of the linearized theory (i.e., the two polariton species see
different effective temperatures). Consequently, we need to
use the Keldysh formalism [23] in order to describe the
dynamics and to properly construct a perturbation theory that
treats the nonlinear interaction present in I:Ieff [Eq. (8)]. In
this section, we quickly introduce this approach, considering
first the linearized Hamiltonian of Eq. (2b) and the couplings
with the environment given by Eqgs. (12) and (20). We will
also map the resulting free Keldysh theory onto the simple
master equation previously derived [Eq. (21)], again working
in the regime where polaritons have a well-defined energy (i.e.,
ks < E,). We stress, however, that even without interactions,
the Keldysh approach is more general than a Lindblad-style
master equation, as it is not restricted to Markovian baths.

In the Keldysh formalism, we represent our linearized op-
tomechanical system by a field theory which is general enough
to allow the system to be in an arbitrary, nonequilibrium state.
In this field theory, there are two time-dependent fields (classi-
cal and quantum) corresponding to each annihilation operator
in the original theory. Consequently, the quadratic action that
conserves the number of particles of our two independent
bosonic modes (polaritons) will have the following general

form:
o0 o0
S = Z / / drdt'(c; ,(t).c; ,(1))
o=+ YV "0V —00

x GZl(t — r’)(c“”’(ﬂ)) (26)

Co,q(t")

Here, the ¢4 4/(t) are complex functions of time and
G;l(t —t’) is the (operator) inverse of the unperturbed (i.e.,
& = 0) Green’s function. The latter is given by a 2 x 2 matrix

K R
G, (1) = (gAZ; G‘;) m). @7
In terms of Heisenberg picture operators, each element is
defined as
Gy (1) = {GI(D}" = —i6(1)([&:(D).2}(O))),
Gy (1) = —i({eo(1).2L0))),

where the expectations are taken with respect to the initial
density matrix without nonlinear interaction (g = 0). Here,
GR(t) and GA(t) are the standard unperturbed retarded and
advanced Green’s functions, which govern the linear-response
properties of the unperturbed system. They are also related to

(28a)
(28b)
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the unperturbed DOS of each polariton, given by
1
ollw) = _;Im[G{f [w]]- (29)

Finally, GX(¢) is known as the (unperturbed) Keldysh Green’s
function. It encodes knowledge of the energy distribution
function of each polariton (as we will see more clearly in
the following).

With these definitions in hand, one could follow the
standard approach used in input-output theory and derive the
Heisenberg-Langevin equations from the coherent Hamilto-
nian of Eq. (8) and the particular form of the system baths
coupling given by Egs. (12) and (20). From there, one can
directly get the bare Green’s functions by calculating Egs. (28).
This approach has been used in our previous work [17]. Here,
we instead follow a different but equivalent route to obtain the
bare Green’s functions and Keldysh action.

The goal here is to write the different Green’s functions
such that our description of the linearized theory in the Keldysh
formalism is completely equivalent to the master equation of
Eq. (21). As discussed before, Eq. (21) describes two indepen-
dent bosonic modes with simple Markovian damping rates k,
[cf. Eq. (23)] and energies E, [cf. Eq. (4)]. Consequently,
the retarded (advanced) Green’s functions, which give the
response functions of the system, have to adopt the simple
following form:

1

R . A *_—
Golol = {Golel)" = ~—p— 5.

(30)
i.e., a polariton has an energy E, and a lifetime 1/« .

We now construct the Keldysh Green’s functions using the
same approach. As is standard [23], we define a distribution
function f[w] that relates the Keldysh and the retarded Green’s
functions, such that

GYlw] = —2i2 flo] + DIm[GE[w]]. 31

This function f[w] parametrizes the occupation of different
polariton energy eigenstates. As an example, for a system
in thermal equilibrium at a certain temperature, f[w] would
be the corresponding Bose-Einstein distribution and Eq. (31)
would be an exact statement of the fluctuation-dissipation
theorem [23]. In the particular case studied here, the free
polaritons have sharply peaked single-particle DOS p, [w] [cf.
Egs. (29) and (30) withx, < E, ], such that for the o polariton,
the function f[w] of Eq. (31) can be approximated as f[w] ~
fIE,]. Finally, if we insist that the average occupancy of the
polariton matches that in the master-equation description, then
we must have f[E;] = ﬁg. We thus have

GXlw] = —2i (272 + 1)Im[G ¥ [w]]. (32)

Describing the linearized theory in the Keldysh formalism
using the bare Green’s functions (30) and (32) is thus
completely equivalent to the Lindblad master equation (21).
We recall that the two assumptions underlying these two
equivalent descriptions are that the polaritons have sharply
peaked DOS (i.e., dissipation is weak) and that coupling
between the 4 and — polaritons due to dissipation is negligible
[i.e., secular approximation made to derive Eq. (21), see
Sec. II D].
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Finally, we note that it is possible to derive exact Langevin
equations from the linear Keldysh action given in Eq. (26).
Briefly, one first decouples the quadratic quantum-field terms
via an exact Hubbard-Stratonovich transformation; this intro-
duces new fields £5™(¢) which have a Gaussian action. One
can then exactly do the integrals over quantum and classical
fields. The resulting functional delta function corresponds to
the Langevin equations

afca<r>=—<iE0+%">ca<r) E(r), (33)

where the noise £™(7) is Gaussian with zero mean. The only
nonzero noise correlation functions are given by

(EO[EN]) = 10 (A +1/2)8( = 118500 (34)

As expected, Egs. (33) and (34) represent two uncoupled
damped harmonic oscillators each in contact with their
respective finite-temperature Markovian baths.

IV. KELDYSH PERTURBATIVE TREATMENT
OF POLARITON INTERACTIONS

A. Self-energies and dressed Green’s functions

Having established the Keldysh formulation of the lin-
earized optomechanical theory, we can now address the effects
of the nonlinear interaction as a perturbation. We assume
throughout this section that the drive laser has been tuned
to make the nonlinear interaction resonant, i.e., G = Gy, and
thus consider only the resonant interaction process given in
Eq. (8).

First, the action generated by the nonlinear interaction in
H. [Eq. (8)] in the cl-q basis is

~ o0
8
SNL = ﬁ dt(ci,qc_,clc_,d +2¢ 4C_yCoal
—00

+ cquc,,qc,,q +c.c), (35)

where the time dependence of the fields is implicit for
clarity. Diagrammatically, each term in the nonlinear action
corresponds to a vertex shown in Fig. 4(a). The vertices with
a single quantum field correct the classical saddle point

(St + Sni) B /
W C+,4=0 B /;w dr [G -1 )] C+,cl(t )
+ %c_,d(t)c_,d(t), (36a)
M = > Ry — 411 i
3Ci,q(l‘) c1,q=0 B ./—oo dr]GZ(t — )] c—a(t)

+V28c s alt)e (1) (36b)

and thus correspond to a classical nonlinear potential. The
term with three quantum fields is more of a purely quantum
effect. It could be interpreted as an effective nonlinearity of
the quantum noise.

