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Effect of laser phase noise on the fidelity of optomechanical quantum memory
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Optomechanical and electromechanical cavities have been widely used in quantum memories and quantum
transducers. We theoretically investigate the robustness of optomechanical and electromechanical quantum
memories against the noise of the control laser. By solving the Langevin equations and using the covariance
matrix formalism in the presence of laser noise, the storing fidelity of Gaussian states is obtained. It is shown
that the destructive effect of phase noise is more significant in higher values of coupling laser amplitude and
optomechanical coupling strength G. However, by further increasing the coupling coefficient, the interaction time
between photons and phonons decreases below the coherence time of laser frequency noise and the destructive
effect of laser phase noise on the storing fidelity drops as well.
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I. INTRODUCTION

Optical quantum memories are one of the most impor-
tant and essential components in quantum computers and
quantum repeaters [1]. Several methods for preparation of
these memories have been developed over the last few
decades [1–4]. One of the most famous methods is based
on the electromagnetically induced transparency (EIT) effect,
which has been observed in λ-shaped atoms [5–8]. Using this
effect, by changing the coupling coefficient between light and
atom, the group velocity of light can approach zero, which
results in mapping the quantum state of light to an ensemble
of atoms in the quantum state [9–11]. The upper limit of the
storage time is of the order of the decoherence time of the
atom [11]. In recent years, optomechanical systems have had
many applications, especially as a macroscopic laboratory for
observing quantum mechanical effects. By adjusting the input
laser detuning, the mechanical mode of these systems can be
cooled close to the ground state [12–15]. Recently, the EIT-like
effect has been observed in optomechanical cavities, which is
called optomechanically induced transparency (OMIT) [16–
18]. OMIT can provide a new approach to designing quantum
delay lines and memories [19,20]. Quantum state conversion
between optical and mechanical modes of the cavity has
also been actively studied [21–24]. It has been shown that
in the strong optomechanical coupling regime of operation,
if the optomechanical coupling is quantum coherent, then
the optical and mechanical modes are exchanged with the
frequency proportional to the optomechanical coupling coef-
ficient [23,25,26]. This effect can be applied in the design of
optical quantum memories and transducers which transfer the
quantum state of light from one frequency to the other [25,27].
The storage time of optomechanical quantum memories is
limited to 1

γ
, where γ is the mechanical decay rate of the

oscillator. Optomechanical memories and transducers have
been studied theoretically as well as experimentally in many
groups [25,28–30]. In Ref. [29], the storing fidelity has been
obtained based on the quantum state diffusion (QSD) method.
As it is clear, the noise from the control (coupling) laser has
a damaging effect on the storing fidelity. Fundamentally, the
intensity and phase noises of the control laser are related by
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the uncertainty principle. In our analysis, it is assumed that by
stabilizing the laser intensity, the intensity noise is negligible
and phase noise becomes the main component of the control
laser noise. The effects of laser phase noise in the cooling rate
of the mechanical mode and entanglement have been studied
by many researchers [31–36]. According to Rabl et al., if we
consider the laser phase noise to be white noise, we will not be
able to cool the mechanical resonator to reach the ground state.
However, experiments have shown the ground-state cooling to
be a possibility. Due to the finite coherence time of the laser
frequency noise, the phase noise must be considered as a color
noise with finite bandwidth [31,37]. The phase noise spectral
density is equivalent to the noise spectral density of a low
pass filter excited by white noise [38]. The cutoff frequency
of the low pass filter is inversely proportional to the coherence
time of the laser frequency noise. The flat spectral density
corresponds to the zero coherence time of the input frequency
noise (white noise). In this paper, the effect of control laser
phase noise on the storing fidelity of a Gaussian quantum state
in the mechanical mode of the cavity is investigated. It is shown
that the quantum memory fidelity is greatly destroyed in the
presence of white phase noise. The effect of laser frequency
noise coherence time on memory fidelity is also taken into
consideration. In order to achieve the strong optomechanical
coupling, the microwave electromechanical system that is
easily cooled to temperatures below 100 mK [39] and an
optomechanical Fabry-Perot system are considered [40]. The
effects of optomechanical coupling strength on memory
fidelity in the presence and in the absence of laser phase
noise are studied. It is shown that by raising the intracavity
amplitude, the destructive effect of phase noise increases.
This paper is organized as follows: in Sec. II, the theoretical
model of the system is explained and the dynamics of the
variables considering the effect of phase noise is obtained. The
noise model is also introduced in this section. The method of
obtaining the storing fidelity of a Gaussian state and the storage
protocol is described in Sec. III. Section IV is devoted to the
numerical results and analysis of the effect of phase noise on
the storing fidelity of electromechanical and optomechanical
systems. Finally, the paper is concluded in Sec. V.