One can still derive Langevin equations from the resulting
nonlinear action if one ignores the terms which are cubic in
quantum fields. In this approximation, one obtains modified
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“) 64 Ledetly
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FIG. 4. (Color online) Diagrams representing the self-energies
up to second order in g in the Keldysh formalism. The classical
vertices are composed of only one quantum component, while the
quantum vertex is composed of three.

E E_

2wl =

versions of the Langevin equations in Eq. (33):

_(i E_+ %‘)c_ —2igcte. — &M, (37a)

0,c_ =

0cy = —(iE+ + K;)CJF —igc_c_ —&™, (37b)
where the autocorrelation functions of the £ (#) noise are
unchanged by the nonlinear interactions. We have suppressed
the explicit time dependence of fields here for clarity.

We will not use these approximate quantum Langevin
equations further, but proceed in a way that does not neglect
terms that are cubic in the quantum fields. As we are interested
in weak nonlinear couplings g, we will compute the self-energy
(2[w]) of our Keldysh Green’s functions perturbatively to
order §2. At this order, all relevant scattering processes (see
Fig. 4) conserve the number of polaritons independently
(i.e., the self-energies are diagonal in the +/— index).
Consequently, the Dyson equation that gives the Green’s
functions in presence of interactions can be separately written
for each polariton:

GKlw]  GRlw]\ L (ZKel 3]
=G,lw]™ — .
G w] 0 TR w] 0
(33)
Here, we used GA-®K[w] to distinguish the full Green’s

functions (i.e., including the effects of ) from the unperturbed
ones GA-R-K[w)].

1. Retarded self-energies and interaction-induced
polariton damping

The diagrams related to the second-order retarded self-
energies are shown in Fig. 4(b). From these, one straight-
forwardly calculates

SRw] = ceff"* IS (3oa)
w— (B, — E_)+ i

nk cett i , 39b

+[ @l = T2 w—2E_+ik_ ( )
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FIG. 5. (Color online) Solid lines: leading-order-in-g effective
cooperativities C¢T associated with the nonlinear interaction [defined
in Eq. (41)], as a function of the detuning in the resonant regime (G =
Ges[A]). One sees that the C;ff are enhanced near A = —2w,,. The
inset zooms on the region where C goes below zero, which signals
the possibility of a new kind of instability, as discussed explicitly in
Sec. VD. Circles: results of the self-consistent perturbation theory
described in Sec. IV B, which includes diagrams at all orders in g.
For all values of C&T shown here, the approach converges and is in
good agreement with numerical simulations of the Lindblad master
equation [cf. Eq. (21)]. The parameters used are ¥ /k = 107, g = «,
wy = 50k, and A = 0.

with E?[a)] = {Ef[a)]}*. As discussed in detail in [17],
the self-energies ©X[w] describe the hybridization between
the near-resonant |+) and |—,—) polariton states. The res-
onant nonlinear processes underlying this hybridization [see
Fig. 4(b)] are responsible for the sharply peaked self-energies
of Egs. (39) (k, <« E,). We have introduced effective co-
operativities Cfff to parametrize how strong the decay rates
resulting from these processes are (i.e., imaginary part of the
self-energy) on resonance, compared to the intrinsic polariton
linewidth. Defining

I'Mlo] = —2Im[ZX[w]], (40)
we have

Fint E. —E_ 16~2 =0 _ =0
Ciff = 7[ + ] — 8 (l’li l’l+)’ (413)

K_ K_(k— +K4)

. T'MR2E_ 4522n% +1
Ceff = | ]= g-(2n” + ). @1b)
K4 K_K4

The definitions of CT,CS™ are analogous to the definition
of the standard optomechanical cooperativity C = 4G?/ky as
the cavity-induced “optical damping” of the mechanics to the
intrinsic mechanical damping. The effective cooperativities
are plotted in Fig. 5 as a function of the detuning (keeping
G = Gy for all detunings).

A crucial feature of the interaction-induced polariton
damping described by Eqgs. (41) is their explicit temperature
dependence. This is a direct consequence of the multiparticle
nature of the relevant decay process. For the — polariton, we
have I'™ o (7% — 71%), as expected for a bosonic polarization
bubble; a similar damping rate is found for an oscillator
coupled quadratically to an oscillator bath [52]. In true thermal
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equilibrium, the fact that £, > E_ guarantees this factor is
positive, yielding I''" > 0. Our system, however, is not in true
thermal equilibrium: as discussed in the previous section, it is
possible to have (7% — i) < 0 by having suitably different
effective temperatures for the two polariton species. One
thus finds that the interactions can lead to negative damping:
'™ < 0. The physics of this regime and the possibility of true
instability are discussed further in Sec. V D.

The retarded polariton self-energies presented here directly
lead to an interaction-induced modification of the polariton
DOS, p, [w], given by

1
polo] = ——Im[GX[w]]
T

1 1
_Elm[w—EaJriKo/z—zg[w]} “42)

Signatures of g in the DOS (and corresponding changes
to OMIT-style experiments) were the focus of our previous
work [17]. For strong enough nonlinear coupling g, the
self-energies turn from simply describing an extra broadening
of the polaritons to describing the coherent hybridization of the
resonant |+) and |—,—) polariton states. The key consequence
of this is that the single peak in the + polariton DOS splits.
Further details about this splitting (and how it can be measured
via an OMIT-type experiment) can be found in Ref. [17].

2. Keldysh self-energies

We now turn to the Keldysh self-energies, which are also
directly calculated from the diagrams of Fig. 4(c). Here, we
parametrize each Keldysh self-energy via a thermal occupancy
factor ﬁi;“ associated with the interaction, defined such that

X 0] = —2i (222" + 1)Im[ 2 X [0]]. (43)

This parametrization is always possible if we let the ﬁg‘t to be
frequency dependent. However, we find them to be frequency
independent and given by

Al @ +1)
W — il

=02
—int __ (I’l_)

0 417

—int
At =

(44)

We stress that these results (as well as the self-energy results
above) are based on only keeping the nonlinear polariton
interaction in Eq. (8), and thus assume that £, ~ 2E_.

B. Self-consistent calculation

The self-energy results discussed so far (and in Ref. [17])
only retain diagrams to leading order in g. To capture higher-
order effects and effectively resum diagrams at all orders in
perturbation theory, one can make the diagrams in Fig. 4
self-consistent. One simply replaces all internal propagators
in the diagrams by full dressed propagators. The self-energy
thus becomes a functional of the full-dressed Green’s function,
and the Dyson equation becomes a self-consistent equation
for the full Green’s function. Solving this self-consistent
Dyson equation allows us to capture a particular ensemble of
processes at all orders in g. Note that a related self-consistent
Keldysh approach was previously used to study a nonlinear
parametric amplifier near threshold [24-26].
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In practice, one solves such self-consistent equations
iteratively: in each step, one calculates the self-energy using
the current versions of the full Green’s functions, and then uses
these to update the Green’s functions which will be used for
the self-energy calculation in the next iteration. Applying this
iterative procedure until convergence solves the self-consistent
Dyson equation. To improve the accuracy of our approach, we
have applied this iterative strategy for the results shown in
Fig. 5 to Fig. 12. For each calculation, we have performed
20 iterations, which turn out to be more than enough to get
excellence convergence of the Green’s functions. Note that by
using this self-consistent approach, '™, as defined in Eq. (43),
becomes frequency dependent.

As expected, the self-consistent approach does not converge
if the nonlinear interactions become too strong. Convergence
is not solely controlled by the magnitude of g, but is primarily
determined by the effective cooperativities C& defined in
Egs. (41). These cooperativities involve both the magnitude of
g and the polariton occupancies, reflecting the fact that large
temperature can also enhance the importance of nonlinearity.
As shown in the figures, we find that when the self-consistent
approach converges, it also is in excellent agreement with
full numerical simulations of the Linblad master equation
describing the system, Eq. (21).

V. INFLUENCE OF POLARITON INTERACTIONS ON
NONEQUILIBRIUM EFFECTS

A. Interaction-induced effective environment

From our previous discussion, we see that the nonlinear
interaction gives rise to self-energies which modify the single-
particle properties of polaritons. The imaginary part of the
retarded self-energies describe interaction-induced polariton
damping rates I'™[w] [cf. Eq. (40)], whereas the Keldysh
self-energies describe interaction-induced heating effects, with
associated thermal occupancy factors fzi;“ [cf. Eq. (44)]. This
suggests that in terms of single-particle properties, the effects
of interactions are equivalent to having coupled the linearized
optomechanical system to new dissipative baths. In what
follows, we make this picture of an “interaction-induced
effective environment” explicit.

First, note that all single-particle polariton properties of our
system are described by the effective quadratic action

So' = / / di di'(c5, 1 (1),¢5,, ()G, (t = r’)(c"*"’“ )),

00 Ca,q(t/)
(45)

where G~ (¢t — t') is the Fourier transform of the inverse of the
2 x 2 matrix of the full Green’s functions given in Eq. (38).

Further, as discussed in Sec. III, this quadratic action is
completely equivalent to a set of linear Langevin equations.
Using the standard derivation [23], the effective action in
Eq. (45) is equivalent to the Langevin equations

. Ko *© I~R ’ /
e (1) = —(:Er, + 7)c(,a)—/ dt'SR@t —1")e, (1)
—ESM(r) — EM(r). (46)
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Here, ZX(t —t') is the Fourier transform of the retarded
self-energies given in Eqs. (39). The noise functions £™(¢)
and éj,“‘(t) describe complex independent Gaussian noise
processes with zero mean. £5™(¢) describes the intrinsic
polariton dissipation as discussed in Sec. III; its correlators
are given in Eq. (34). The only nonzero correlator of the new
noise £"(¢) is

(EM@[ERE]) = T — )@ + 1/2)8500, (A7)

where ['"(t — ) is the Fourier transform of the frequency-
dependent interaction-induced polariton damping given in
Eq. (40).

These Langevin equations reproduce the intuitive picture
sketched above: each polariton species is now effectively
coupled to two independent dissipative environments, with
corresponding damping rates i, and I'"™[w], and correspond-
ing thermal occupancies 720 and ™. The first bath corresponds
to intrinsic dissipation (i.e., the intrinsic mechanical and cavity
dissipation), whereas the second is due to polariton-polariton
interactions.

It is worth stressing that the induced damping rates I'™[w]
are in general sharply peaked functions of frequency, due to
the resonant nature of the relevant scattering process. For some
parameters, the width of I‘(i;“ [w] can even be much smaller than
the width of the density of state p,[w]; e.g., the 4 polaritons
for A near —2wy,. In contrast, there are other cases where the
density of state is much sharper than the interaction-induced
dissipation rate, as is the case for the + polariton for A near
—wy /2. As a result, the “interaction-induced” baths cannot
always be considered as Markovian.

The thermal occupancies 7" associated with the
interaction-induced environments are plotted in Fig. 6 as a
function of the detuning A, in the interesting case where all
intrinsic dissipation (i.e., mechanical bath, cavity bath) are at
zero temperature.

B. Interaction-induced quantum heating

We now discuss in more detail the behavior of Eq. (44)
which gives the thermal occupancies 7™ of the effective
interaction-induced dissipative baths introduced in the pre-
vious subsection. For simplicity, we focus on the case of exact
resonance, where G = G and hence E; = 2E_. Consider
first the case where the linear-theory polariton dissipation is in
thermal equilibrium at temperature Teq, i.e., iy = ng[Eq, Tegl.
In this case, it is easy to confirm that for each polariton, " =
%, i.e., the interaction-induced dissipation also corresponds
to the same temperature T¢q. Thus, if without interactions the
polaritons start in equilibrium at the same temperature, then
the same is true with interactions.

The actual situation is, however, more complicated: due
to quantum heating effects, the effective temperatures of the
two polariton species are different even without interactions.
7Y% and ﬁg are thus not related as they would be in thermal
equilibrium; this can be parametrized as

i) = ——— +n'. (48)

Thermal equilibrium and the condition £, = 2E_ would im-
ply (Sﬁg =0; 57‘13 # Omeans that even in the linearized theory,
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FIG. 6. (Color online) Effective thermal occupancies for the var-
ious baths coupled to the two polariton species, as a function of
A with G = G[A]. Solid lines: occupancies associated with the
“interaction-induced” baths to leading order in g [cf. Egs. (44)].
Circles: same, but calculated using the all-orders self-consistent
approach of Sec. IV B. Dashed lines: occupancies of the intrinsic
polariton baths [cf. Eqs. (24)]. Note the leading-order occupancy
for the — polariton interaction bath (7™) diverges when % = %
(A/wy =~ —0.8) and becomes negative when 15 > 1° (A /wy 2
—0.8), as shown in the inset. This divergence persists in the self-
consistent theory, but occurs at smaller-magnitude detunings. This
negative occupancy signals the possibility of a different kind of
instability, as discussed explicitly in Sec. V D. All curves are plotted
for aM = 0 [cf. Eq. (18)], ¥ /k = 107, wy/k = 50, and g = k.

the two polaritons experience different effective temperatures
(see Fig. 3).