II. THEORETICAL MODEL

We consider an optomechanical system for storing the
quantum state of light. This system can be electromagnetic
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FIG. 1. (Color online) Schematics of the following systems: (a)
An optomechanical Fabry-Perot cavity consisting one vibrating
mirror. The cavity is driven by a laser from the left mirror. (b) A
microwave cavity.

cavities such as Fabry-Perot [40], microsphere or microtoroid
cavities with one mechanical mode [26], or electromechanical
systems based on microwave resonance circuit [39]. The
schematics of a Fabry-Perot cavity with one movable mirror
and a microwave circuit are shown in Figs. 1(a) and 1(b),
respectively. The cavity is driven by an intense coupling laser
beam with frequency ωL, which is red detuned from the cavity
resonance frequency ωC . The radiation pressure force of the
driving field leads to displacement of the movable mirror,
changing the resonance frequency of the cavity and coupling
the intracavity field to the mechanical mode of the mirror. In a
microwave cavity, the displacement of the movable plate of the
capacitor due to the radiation pressure force of the microwave
field changes the capacitance C and resonance frequency of the
microwave circuit (ωC = 1√

LC
), where L is the inductance of

the microwave resonator [39]. High-quality factor microwave
resonators can be reached by employing superconductors. In
the resolved sideband limit (when the mechanical resonance
frequency ωm exceeds the cavity decay rate κ), if the coupling
laser is tuned to the lower optomechanical sideband, in the
rotating wave approximation (RWA), the linearized interaction
Hamiltonian between the mechanical and optical mode of the
cavity is Hint = −�G(â†b̂ + âb̂†), which is a beam-splitter-
like Hamiltonian [23,25,26]. Here, â and b̂ are the linearized
bosonic annihilation operators for the cavity optical photon
and mechanical phonons, respectively. G is the coupling
coefficient between the optical and mechanical modes, which
is proportional to the driving field. In the absence of any optical
and mechanical dissipation, â(t) and b̂(t) can be derived easily:

b̂(t) = b̂(0) cos(Gt) + iâ(0) sin(Gt),
(1)

â(t) = â(0) cos(Gt) + ib̂(0) sin(Gt).

As can be seen from Eq. (1), the quantum state of the
mechanical and optical modes can transform into one another
(up to a phase factor) with period π

2G
. This conversion is the

basis of the design of quantum memory by optomechanical
and electromechanical systems. Initially we should prepare

the optical mode of the cavity in the state |ψ〉 we wish to
store it in. By using the optomechanical coupling π

2 pulse
(�t = π

2G
), the optical state of interest is mapped to the

mechanical mode. After the storage time τ is up, the second
optomechanical coupling π

2 pulse will map the state that
is stored in the mechanical mode to optical mode and we
can retrieve it [23,25]. In practice, due to the existence of
optical and mechanical energy decay rates and input noises,
the initial pure state converts to a mixed state and the fidelity
of the final state decreases. In order to have a quantum
memory, the optomechanical coupling must be larger than
both the optical decay rate κ and the thermal decoherence
rate of the system γth = Nmγ (γth,κ < G), where Nm and
γ are the mean thermal phonon number of the reservoir and
mechanical damping rate of the oscillator, respectively. If this
condition is satisfied, the optomechanical coupling is quantum
coherent [26]. Our study is concentrated on the effect of the
driving laser phase noise on the retrieved state fidelity in the
quantum coherent regime of operation.

The Hamiltonian of the system in a frame rotating at the
driving laser frequency can be written as

Ĥ = �ωmb̂†b̂ + ��0â
†â − �g0â

†â(b̂ + b̂†)

+ i�EL(t)(eiϕ(t)â† − e−iϕ(t)â), (2)

where �0 = ωC − ωL is the detuning of the coupling laser
from the cavity resonance frequency. ϕ(t) is the fluctuating
phase noise of the driving laser. EL(t) = EL + δEL(t) is the
complex amplitude of the driving laser inside the cavity, which
is composed of one deterministic term (EL) and one fluctuating
term [δEL(t)] that arises from fluctuations in the amplitude
of the laser. The deterministic term is related to the input

power P from EL =
√

κP
�ωL

. In a stabilized laser source, the

amplitude noise of the driving laser is negligible compared
to the phase noise, so we neglect the amplitude noise of the
laser in this paper [36]. g0 = − ∂ωC

∂L
xzpf is the single-photon

optomechanical coupling strength, where L is the length of

the cavity and xzpf =
√

�

2mωm
is the zero-point fluctuation

amplitude of the mechanical oscillator, with m being the
effective mass of the mechanical mode.

A. Quantum Langevin equations

Quantum Langevin equations of the system can be derived
by adding the corresponding noise and damping terms to the
Heisenberg equations:

dâ

dt
= −i�0â + ig0â(b̂ + b̂†) + ELeiϕ(t) − κ

2
â + √

κâin,

(3)
db̂

dt
= −iωmb̂ + ig0â

†â − γ

2
b̂ + √

γ b̂in,

where âin and b̂in are input vacuum and thermal noise operators
with two times correlation functions given by [22,41]

〈âin(t)â†
in(t́)〉 = (1 + NC)δ(t − t́),

〈â†
in(t)âin(t́)〉 = NCδ(t − t́),

(4)
〈b̂in(t)b̂†in(t́)〉 = (1 + Nm)δ(t − t́),

〈b̂†in(t)b̂in(t́)〉 = Nmδ(t − t́).
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Here, Nm(C) = 1

e

�ωm(C)
KB T −1

is the mean thermal phonon (photon)

number of the thermal (optical) reservoir in the frequencies
ωm(ωC) at temperature T , and KB is Boltzmann’s constant.
At optical frequencies, NC � 0. The statistical properties of
phase noise will be determined later. Using the transformation
â → ˆ̃aeiϕ(t), we will be in the rotating frame with instantaneous
fluctuating frequency ϕ̇(t) [36],

d ˆ̃a

dt
= −i�0 ˆ̃a − iϕ̇ ˆ̃a + ig0 ˆ̃a(b̂ + b̂†) + EL − κ

2
ˆ̃a + √

κ ˆ̃ain,

(5)
db̂

dt
= −iωmb̂ + ig0 ˆ̃a† ˆ̃a − γ

2
b̂ + √

γ b̂in.