Using this definition, the thermal occupancy of the —
polariton interaction-induced bath becomes

(1+20)
%) —8a% (1 +2a%)

At =" + 80l T (49)

Thus, a deviation from true thermal equilibrium in the linear
theory (i.e., without polariton interactions) causes the occu-
pancy of the interaction-induced bath ﬁg“ and the intrinsic bath
i (linear-theory dissipation) to deviate from one another. This
is not surprising: in this case, the nonlinear interaction between
the two polariton species tends to favor their thermalization,
and hence transfers energy from the high-temperature species
to the low-temperature species.

Finally, we also stress that even in the case where the
intrinsic mechanical and cavity dissipation is at zero tem-
perature (i.e., the system only experiences vacuum noise),
the interaction-bath thermal occupancies '™ will be nonzero,
and are in general different from 7°. This is shown explicitly
in Fig. 6. We thus see that interactions change the effective
temperature associated with quantum heating effects.

C. Polariton energy distribution functions

The picture established so far is that our optomechanical
polaritons are each effectively coupled to two independent
effective environments, one of which is self-generated and
due to the nonlinear optomechanical interaction. In the limit
where both the intrinsic cavity and mechanical dissipative
baths are at zero temperature (ﬁﬁf = 0), both these effective
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environments describe quantum heating physics. Together,
they will determine the total number of polaritons produced by
quantum heating and, more specifically, the energy distribution
function of the polaritons. We define this distribution function
in the standard manner, as an energy-dependent distribution
function [w]. This quantity is defined via the full Keldysh
and retarded polariton Green’s functions

GX o] = —2i (22" [0] + 1)Im[GX[w]]. (50)

If our polaritons were in thermal equilibrium at temperature
Teq, then the distribution function ﬁf;ff[w] would simply be
the Bose-Einstein distribution ng[w,Teq]. In contrast, in our
system this function will be determined by the thermal
occupancies of the two effective baths, and the strength of the
couplings (i.e., damping rates) to each. Using the expression
of the dressed Green’s functions G[w] coming from the
Dyson equation [cf. Eq. (38)] and the relation between the
self-energies given in Eq. (43), one finds

L ) e

iMw] = :
o] + ko

(D

This is exactly the simple expression that would be expected
for a free bosonic mode coupled independently to two baths;
the same form holds for the linear theory [cf. Egs. (24)].

In order to focus our attention on the contribution of the
nonlinear interaction to 2% [w], we rewrite Eq. (51) using the
expressions for T'"[w] [cf. Egs. (39) and (40)] and 7™ [cf.
Eq. (44)]. Doing so, one gets

2
—eff ~0 Vo
= l,—————— 52
T 0] =Fa + (@ — o) + ¥3 2
with
. 0 Ceff
—1nt ~ o
IU = (na —na)m, (533)
K-+ Ky £ ff
)L:T 14+C*, y =«k_/1+CF, (53b)
wo-=E;,—E_, w.=2E_. (53¢)

The contribution from the interaction-induced environment
appears as a sharp Lorentzian in the polariton distribution
functions. This is a direct consequence of the resonant nature
of the relevant nonlinear scattering process.

For exact resonance (E, = 2E_), both ﬁiff[w] and the
single-particle DOS p,[w] [cf. Eq. (42)] are peaked at E,,
so that the nonlinear interaction heating effects are maximal.
Even in this case, though, the frequency dependence of the
interaction contribution to ﬁiff[w] can be very different than
that of the polariton DOS. In this fully resonant case, the
polaritons distribution functions evaluated at w = E, adopt
the following simple form:

eff ~int =0
CU nU + nO'

~eff
E;1=
o 1] Cef +1

(54)

Equation (54) is plotted in Fig. 7 as a function of the laser
detuning A and is compared to [ E,] obtained using the
self-consistent approach (cf. Sec. IV B).
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FIG. 7. (Color online) (a) Solid lines: net polariton occupancies
in the presence of nonlinear interaction /it[E, ], calculated using
leading-order self-energies, as a function of A with G = Gs[A].
Circles: same, but calculated using the self-consistent approach (cf.
Sec. IV B). Dashed curves: occupancies for g = 0, i.e., calculated
in the linearized theory. In each case, the mechanical temperature is
zero (Y = 0) and g = «. (b) Same as (a), but now with A}l = 100
and g = 0.1k; main plot and inset show different ranges of A. Near
—2wy, one sees an important contribution to the mean number of
+ polaritons due to nonlinear interaction; this contribution is greatly
enhanced by temperatures, as discussed in Sec. VID. All the curves
are plotted for y/k = 10* and wy /x = 50.

D. Nonlinear parametric heating

Among the more striking nonequilibrium behaviors possi-
ble in the linear theory is the possibility of having 1 > 71°,
i.e., the thermal occupancy of the higher-energy + polariton
exceeds that of the — polariton. We discuss this regime in
more detail here, focusing on the exactly resonant case where
E+ = 2E7

We start by recalling that the total damping of the —
polariton is

KE_ 1=k +TME_]=x_(1+C"). (55)

From Egs. (41), we see that if we have the occupancy inversion
9 > ", then C*™ < 0, and hence the contribution of the
nonlinear interaction to the damping rate of the — polaritons
becomes negative. This is at first glance surprising: we have
opened a scattering process for the — polariton via the
nonlinear interaction, and yet we get an increase in its lifetime.
We also have the possibility of an instability if C¢T < —1.
From Fig. 5, one sees that a negative C°T occurs for
detunings near A = —0.5wy,. In that regime, the — polariton
is mostly photonic and the + polariton is mostly phononic.
Consequently, by having a high intrinsic mechanical bath
temperature ﬁf{f > 1, one naturally can achieve the inverted
occupancy regime where ﬁg_ > 7%, In that case and in the
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limit where y < k, one can simplify the instability condition,
ie,CHf < —1,t0

k_(k—+Ky) K2

Z0 _ =0
~ , 56
TS 1632 (50)
and the final mean number of — polaritons becomes
163°7
ATE ) A~ i (57)

k2 — 16827

The surprising negative damping occurring here can be
understood as the result of a parametric instability arising
directly from the polariton interaction. In fact, Egs. (56)
and (57) have exactly the same form as the instability condition
and the mean number of excitations that one would find
for a degenerate parametric amplifier (DPA) pumped near
degeneracy [49,50]. In a DPA, a pump-mode photon scatters
into signal mode photons, and the pump mode is coherently
driven. In our system, the — polariton plays the role of the
signal mode in a DPA, while the + polariton plays the role
of a pump mode that has been incoherently driven by noise.
Despite this incoherent driving, the form of the above equations
is the same as a coherently driven DPA (see Appendix B).
Note that nondegenerate parametric amplifier instability can
be realized in a linearized optomechanical system driven
with a blue-detuned laser (see, e.g., [53,54]). In contrast, the
instability described here occurs for a red-detuned drive.

Note that our discussion here is based solely on using
the leading-order results for the polariton self-energies. In-
cluding higher-order effects via our self-consistent approach
can dramatically change the onset and magnitude of the
interaction-induced negative damping. We discuss this more
in Sec. VIC.

VI. OBSERVABLE SIGNATURES OF QUANTUM
HEATING EFFECTS

In the previous sections, we have demonstrated how
quantum heating effects can lead to a finite density of op-
tomechanical polaritons at zero temperature; we also discussed
how these quantum heating effects can be modified by the
nonlinear interaction. In this section, we discuss how these
effects lead to observable signatures in the light leaving
the optomechanical cavity. We first relate the cavity output
spectrum to the polariton distribution functions, and then
discuss specific parameter regimes where the heating effects
are most prevalent. In addition, we propose a way to effectively
control the strength of the nonlinear interaction in experiments
by tuning in and out the resonance condition (i.e., by varying
G at fixed detuning A). Doing so, one can explicitly isolate
and observe the nonlinear interaction signatures in the cavity
output spectrum.

A. Polariton energy distribution functions

To measure polariton occupancies, we consider a measure-
ment of the flux of photons leaving our cavity (assuming a
single-sided cavity, and that the reflected classical drive tone is
filtered away). The spectrum of this flux is given in the standard
manner [49] by the normal-ordered cavity spectrum (also
known as the “lesser” Green’s function within the Keldysh
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technique),

[o.¢]
Silol = [ dre (@0, (58)
—00

Rewriting Eq. (58) in terms of polariton Green’s functions
yields

Silo) =21 3 o 1 Tolor o]

+2r Y ag (i —w] + Dps[—l.  (59)

o=+

Here, the coefficients o, , and @, , are the change-of-basis
coefficients introduced in Eq. (5a) and plotted in Fig. 2, and
the polariton DOS, p, [w], is defined in Eq. (42). We are still
working in a rotating frame with respect to the laser drive
frequency wy, hence, w = 0 implies output photons leaving
at the laser frequency. The negative frequency term means
that removing a photon at frequency w can involve creating
a polariton at frequency —w, as expected from the presence
of “anomalous” terms in Eq. (5b). Finally, Eq. (59) reflects
the fact that the only nonzero polariton Green’s functions are
those that conserve the number of polaritons independently, as
discussed in Secs. III and IV.

Using the same assumptions, we also derive the cavity DOS
and its energy distribution function:

palol =Y (a7 ,pol0] = @] ,po—w]),  (60)
o=%
_off _ L Salw]
iMw] = 2% oola]’ (61)

From the cavity energy distribution, we can use the Bose-
Einstein distribution to define an effective cavity temperature
(kg =1)

w

Teff = - @
P 2] ln[l—{—%]

, (62)

which is always possible if we let the effective temperature to
be frequency dependent.

As discussed extensively in [17], the polariton DOS
Po [@] can be directly measured in an OMIT-style experiment
[19,29-31], where one measures the reflection of a weak
additional probe tone incident on the cavity. The cavity
spectrum in contrast also yields information on polariton
occupancies. As the polariton energies E, are well separated,
the output spectrum will have a series of peaks corresponding
to the emission or absorption of a given polariton species.
The magnitude of these peaks is directly proportional to the
occupancy of the given polariton.

It is also useful to look at the total number of photons
due to a given polariton resonance, which we can obtain
by integrating the output spectrum around the corresponding
resonance. We thus introduce

wo+dw d
A [wp, 0] = f 2 Sulol, 63)
wy—dw v

where wy will be taken to be E., and dw will be taken to be
larger than the spectral width of the given polariton resonance.
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In what follows, we consider signatures of quantum heating
in the spectrum for particularly interesting choices of the drive
laser detuning A.

B. Limit of zero-temperature dissipation: Effects of nonlinear
interaction on quantum heating

The first studied limit is for a mechanical bath at zero tem-
perature (i}l = 0), where the finite number of polaritons inside
the optomechanical cavity exclusively comes from quantum
heating. We focus on two regimes: the red sideband drive,
i.e., A = —wy, where both polaritons are equal mixture of
photons and phonons, and the asymmetric polaritons regime,
where the polaritons are not equal combinations of photon
and phonon. For the latter regime, we chose A = —1.8wy
as a representative laser detuning. The results predicted for
the cavity driven on the red sideband have the advantage
to be robust to temperatures since both polaritons have an
important photon part; this implies that even for finite ﬁﬁf,
quantum heating is still the prevalent source of polaritons.
In contrast, a laser detuned at A = —1.8w,, leads to more
striking modifications of the polaritons energy distribution
since Cgff[A = —1.8wy] > Cf;ff[A = —wypy] (cf. Fig. 5). In
both cases, we show that the nonlinear interaction modifies the
energy distribution of the polaritons as it tends to thermalize
the two species.

1. Results for symmetric polaritons (red sideband drive)

In Fig. 8, we plot the cavity DOS [Eq. (60)], the cavity
spectrum [Eq. (59)], its energy distribution function [Eq. (61)],
and the corresponding effective temperature [Eq. (62)] for A =
—wy . The linearized theory (g = 0) is compared to the case
where g = «. For the latter interacting case, we present results
obtained from three different methods: the leading order in g
self-energies [Eqs. (42) and (52)], the self-consistent approach
described in Sec. IV B, and, finally, a numerical simulation of
the Lindblad master equation given in Eq. (21). By comparing
the three different approaches, one sees that for g = «, higher-
order corrections captured by the self-consistent approach play
an important role for the effective distribution functions and
the effective temperatures [Figs. 8(e)-8(h)]. In contrast, the
DOS is already well described at the leading order in g, which
is in agreement with Ref. [17].

The splitting of the 4 polariton resonance in py[w] and
Si[w] near w = E arises from the hybridization between the
states |[+) and |—,—); the resulting hybridized states become
spectrally resolved for g 2 « (see [17] for more details). The
same hybridization phenomena give rise to a resonance in

e” [w] and Teff [w] at the — polariton frequency w = E_ [see
Flgs 8(e) and 8(g)].