The standard method is used for linearizing the nonlinear
equations (5). Operators are written as the sum of steady-state
values and fluctuating terms with zero mean value ( ˆ̃a →
αs + δâ,b̂ → β + δb̂). The steady-state values (fixed points)
are obtained by setting the time derivatives of operators to zero
(αs = EL

i[�0−g0(β+β∗)]+ κ
2
,β = ig0α

2

iωm+ γ

2
). The algebraic equation

for fixed point αs is a polynomial equation of degree 3, which
has 2 stable and 1 unstable roots [32,42]. In order to obtain a
higher coupling coefficient, the highest intensity with a stable
fixed point is chosen. The input laser phase is opted such that
αs is real. The dynamics of the fluctuating operators around
these steady states are as follows:

dδâ

dt
= −i�δâ − iϕ̇αs + ig0α(δb̂ + δb̂†) − κ

2
δâ + √

κ ˆ̃ain,

(6)
dδb̂

dt
= −iωmδb̂ + ig0αs(δâ + δâ†) − γ

2
δb̂ + √

γ b̂in,

where � = �0 − g0(β + β∗) is the effective cavity laser
detuning. We work in the resolved sideband regime and have
a good cavity (κ � ωm). In the rotating wave approximation
(RWA), by choosing � = ωm, the dynamical equations are
written as

dâ

dt
= −iωmâ − iϕ̇αs + iGb̂ − κ

2
â + √

κâin,

(7)
db̂

dt
= −iωmb̂ + iGâ − γ

2
b̂ + √

γ b̂in,

where G = g0αs is the coupling coefficient between the
optical and mechanical field and â,b̂ will be used as the
linearized operators from now on. We define quadratures of

each mode as x̂i = (Ai+A
†
i

2 ),p̂i = (Ai−A
†
i

2i
) where i = 1,2 and

A1 = b̂,A2 = â. Using Eq. (7), one can obtain the evolution
of the quadratures in the matrix form,

d 	̂X
dt

= Q 	̂X + 	̂Xin, (8)

where 	̂X ∈ �4 is the vector of the quadratures, 	̂X =
[x̂1,p̂1,x̂2,p̂2]T , and 	̂Xin ∈ �4 is the input noise operators

vector, 	̂Xin = [
√

γ x̂1,in,
√

γ p̂1,in,
√

κx̂2,in,
√

κp̂2,in − αsϕ̇]T .

x̂i,in,p̂i,in (i = 1,2) are defined by x̂i,in = (Bi+B
†
i

2 ),p̂i,in =

(Bi−B
†
i

2i
) with B1 = b̂in,B2 = âin, and Q is given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−γ

2
ωm 0 −G

−ωm −γ

2
G 0

0 −G −κ

2
ωm

G 0 −ωm −κ

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9)

B. The noise model

The statistical properties of xi,in,pi,in (i = 1,2) are defined
by using Eq. (4). The phase noise of the laser is responsible for
the laser linewidth �L. By taking the statistical properties of
the laser phase noise as a white noise, the correlation function
of the frequency noise will be 〈ϕ̇(t)ϕ̇(t́)〉 = 2�Lδ(t − t́) and a
flat noise spectrum is obtained, Sϕ̇(ω) = 2�L. However, due
to the finite nonzero correlation time of frequency noise, the
frequency noise spectral density cannot be flat. In other words,
it has a finite bandwidth color noise. In the simplest model, the
spectrum is equivalent to a low pass filtered white noise with
the following spectrum and correlation function [31]:

Sϕ̇(ω) = 2�L

1 + ω2

γ 2
c

, 〈ϕ̇(t)ϕ̇(t́)〉 = �Lγce
−γc |t−t́ |. (10)

Here, γc is the inverse of frequency noise correlation time or
cutoff frequency in the laser frequency noise spectrum, so that
the frequency noise is suppressed at frequencies ω > γc. By
increasing γc, the correlation time decreases and the frequency
noise starts reaching the white noise. This frequency spectrum
corresponds to the differential equation ϕ̈(t) + γcϕ̇(t) = ε(t),
where ε(t) is a Gaussian random variable with white noise
correlation function [32],

〈ε(t)ε(t́)〉 = 2γ 2
c �Lδ(t − t́). (11)

In the following calculations, it is more convenient to use
input white noise rather than color noise, so we define an
auxiliary operator ψ ≡ ϕ̇ and add its corresponding differ-
ential equation [ψ̇(t) + γcψ(t) = ε(t)] to our four coupled
differential equations of quadratures. The quadratures vectors
	̂X and 	̂Xin are extended to 	̂XE = [x̂1,p̂1,x̂2,p̂2,ψ]T ∈ �5

and 	̂Xin,E = [
√

γ x̂1,in,
√

γ p̂1,in,
√

κx̂2,in,
√

κp̂2,in,ε]T ∈ �5,

respectively, and Eq. (8) is changed to d 	̂XE

dt
= QE

	̂XE + 	̂Xin,E

with

QE =

⎛
⎜⎜⎜⎝

− γ

2 ωm 0 −G 0
−ωm − γ

2 G 0 0
0 −G − κ

2 ωm 0
G 0 −ωm − κ

2 −αs

0 0 0 0 −γc

⎞
⎟⎟⎟⎠ . (12)

In the following section, the method to finding the fidelity of
the final state with the initial state, in the presence of coupling
laser, is explained.

III. GAUSSIAN STATE FIDELITY

For the sake of simplicity, it is assumed that the initial
state of the cavity is a pure Gaussian state. At this step,
we are going to find the fidelity of the optical state at
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time t with a given initial state, while the optomechanical
interaction is switched on. Our approach is the same as the
one used in Ref. [25]. The fidelity between the initial and
final state is given by F = T r(ρ̂i ρ̂f ), where ρi and ρf are
the density matrices of the initial and final states, respectively.
In the Wigner representation, the fidelity can be written as
F = π

∫ ∞
−∞ d	ξWi(	ξ )Wf (	ξ ), where 	ξ ∈ �2 is the vector of

the optical quadratures 	ξ = [x̂2,p̂2]T . The Wigner function of
Gaussian states can be written in terms of the covariance matrix
of quadratures V , where the symmetrized covariance matrix
is defined by Vij = 1

2 〈X̂iX̂j + X̂j X̂i〉. Due to the bilinear
form of the interaction Hamiltonian, the final state remains
Gaussian. So after some mathematical manipulation, a relation
for Gaussian state fidelity is achieved:

F = 1

2
√

Vi + Vf

e
{− 1

2 (〈	̂ξi 〉−〈	̂ξf 〉)· 1
Vi+Vf

(〈	̂ξi 〉−〈	̂ξf 〉)}
. (13)

Indices i and f stands for initial and final states, respectively.
It is noted that the fidelity must be maximized by employing
an orthogonal transformation in phase space, so if ρf is the
rotated version of ρi , then the storing fidelity will be 1.

Two useful parameters n̄h = 2
√

det(Vi + Vf ) − 1 and λ2 =
(〈	̂ξi〉 − 〈	̂ξf 〉) ·

√
det(Vi+Vf )

Vi+Vf
(〈	̂ξi〉 − 〈	̂ξf 〉) are introduced to make

the fidelity formula more straightforward [25],

F = 1

1 + n̄h

e
−λ2

1+n̄h . (14)

The parameter n̄h, which is the effective number of thermal
quantas, originates from input noises and heats the state
throughout the process. The parameter λ shows the effect
of optical and mechanical damping rates on the fidelity of
the state. In order to study the fidelity of the retrieved state,
the expectation value of optical quadratures and also the
covariance matrix at initial and final states must be calculated.
The initial covariance matrix is obtained easily by knowing the
initial state of the optical and mechanical mode. The evolution
of the covariance matrix can be derived from Eq. (8) (see the
Appendix),

dV

dt
= QEV + V QT

E + N, (15)

where N is the diffusion matrix and can be achieved for color
noise as (see the Appendix)

N =

⎛
⎜⎜⎜⎜⎝

γ̄

4 0 0 0 0
0 γ̄

4 0 0 0
0 0 κ̄

4 0 0
0 0 0 κ̄

4 0
0 0 0 0 2γ 2

c �L

⎞
⎟⎟⎟⎟⎠ . (16)

Here, γ̄ and κ̄ are defined by γ̄ = γ (1 + 2Nm) and κ̄ =
κ(1 + 2NC), respectively. Equation (15) is an inhomogeneous
differential matrix equation that can be written as a system
of 25 coupled ordinary differential equations. Due to the
symmetry in the covariance matrix, only 15 of these equations
are independent. By solving these equations by ordinary
methods such as Runge-Kutta, the covariance matrix of the
final state can be derived. However, the analytic solution of

this equation is as follows:

V (t) = eQEtV (0)eQT
Et +

∫ t

0
dt́eQE (t−t́)NeQT

E (t−t́). (17)

It is assumed that the average value of input noises is zero.
Averaging over Eq. (8), the input noises are eliminated and

the equation is reduced to d〈 	̂X(t)〉
dt

= Q〈 	̂X(t)〉, which has the
following solution:

〈 	̂X(t)〉 = eQt 〈 	̂X(0)〉. (18)

Note that due to the elimination of noise, we do not have to

use the extended version of 	̂X and Q. Using Eqs. (17), (18),
and (13), the optical state fidelity at time t with the initial state
can be derived. As mentioned before, the terminal fidelity
should be maximized. Using the unitary transformation e−Qr t

to rotate the parameters on the phase space, the fidelity is
maximized, where Qr is given by

Qr =

⎛
⎜⎜⎜⎝

0 ωm 0 0 0
−ωm 0 0 0 0

0 0 0 ωm 0
0 0 −ωm 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠ . (19)

If the initial optical state is not a Gaussian state, such as a
Fock state and any finite linear combination of Fock states,
it would be difficult to find an analytic expression for the
fidelity. Generally, the initial density matrix of the system
can be written as ρ(0) = ρo ⊗ ρm, where indices o and m

indicate optical and mechanical modes, respectively. The
evolution of the density matrix of the system can be obtained
by the numerical solution of the Lindblad master equation
in the presence of optical and mechanical dissipations and
input noises [43,44]. The final density matrix can be used in
F = Tr[ρ̂(0)ρ̂(t)] to give the fidelity between the initial and
final states.