In Fig. 9, we plot the number of photons leaving the cavity
near each polariton resonance, as defined in Eq. (63), and
show that one can effectively isolate the effects of nonlinear
interaction. To do so, one varies G around G, such that the
nonlinear interaction gets amplified by a factor of wy; /x when
the nonlinear process becomes resonant, i.e., for G = Gy,
compared to the off-resonant case, i.e., G — G5 = k. Away
from resonance, the number of photons leaving the cavity is
in good approximation given by the linearized theory (dashed
lines in Fig. 9). For the parameters here (ﬁ%{ =0andy/k K1),
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FIG. 8. (Color online) (a), (b) Cavity DOS near the — polariton
resonance and the + polariton resonance, respectively, for a cavity
driven on the red sideband and when the nonlinear interaction is
resonant (i.e., G = G). We work in the frame rotating at the drive
frequency so that w = 0 refers to the drive frequency while E, =
2E_ = 63.24« in this frame. The light dashed curves represent the
linearized theory, the green dotted ones represent the results to leading
orders in g [Eq. (42) for the DOS], the full blue curves are the results
of the self-consistent approach as described in Sec. IV B, and the
black curves are for the numerical simulation of the Lindblad master
equation shown in Eq. (21). (c), (d) Cavity spectrum in the same
conditions; the results to leading orders in ¢ are given in Egs. (52)
and (59). (e), (f) Cavity energy distribution function [Eq. (61)] and (g),
(h) the corresponding (frequency-dependent) effective temperatures
[Eq. (62)]. The parameters used for all the curves are y /k = 10~* and
wy/k = 50, which leads to the leading-order effective cooperativities
[i.e., Eq. (41)] C*M = 0.18 and C" = 2.46.

the linearized theory leads to [see Eqs. (16) and (A4)]

1 (G 2
AOEL 5k] ~ ad 7l ~ (G/om)

~ ~ - LOMT 64
%" TG Jom ©4)

Figure 9 clearly shows the thermalization between po-
laritons brought about the nonlinear interaction. Without
interactions, at A = —wy, the — polaritons have a lower
effective temperature than the + polaritons [cf. Fig. 3(c)].
When G is near G, the nonlinear interaction “turns on”
and allows the two polariton species to exchange energy and
partially thermalize (i.e., interactions heat up the — polaritons
while cooling down the + polaritons.)

2. Results for asymmetric polaritons

In Fig. 10, we plot the same functions as in Fig. 8, but in
the case where the laser detuning is A = —1.8wy, (and again,
G = Gy;). For this more negative detuning, the polaritons
are no longer an equal mixture of photons and phonons:
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FIG. 9. (Color online) (a) Output photon flux in a bandwidth of
Sk near the — polariton resonance E_ [cf. Eq. (63)] as a function of the
many-photon coupling G, and for a control laser detuning A = —wy,.
(b) Same as (a) but near the + polariton resonance E . Note that G
can be varied by simply tuning the amplitude of the control laser.
On resonance, i.e., G = Gy, the nonlinear effects are enhanced by
a factor of wy/k =50 compared to the off-resonance case, i.e.,
(G — Grs) 2 k. The light dashed curves represent the linearized
theory (g = 0), the solid blue curves are for the self-consistent
approach as described in Sec. IV B, and the black dashed curves are for
the numerical simulation of the Lindblad master equation shown (21),
but this time, using the full nonlinear part of the Hamiltonian in
Eq. (6) that includes all the nonresonant nonlinear processes. For all
the curves, we used y/k = 107 and i} = 0.

the — polariton is more phononlike while the 4 is more
photonlike. This particular asymmetry leads to larger values
of C¢ than in the red sideband regime, mainly because of the
long lifetime of the phononlike polariton (cf. Fig. 5). Due to
these larger C, the results obtained to the leading order in
g are not sufficient to recover the numerical simulation of the
Lindblad master equation [cf. Eq. (21)] even for the DOS. It
is then crucial to use the self-consistent approach to properly
describe the effects of nonlinear interaction. Moreover, from
Figs. 10(g) and 10(h), one sees that unlike the case A = —wy,
the nonlinear interaction cools down the — polaritons and
heats up the + polaritons. This is also consistent with a partial
thermalization, as for A = —1.8w,,, without interactions the
effective temperature of the — polaritons is greater than that
of the + polaritons [cf. Fig. 3(c)].

C. Parametric amplification of the — polaritons

While our emphasis in this work has been on quantum
heating effects involving zero-temperature dissipation, our
approach can also conveniently describe thermal nonlinear
phenomena. Perhaps the most striking example of this occurs
for detuning A &~ —w),/2, where leading-order perturbation
theory predicts the presence of a parametric instability at finite
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FIG. 10. (Color online) Same as Fig. 8 but for laser detuning
A = —1.8wy. In that case, E, =2E_ =92.08« in the rotating
frame and the corresponding leading order [i.e., Eq. (41)] effective
cooperativities C* = 1.92 and C¢ = 5.40.

temperatures (see Sec. VD). In that regime, the nonlinear
interaction acts as an incoherently pumped degenerate para-
metric amplifier with the + polariton (mainly phonon) being
the (incoherent) pump and the — polariton (mainly photon)
being the signal mode.

InFig. 11, we show the cavity DOS [cf. Eq. (60)], the cavity
spectrum Sy[w] [cf. Eq. (59)], and the corresponding energy
distribution function % [w] [cf. Eq. (61)] for a laser detuning
A = —0.65wy and 7}l = 650. Combined with a damping
rate of the mechanical resonator y = 1073k, its resonant
frequency wy = 50k and g = k, one obtains, to leading order
in g, an effective cooperativity C*" = —0.97 [cf. Eq. (41)].
As discussed in Sec. VD, for Cff = —1, the leading-order
perturbation theory predicts a parametric instability caused by
the nonlinear interaction. For C&ff 2 —1, one thus expects an
important narrowing of the cavity DOS as well as an important
heating of the cavity near the — polariton resonance. These
predictions from the leading-order self-energy are shown in
Fig. 11.

Not surprisingly, higher-order corrections (as captured by
the self-consistent self-energy) are especially important in this
regime and strongly contribute to prevent the system from
going unstable. More precisely, it is the hybridization between
the states |[+) and |——) that competes with the parametric
amplification of the — polaritons; the high number of —
polaritons leads to an important modification of the energy
of the hybridized states JLE(H) + |——)) so that the nonlinear

interaction ceases to be resonant. The result of this competition
is shown clearly in Fig. 11. While the leading-order theory
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FIG. 11. (Color online) Same as Fig. 8 but for laser detuning A =
—0.65w) and finite temperature iy = 650. In these circumstances,
leading-order perturbation theory predicts that the system is close
to a parametric instability (see Sec. VD). Note the mechanical
damping rate here is larger than in previous plots (y = 107k), as
this enhances the pumping effects of mechanical temperature. For
wy = 50k and g = «, the leading-order effective cooperativities [cf.
Eq. (41)] are C* = —0.97 and Cff = 0.75. In the frame that rotates
at the drive frequency, E, = 2E_ = 53.34«. One sees from these
plots the crucial importance of higher-order-in-g terms.

predicts a photon occupancy at the — polariton resonance
of AT[E_]~ 50, in the self-consistent approach, one only
obtains a value ~1.3. This is of course still much larger
than what would be obtained without interaction; in that case,
asf[E_]~ 0.