Storing protocol

The storing fidelity depends on the input state. Memory
fidelity can be defined as the average of fidelities over the
possible input states. In this paper, our study is concentrated
on the squeezed coherent state, |α,r〉 = D(α)S(r) |0〉, where
D(α) = eαâ†−α∗â and S(r) = e

r
2 (â2−â†2) are displacement and

squeezing operators, respectively. It is assumed that r is the real
squeezing parameter. By setting r = 0, we will have a coherent
state. The initial state of the oscillator is assumed to be a ground
state |0〉, which means that the oscillator has been cooled. This
assumption is almost possible by using a different cooling
method [12–15] or by using an optomechanical coupling π

2
pulse before the storing protocol, which is actually cooling the
oscillator near the quantum ground state [23]. If the cooling
process has not been done, the initial state of the mechanical
mode would be the thermal state. The storing protocol is
composed of three steps:

(1) At initial time, the average of the quadratures
is 〈 	X(0)〉 = [0,0,Re(α),Im(α)]T . The initial covariance
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FIG. 2. (Color online) A schematic outline of coupling π

2 pulse
for quantum memory. The first pulse applies for cooling the mirror
near the ground state. This pulse will change the state of the initial
optical mode (vacuum state) with the thermal mechanical mode. After
a while, the intracavity thermal optical mode transfers to the reservoir
and the input Gaussian state enters the cavity at the beginning of the
write pulse. After the storage time τ , the reading π

2 pulse with an
opposite sign of the writing pulse enters the cavity.

matrix is

V (0) = 1

4

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 e−2r 0 0
0 0 0 e2r 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ . (20)

If the initial state of the oscillator has not been cooled, two
elements of the covariance matrix V (V11 and V22) are changed
to 1 + 2Nm, where Nm is the mean thermal phonon number
as defined before. By switching on the coupling laser for the
duration time ts = π

2G
(write pulse), the state of the optical

mode is almost swapped with the mechanical mode. The
quadratures average and covariance matrix can be obtained
from Eqs. (17) and (18).

(2) The coupling laser is switched off and the optical state
is stored in the mechanical mode for a time τ . In this step, the
Q matrix is changed to Q′, where it is the same as matrix Q

except that the elements containing G go to zero.
(3) After the storage time is up, by switching on the coupling

π
2 pulse again (read pulse), the state that is stored in the
mechanical mode is mapped to the optical mode and can be
retrieved from the cavity. The second π

2 pulse must be π radians
out of phase relative to the first one to cancel the accumulated
phase during the process [29]. The schematic figure of cooling,
writing, and reading pulses is shown in Fig. 2.

The final quadratures average and covariance matrix is
obtained from

〈 	̂Xf 〉 = eQ′′ts eQ′τ eQts 〈 	̂Xi〉 (21)

and

Vf = eQ′′
Ets eQ′

Eτ eQEts Vie
QT

Ets eQ′T
E τ eQ′′T

E ts

+
∫ ts

0
dt́eQ′′

Ets eQ′
Eτ eQE (ts−t́)NeQT

E (ts−t́)eQ′T
E τ eQ′′T

E ts

+
∫ τ

0
dt́eQ′′

Ets eQ′
E (τ−t́)NeQ′T

E (τ−t́)eQ′′T
E ts

+
∫ ts

0
dt́eQ′′

E (ts−t́)NeQ′′T
E (ts−t́), (22)

where matrices Q′′ and Q′′
E are obtained by replacing G with

−G in matrices Q and QE , respectively (due to the phase
difference between read and write pulses). The fidelity is
obtained by Eq. (13). Effects of the environment are considered
in the cavity and mechanical decay rates and also in thermal
phonon Nm and photon NC numbers. Effects of control laser
noise on the memory fidelity are given by the presence of laser
bandwidth �L and frequency spectral density bandwidth γc.

IV. NUMERICAL RESULTS

To investigate the effect of coupling (control) signal noise
on the memory fidelity, numerical calculations are done for
a microwave cavity and an optomechanical cavity in the
following sections.

A. Microwave cavity

To consider the effect of coupling signal phase noise
on the storing fidelity in an electromechanical system, the
parameters are chosen as those employed in Refs. [29,39].
These parameters correspond to a microwave cavity. In
the next section, the optomechanical Fabry-Perot cavity is
considered. The resonance frequency of the mechanical mode
is ωm

2π
= 10.69 MHz and the cavity decay rate is chosen

to be κ
2π

= 170 kHz [39]. We are working in the strong
coherent coupling regime of operation (γth � κ � G) and
so we choose the largest value of electromechanical coupling
constant G that has been achieved in experiments to date
(G = 0.05 × ωm = 2π × 534.5 kHz) [29]. The initial value
of the electromagnetic mode that we are interested in storing is
the coherent state |α〉 with α = 1. The single-photon coupling
strength g0 is 2π × 230 Hz, which is obtained by optimizing
both ∂ωC

∂L
and xzpf to achieve large values of g0 [39]. The

mean thermal phonon number is taken to be Nm = 3, which
corresponds to the temperature 1.7 mK and the storage time is
set to τ = 64 ωm

−1 = 0.95 μs. By changing the mechanical
quality factor of the system Qm = ωm

γ
(ωm is fixed while γ is

changed), the storing fidelity F , nh, and λ are calculated and
plotted for different values of microwave control linewidth
�L and cutoff frequencies γc in Figs. 3(a)–3(c), respectively.
By increasing the noise intensity in the electromechanical
system, the parameters n̄h and λ are increasing, which leads
to the drop in fidelity. The amplitude and bandwidth of phase
noise spectral density are proportional to the control linewidth
�L and cutoff frequency γc, respectively. Hence, the fidelity
decreases by increasing �L and γc. As it is expected, Fig. 3(a)
shows that by increasing the cutoff frequency, the fidelity will
mainly degrade. However, for the small values of the phase
noise parameters such as �L = 1 kHz and γc = 100 kHz
[dash-dotted green line in Fig. 3(a)], the phase noise will not
affect the fidelity significantly. The limit γc → ∞ corresponds
to the white noise, which shows very low fidelity of nearly zero
(purple line with marker ◦). Fidelity is an increasing function
of mechanical quality factor Qm. Due to decoupling of the
mechanical oscillator from its environment in high values of
Qm, the effective number of thermal quantas that heat the state
decreases, which results in decreasing the parameter n̄h [see
Fig. 3(b)]. Furthermore, by decreasing the mechanical decay
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FIG. 3. (Color online) Variation of (a) storing fidelity, (b) heating
parameter n̄h, and (c) damping parameter λ vs mechanical quality
factor Qm = ωm

γ
(ωm = 2π × 10.69 MHz), for �L = 0 (solid red

line), �L = 1 kHz, γc = 100 kHz (dash-dotted green line), �L =
1 kHz, γc = 0.5 MHz (dashed blue line), and �L = 1 kHz, γc =
10 MHz (γc → ∞ or white noise; purple line with marker ◦) [white
noise has not been shown in (b) and (c)]. The input state is a coherent
state |α〉 with α = 1, the thermal phonon number is Nm = 3, and the
storage time is set to τ = 64

ωm
.

rate γ , the damping parameter λ decreases [see Fig. 3(c)] and,
as a result, the fidelity increases.

For Qm > 104, the storing fidelity for low values of noise
parameters [dash-dotted green line in Fig. 3(a)] is more than
F > 0.8, which is suitable for experimental investigations.
However, for low values of Qm, where the mechanical decay
rate becomes large, the final state will thermalize faster and
the fidelity declines.

For a given mechanical quality factor of the oscillator
Qm = 360 000 (which corresponds to γ = 186.57s−1), the
effect of the signal control linewidth �L and noise bandwidth
γc in the fidelity is calculated and presented in Figs. 4(a)
and 4(b), respectively. As is expected, the fidelity is a
decreasing function of signal linewidth �L, while in terms
of cutoff frequency γc, it decreases and approaches saturation
corresponding to the white noise value. The variation of fidelity
as a function of cutoff frequency γc, for three values of �L = 1,
5, and 10 kHz, is presented in Fig. 4(b).

The control phase noise is present only during the write
and read process, while the environmental noises of the
optomechanical system exist in all the read, write, and storage
times. Figure 5 shows the storing fidelity as a function of
the storage time τ , for two values of reservoir temperature
in the presence and in the absence of the control phase noise
effect. As the storage time increases, the duration time that
the mechanical mode interacts with thermal noise increases,
which results in reducing fidelity. Reservoir temperature plays
an important role in the storing fidelity. If the reservoir
temperature is 1.7 mK, the memory will store the initial
coherent state up to 0.4 ms with fidelity more than 0.8 (in
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FIG. 4. (Color online) (a) Variation of fidelity as a function of
control linewidth �L. (b) The variation of fidelity as a function of the
control cutoff frequency γc for �L = 1 kHz (solid blue line), �L =
5 kHz (dash-dotted green line), and �L = 10 kHz (dashed red line).
The input state is a coherent state |α〉 with α = 1. Qm = 360 000.

the absence of control noise effect) and with fidelity more than
0.7 (in the presence of control noise effect). By increasing
the reservoir temperature to 0.01 K, the storage time drops
to 0.05 ms for an appropriate fidelity. As is expected, Fig. 5
shows that by increasing the storage time, the effect of the
control phase noise on fidelity decreases relative to other
environmental noises and the curves considering the control
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FIG. 5. (Color online) Storing fidelity as a function of the storing
time τ for different values of reservoir temperature, laser linewidth
�L, and cutoff frequency γc : T = 1.7 mK, �L = 0 (solid red
line), T = 1.7 mK, �L = 1 kHz, γc = 300 kHz (dotted blue line),
T = 0.01 mK, �L = 0 (dashed green line), and T = 0.01 mK,
�L = 1 kHz, γc = 300 kHz (dash-dotted black line). The input state
is a coherent state |α〉 with α = 1.
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FIG. 6. (Color online) (a),(b) Storing fidelity as a function of G

κ

for two ranges of variation of G in the absence and in the presence
of laser phase noise effect: � = 0 (solid red line), � = 1 kHz, γc =
100 kHz (dashed green line), � = 1 kHz, γc = 200 kHz (dash-dotted
blue line), and � = 1 kHz, γc = 300 kHz (dotted black line). (c)
Schematic description of cascading a low pass filter with cutoff
frequency γc and a band pass filter with center frequency determined
by the coupling coefficient G for two values of coupling coefficient
G1 ∝ αs1 and G2 ∝ αs2. αs2 > αs1. The storage time is τ = 64

ωm
.

phase noise effect reach the corresponding curve without this
effect. That is because the control phase noise influences
memory only during the read and write pulses and does not
have any effect on the fidelity in the storage time.