D. Effective two-phonon absorption

Another striking example of temperature-enhanced nonlin-
ear effects occurs for a laser detuning A ~ —2wy,. In this
regime, the — polaritons are mostly phonons, which leads
to a thermal “stimulated emission” enhancement of X*[w],
leading to a strong modification of the cavity DOS. This
physics follows from Eqgs. (39), and was discussed extensively
in Ref. [17]. However, as shown in Fig. 7, one also obtains
significant nonlinearity-induced heating of the cavity in this
regime, as we now describe.

Recall that if A = —2wy, then G, =0 and the +
(—) polaritons are exactly photons (phonons). A necessary
consequence is that the amplitude for the resonant nonlinear
interaction vanishes, § = 0. One thus ideally wants a detuning
close to, but not exactly equal to, —2wy; such that 0 < G5 K
wy . In the high-temperature limit (ﬁﬂ’f > 1) and for weak
nonlinear interaction Cff <1 (i.e., g K k), the expression
to lowest order in G/wy for the + resonance in the cavity
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FIG. 12. (Color online) (a) Signatures of the effective two-
phonon absorption in the cavity DOS near the + resonance; the inset
shows a larger range of frequency than the main plot. The light-blue
dashed curve represents the linearized theory (g = 0), the green
dotted one represents the results to leading order in g [Egs. (42), (52),
and (59)], and the full dark-blue and black curves are the results of
the self-consistent approach (S.C.) of Sec. IV B for i}l = 100 and 0,
respectively. (b) Signatures of the effective two-phonon absorption
in the cavity spectrum in the same circumstances than (a). It shows
the striking temperature-enhanced effect of nonlinear interaction in
the + polariton population. The parameters used are y /x = 10~ and
wy [k = 50.

spectrum simplifies to

2 2 (M 2 2
Sylw] & £<£> (5) 6(nth) . "—2 -
Y \®u K (1 G ) (0 —E4)” + k=

(65)

As discussed near Eq. (25), the competition between the
parametric heating associated with the linearized optome-
chanical interaction and the standard optomechanical optical
damping leads to an optimal value of G/wy where the
heating is maximal. In the optimal case, (G /wy)* = %% and
Sq[E+] ~ (f)z(ﬁ{}f)z. Details of the calculations that lead to
Eq. (65) are presented in Appendix C.

In Fig. 12, the cavity DOS and the cavity spectrum near
the 4 polariton resonance is plotted for a laser detuning near
—2wy and for finite mechanical bath temperatures fz{‘{f. In
Fig. 12(a), we show the sharp dip in the density of state due
to nonlinear interaction, also described in Ref. [17]. Note,
however, that effects of higher order in g, captured in the
self-consistent approach, considerably modify the predictions
made in Ref. [17], where only effects to leading order in g
were considered. This sharp feature is completely analogous
to the optomechanical induced transparency (OMIT) observed
in the optomechanical cavity weekly driven on the red
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sideband [19,29-31], except that here, it is the nonlinear
interaction that is involved. In Fig. 12(b), we show that
nonlinear interaction greatly modifies the cavity spectrum; no
output light is predicted by the linearized theory while a sharp
signal is produced when nonlinear interaction is considered.
The effective two-phonon absorption becomes a very
important process in the high-temperature limit. In that case,
the nonlinear interaction becomes easier to observe, but the
phenomenon tends to become purely classical. In order to
support this statement, we present a classical treatment of
this phenomenon in Appendix D and show that it succeeds
to recover the right dependence in temperatures and single-
photon coupling constant g of the two-phonons absorption
signature in the cavity spectrum at the lowest order in g.

VII. CONCLUSIONS

In this work, we have described the effects of nonlinear
interaction on the nonequilibrium state of the optomechanical
cavity. We have shown the tendency of the nonlinear inter-
action to thermalize the polaritons, that it can lead to a new
parametric instability for a red-detuned laser drive as well
as a temperature-enhanced effective two-phonon absorption.
In addition to these results, we have presented in details
many technical aspects with the aim to provide the proper
tools to investigate nonlinear effects in more complicated
optomechanical systems. This work also opens the path to
a more detailed characterization of this parametric instability
and further investigations of its consequences.
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APPENDIX A: CHANGE OF BASIS FOR A DETUNING
ON THE RED SIDEBAND (A = —wy)

In this appendix, we show particular examples of the
transformation used to go from the photon and phonon basis
to the polariton basis for A = —wy,.

We start with the change-of-basis coefficients o/, + and
@p/q,+ introduced in Egs. (5):

1 owy—+ E+
op+ = Ft—m—"——, Al
T B Vs "o
1 wpy — E:l:
opy =Frt———7-——, A2
YT T Roy VE (A2
1 wy + Ei
Ayt = ————, A3
T o VE )
_ 1 oy—Ex
Ggs = Sy Ad
= Baon JEs (ad)
with
E:t =a)M,/1 :I:ZG/a)M, (AS)
Gres/a)M = 3/10 (A6)
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From these coefficients, we can express the different effective
. . A/B . .
nonlinear coupling constants g_’, , and A, introduced in
Eq. (6). Here, we only show few examples:
A A A
Bhr- T8 T8 4y
= glag 1&g (ap - +ap )
+(Qa,—a,+ + &g 0tq, ), 4 + Ap,1)]
g (w_M>3/4[E —E + Z(E_+ 2E+)}
42\ E_ E, ’

(AT)

g=4"
= glag —aq _(op 4 + &p )
+ (8g,—0g 4 + otg g )y - + ap )]
g <wM)3/4[(1 +2.5)E + (1 - %)Eq

42\ E, E_

(A8)

A- =g[(20q-qa - +ag_+ag )@ +a.-)
+ (@4t 4+ Qg 0y, ) 4+ @ y)]

_gLGmYWN%—Uﬂ+£#ﬁ-Rq
42\ E- Ey .

(A9)

APPENDIX B: PARAMETRIC AMPLIFIER DESCRIPTION

In this appendix, we derive the condition to get an
instability from the parametric amplifier Hamiltonian and get
the corresponding mean number of signal excitations. These
calculations are based on the formalism introduced in [50].