To consider the effect of coupling coefficient G = αsg0

on the fidelity of memory, an electromechanical system with
the following parameters is taken into consideration. The
mechanical quality factor of the oscillator is fixed and is
equal to Qm = 360 000. By changing the coupling coefficient
G from 0.02 × ωm to 0.05 × ωm, the fidelity of storing the
coherent state |α〉 for storage time τ = 64

ωm
is calculated and

represented in Fig. 6(a). The coupling coefficient G is adjusted
by αs . So, Fig. 6(a) also shows variation of memory fidelity
versus αs . As already expected, in the absence of control phase
noise [solid red line in Figs. 6(a) and 6(b)], the storing fidelity
increases by increasing the coupling coefficient between
the microwave and mechanical modes. In this situation, the
interaction time ts decreases as G increases, which results in
less thermal noise affecting the system in the interaction time.
However in the presence of control phase noise, the damaging
effect of phase noise is more effective in higher coupling
coefficient G, which results in the decrease of the storing
fidelity in high values of G. This phenomenon originates from
the coefficient αs of the phase noise term in Eq. (7). So, by
increasing the input coupling (control) intensity, despite the
drop in interaction time ts , the effect of input control phase
noise on the system gets stronger, which prevents the fidelity
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FIG. 7. (Color online) (a) Storing fidelity as a function of me-
chanical quality factor Qm with �L = 1 kHz, γc = 10 kHz for
different values of squeezing parameter r: r = 0 (solid red line),
r = 0.2 (dash-dotted green line), r = 0.5 (dashed blue line), and
r = 0.8 (dotted black line). (b) Variation of fidelity as a function of
squeezing parameter r for fixed value of Qm = 360 000. The storage
time is set to τ = 0.95 μs.

from increasing. According to the mean value theorem, there is
a maximum in the fidelity versus αs in the presence of control
phase noise, which can be clearly observed in Fig. 6(a).

Let us now increase the coupling coefficient G more than
has been achieved in experiments. Figure 6(b) shows the
variation of memory fidelity versus coupling coefficient, where
G is changed from 0.02 × ωm to ωm. It is easy to show that in
the strong-coupling regime of operation, an optomechanical
system is equivalent to a tune filter for the control phase noise
and its center frequency can be determined by the coupling
coefficient G. Hence the control phase noise can be modeled by
cascading a low pass filter with cutoff frequency γc and a band
pass filter with a central frequency determined by the coupling
coefficient G [see Fig. 6(c)]. Increasing αs increases the noise
intensity and consequently decreases the memory fidelity. By
increasing αs even more, the tune filter central frequency
moves away from the cutoff frequency of low pass filter and
the noise intensity decreases due to normal mode splitting.
In other words, the read and write duration time decreases
below the coherence time of control frequency noise and as a
result the memory fidelity increases. The minimum observed
in Fig. 6(b) is related to this effect. For large αs , the effect of
control phase noise is negligible and the fidelity is affected by
the optomechanical system’s environmental interactions.

In order to compare the storing fidelity of the squeezed
state with the coherent state, the squeezed state fidelity |α,r〉
for four values of r = 0,0.2,0.5,0.8 as a function of Qm is
calculated and shown in Fig. 7(a). The storage time is set to
τ = 0.95 μs and other parameters are chosen like those used
in Fig. 3. The values of �L,γc are taken as �L = 1 kHz and
γc = 10 kHz, respectively. Figure 7(b) shows the variation
of fidelity as a function of squeezing parameter r , when the
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FIG. 8. (Color online) Storing fidelity as a function of mechan-
ical quality factor Qm, for �L = 0 (solid red line), �L = 1 kHz,
γc = 0.5 kHz (dashed green line), and �L = 1 kHz, γc = 1 kHz
(dash-dotted blue line). Storage time and thermal phonon number
are τ = 0.95 μs and Nm = 3, respectively.

mechanical quality factor is fixed to Qm = 360 000. It is clear
that the fidelity decreases as parameter r increases, while the
initial state becomes more and more nonclassical. By growing
the squeezing parameter r , the initial state would be more
sensitive to input thermal and optical noises [25].

B. Optomechanical cavity

The optomechanical cavity that we consider is a Fabry-
Perot cavity with strong coupling between the optical and
mechanical mode [40]. The cavity and mechanical decay
rates are κ

2π
= 215 kHz and γ

2π
= 140 Hz, respectively. The

mechanical frequency of the micromirror is ωm

2π
= 947 kHz

and the single-photon coupling strength is g0 = 2π × 1.91
Hz. The input coupling Nd:YAG (yttrium aluminum garnet)
laser with power 11 mW and wavelength 1064 nm enters
the cavity and makes optomechanical coupling coefficient
G = 2π × 229.81 kHz. In the absence of laser phase noise, the
fidelity of storing the coherent state |α〉 with α = 1, for storage
time 0.95 μs, with thermal phonon number Nm = 3, will be
obtained as 0.789. By considering the effect of phase noise as a
laser linewidth �L = 1 kHz and cutoff frequency γc = 1 kHz,
the storing fidelity decreases to 0.28 which is an undesirable
fidelity. In order to compare the fidelity of microwave and
optomechanical systems, the storing fidelity for some values
of noise parameters as a function of the mechanical quality
factor (by fixing ωm and changing γ ) is presented in Fig. 8. The
storage time and thermal phonon number have been chosen to
be similar to Fig. 3 (τ = 0.95 μs, Nm = 3).

Comparing Fig. 3 with Fig. 8, we find out that the degrading
effect of phase noise on the fidelity of the optomechanical
system is more significant than that in the microwave system.
This could be explained by considering the fact that the
single-photon coupling strength g0 of our microwave system
(2π × 230 Hz) is more than that in the optomechanical system
(2π × 1.91 Hz). So in order to achieve the same value of

coupling coefficient G, the lower intracavity amplitude αs is
needed in the microwave system. The reduction in αs leads
to the reduction of the phase noise effect in the microwave
system. On the other hand, the coupling coefficient G in the
microwave system (G = 2π × 534.5 kHz) is more than that in
the optomechanical system (2π × 229.81 kHz), which gives
the shorter interaction time between light and matter in the
microwave system and hence the lesser amount of thermal and
phase noise will affect the system.

V. CONCLUSION

The effect of laser phase noise on the fidelity of electrome-
chanical and optomechanical quantum memories has been
studied. The phase noise of the laser behaves like a color noise
which is included in the dynamics of the equations by means
of an axillary variable with input white noise. It is shown that
the damaging effect of laser phase noise on memory fidelity
is proportional to the intracavity field amplitude αs . For the
electromechanical system that we have considered [39] in the
strong-coupling regime of operation, the storing fidelity of
the coherent state |α〉 for an interval τ ∼ 1 μs drops from
0.95, in the absence of control phase noise effect, to 0.66,
in the presence of control phase noise, with a linewidth of
�L = 1 kHz and a cutoff frequency of γc = 0.5 MHz. By
decreasing the cutoff frequency to γc = 10 kHz, the memory
fidelity increases significantly and the degrading effect of
noise disappears. It has been shown that by minimizing the
noise effect, the coherent state can be stored up to 0.4 ms
with a fidelity of more than 0.8 in the mechanical mode,
while by considering the effect of phase noise as a control
line width 1 kHz and cutoff frequency γc = 300 kHz, the
storage time with appropriate fidelity decreases to 0.05 ms.
By increasing the input control intensity, the optomechanical
coupling G increases and the interaction time between photons
and phonons decreases, which results in memory fidelity gain,
while at the same time due to the increase in intracavity field
amplitude, the effect of phase noise elevates which prevents the
fidelity from increasing. By comparing the electromechanical
and optomechanical systems in the range of experimentally
achievable parameters [39,40], it was found that the system
with higher single-photon coupling g0 is more robust against
phase noise degradation effects.
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APPENDIX

The dynamic equations of the quadratures vector are
obtained from the extended version of Eq. (8). Here we define

variable V1 = 〈 	̂X 	̂XT 〉. It is easy to show that the covariance

matrix is related to V1 through equation V = V1+V T
1

2 . Using
Eq. (8), the following equations are derived:

˙̂	X 	̂XT = QE
	̂X 	̂XT + 	̂Xin

	̂XT ,
(A1)

	̂X ˙̂	XT = 	̂X 	̂XT QT
E + 	̂X 	̂XT

in,
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which gives us the relations

dV1

dt
= QEV1 + V1Q

T
E + 	̂Xin

	̂XT + 	̂X 	̂XT
in,

(A2)
dV T

1

dt
= V T

1 QT + QV T
1 + ( 	̂Xin

	̂XT + 	̂X 	̂XT
in

)T
.

By adding these two equations, the dynamic equation of the
covariance matrix is achieved,

dV

dt
= QV + V QT

+
〈 	̂Xin

	̂XT + 	̂X 	̂XT
in

〉 + 〈 	̂Xin
	̂XT + 	̂X 	̂XT

in

〉T
2

. (A3)

The last term of Eq. (A3) is the diffusion matrix N . Solving
Eq. (8), the quadratures can be written according to the input
noises as

	̂X(t) = eQt 	̂X(0) +
∫ t

0
eQ(t−t́) 	̂Xin(t́). (A4)

Then the diffusion matrix will be given as

N = 1
2 (A + AT ), (A5)

where

A =
∫ t

0
dt́ [D(t,t́) + D(t́ ,t)T ]eQT (t−t́), (A6)

and where D(t,t́) = 〈 	̂Xin(t) 	̂XT
in(t́)〉, and is easily derived using

the correlation functions of the input noises,

D(t,t́) = δ(t − t́)

4

⎛
⎜⎜⎜⎜⎜⎝

γ̄ iγ 0 0 0
−iγ γ̄ 0 0 0

0 0 κ iκ 0
0 0 −iκ κ 0
0 0 0 0 8γ 2

c �L

⎞
⎟⎟⎟⎟⎟⎠

,

(A7)
where γ̄ = γ (1 + 2Nm) and κ̄ = κ(1 + 2NC). The diffusion
matrix N is obtained by employing Eqs. (A5)–(A7):

N =

⎛
⎜⎜⎜⎜⎜⎝

γ̄

4 0 0 0 0

0 γ̄

4 0 0 0
0 0 κ̄

4 0 0
0 0 0 κ̄

4 0
0 0 0 0 2γ 2

c �L

⎞
⎟⎟⎟⎟⎟⎠

. (A8)
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