Starting with the nonlinear interaction in the effective
Hamiltonian of Eq. (8) and considering the hypothetical case
where the + mode is coherently pumped, such that (¢,) = 1¥

+’
we get, in the mean-field approximation,
Her ~ g,/ (6_¢_ +H.c.). (B1)

Using standard input-output theory, one derives the following
equation of motion:

dio_ ==nfiﬁyé_1—-§§é_-—\/fr§_ (B2)
= 25 /a%e! — %‘@, _JiE. (B3

Here, £_ represents an incoming field, which includes noise
coming from the bath coupled to the — polaritons [as in
Eq. (33)]. Since we will focus only on quantities evaluated at
w = E_ and that ﬁeff of Eq. (B1) is written in the interaction
picture where E_ = 0, we can seek for the particular solution
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given by d_¢_ = 0. In that case, we have

4igyal . 2

e=——F @_dEa, (B4)
$6=—£ﬂ—@m4@g—§) (BS)
== T_¢),
with
4ig,/n"
K_

Imposing the right commutation relation [é_,éT_] =1, one
finds

2

gty =i o1eh) (B7)
4

which has the right units since (é‘ié,) represents a rate at

which excitations are coming in. In the case of Gaussian noise

with zero mean (i.e., (éjé,) = 0), as studied all along this

work, we find that the mean number of — polaritons inside the

optomechanical cavity is

e legial
o 1—0PF k2 —16g%Y

(B8)

From this result, one immediately sees that for |Q|*> = 1, the
mean number of polaritons diverges. This condition sets the
threshold above which the parametric amplifier goes unstable.
More precisely, the system becomes unstable when

12

n

. B9
+7 T6g? 59
These results have exactly the same form as Egs. (56) and (57),
but here, we have explicitly used the fact that the + polaritons

are coherently pumped such that (¢, ) = ﬁ(}r.

APPENDIX C: EXPANSION OF THE PHOTON SPECTRUM
FUNCTION FOR A ~ 2wy

In this appendix, we show details of the calculation that
leads to Eq. (65) starting from Egs. (52) and (59). Here, the
limit of interest is for A & —2wy, G/oy ~ v /k K 1, ﬁM >
1, and Ciff & 1. In these circumstances, photons are mainly +
polaritons, such that Eq. (65) for frequencies near E reduces
to

Salollo~e, ~ 2w wlpi[w]. (C1)

Also, for A &~ —2wy; and G/wy ~ y/k <K 1, the mean num-
ber of photons inside the cavity without nonlinear interaction

fz:{ is negligible compared to the nonlinear contribution. Thus,

from Eq. (52), we see that 7%[w] reduces to a sharply

peaked Lorenztian with width y, ~ k_ ~ y(1 4+ Tgy) ~ ¥

with the optical damping rate I'op ~ gG—;K Consequently,
@y

p+[w] [Eq. (42)], which has a characteristic width of k; ~ «,
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can be evaluated at £ . Doing so, one gets

Salollo~r, ~ 27 wlps[E+], (C2)

2 1 ~ 2

7 iy (1 + €M) T
Now, we can write niff[a)] as (we have dropped Fzg and
explicitly used £, = 2E_)

pilEs] = (C3)

2

—eff —1nt eff K=
~ iy CL —————, C4
L R ©
with
: 4g*(°)?
—mtceff — . C5
nrCs . (C5)
Thus,
520770 )2 2
§ ) KZ
S, oNE. N — . Co
dolloe, ¥ G g (©O
Agam for this particular limit, we can approximate i ~ VK"”‘
and g% ~ (%)2 2, such that we get Eq. (65), i.e.,
Kk Sal@llo~k,
O] —_
y\ou/) \e/) (14+522) (@ = By 62

APPENDIX D: CLASSICAL TREATMENT OF THE
EFFECTIVE TWO-PHONON ABSORPTION

As shown in the Sec. VID, the nonlinear process cor-
responding to the absorption of two phonons by a photon
from the classical drive is greatly enhanced by temperature.
In particular, even if the nonlinear interaction directly comes
from single-photon dynamics, one can show that in the high-
temperature limit, this phenomenon becomes purely classical.
In what follows, we present an accurate classical description
of this limit.

The classical Langevin equations for the cavity field
coupled to a mechanical resonator via radiation pressure force
in the limit of weak displacements are

. _ [ K . ( ())i| . — —iwpt
alt)y=| — 5~ ioc\1——=) |a(t)+ia;,e , (D1
Ly

Ia(t)l2

mL()

X))+ —x +w M (D2)
Here, m is the mass of the mechanical oscillator, Ly is the
length of the cavity when x(¢) = 0, and the damping rate
k has been introduced following the standard input-output
formalism [50]. The cavity field is normalized such that the
steady-state mean energy inside the cavity is U,y = |a|* =
K|C_lin|2/[(%)2 + A?], where a is defined as the steady-state

mean value of the cavity field a(t) = [a + Sa(t)]e ¢!,
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We solve these nonlinear coupled equations of motion via
a perturbation approach. Starting with a sinusoidal displace-
ment x(¢) = xpsin(wyt), we get the consequent evolution
of the optical mode and, then, the perturbed displacement
of the mechanical resonator. This is a good approximation only
in the weak-coupling regime (G < k) where the eigenstates
have a well-defined number of photons and phonons. This
method is thus restricted to the extreme detuning case (A ~
—2wyy) studied in Sec. VID.

Following this method, one finds that the steady-state cavity
field is given by

i T (€) In(€)

l[(ner)a)Mwa]t' (D3)
L+i(noy — AN)

a(t) = iai,

nm=—oco 2

Here, J,(x) are the Bessel functions of the first kind and where,
in the small displacement limit, € = 7> 2< < plays the role of the
perturbation parameter.

Note that by computing the radiation pressure force acting
on the mechanical resonator in Eq. (D2) and by expanding
to the lowest order in €, one recovers the standard optical
damping and optical spring constant coming from the linear
interaction [cf. Eq. (2b)] in the weak-coupling regime [40].

We focus here on the peak in the cavity spectrum that
comes from the nonlinear interaction. According to Eq. (58),
the proper definition of the classical counterpart of the photon
spectrum to use is

Salw] = a)ic,/ dt &' (8a*(to)da(ty + 1)),- (D4)

Here, the fluctuations of the cavity field da(¢) are given by
keeping only the n # —m terms in Eq. (D3). The mean
value (...),, means taking the average over all initial time
to and the coefficient 1/wc is there to ensure that units match
the definition of the photon spectrum used in the quantum
treatment [cf. Eq. (58)].

Using Eq. (D3) and focusing only on the frequency range
near 2wy with A & —2w,,, one finds that in the good cavity
limit (k < wyy), the classical cavity spectrum reads as

G 2 2
Salw] ~ 16(—) (f) (W) ’78(w — 20u),  (DS)

wpy

where we have used the definition of the single-photon
coupling constant g = *ZE2C  with xzpr being the zero-point
motion of the mechamcai resonator and the semiclassical
relation mw?;x3 = wy il valid for Al > 1.

If one takes I'opy = 0 and y — 0 in Eq. (65), Sglw ~ E,]
and Sqi[w ~ 2w)] agree. The classical approach fails in getting
the width of the peak since the mechanical damping rate is
not taken into account while calculating the effects of the
mechanical motion on the cavity field. Moreover, the optical
damping does not come out in this result in the level of
approximation we have used.
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