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Flat and self-trapping photonic bands through coupling of two unidirectional edge modes
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We find a flat band and a self-trapping band through the coupling of two unidirectional edge modes, which
was originally achieved by Wang et al. [Phys. Rev. Lett. 100, 013905 (2008); Nature 461, 772 (2009)] in
two-dimensional magneto-optical photonic crystals. We break up a square-lattice yttrium-iron-garnet photonic
crystal forming a waveguide and two edges. Given a proper interval of the two edges, two unidirectional edge
modes with opposite group velocity directions can be coupled. The coupling leads to a wide flat band in which
the group velocity is near zero, and a self-trapping band in which light is totally localized around the source.
The position of the flat band and the group velocity can be adjusted by the external magnetic field. Numerical
simulations and theoretical analysis both demonstrate the two interesting band structures.
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I. INTRODUCTION

In 2008, Raghu and Haldane [1,2] predicted the existence
of one-way electromagnetic modes in two-dimensional (2D)
magneto-optical (MO) photonic crystals (PCs) similar to the
chiral edge states found in the integer quantum Hall (QH)
effect. These modes are confined at the edge of certain 2D
MO photonic crystals and possess group velocities pointing
in only one direction, determined by the direction of an
applied dc magnetic field. Backscattering in the unidirectional
edge modes is completely suppressed. These modes are very
important for slow-light structures, which are susceptible to
backscattering. After that, Wang et al. demonstrated the exis-
tence of the unidirectional edge modes through experimental
and theoretical study [3,4]. They further proved that such
chiral edge states are robust against scattering from disorder.
Because the edge modes are inside the light cone, to avoid
light scattering into the air, a nonmagnetic metallic cladding
or another photonic crystal has to be bound on one side of
the edge of the 2D MO PC. Some similar studies have been
proposed [5–8]. In this paper we perform a study on the
coupling of the two unidirectional edge modes. As is well
known, the coupling among different modes may excite many
new and interesting phenomena [9]. Through the study we
find that a flat photonic band and even a self-trapping photonic
band occur from the coupling.

II. CALCULATION METHOD AND ISOLATED
EDGE MODES

The edge modes and their coupled modes of the 2D MO
PC can be obtained from the modified plane wave expansion
method. An external dc magnetic field applied in the out-of-
plane (z) direction induces strong gyromagnetic anisotropy,
with the permeability tensor taking the form [3]

μ(r) =
⎡
⎣ μ1 jμ2 0

−jμ2 μ1 0
0 0 μ3

⎤
⎦ . (1)
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For E polarization (the electric field is along the z axis),
we eliminate the magnetic field from Maxwell’s equations to
obtain the master equation,

∇ × 1

μ(r)
∇ × E(r) = ω2ε0μ0E(r) = ω2

c2
E(r), (2)

where 1
μ(r) = [

μ′ jμ′′ 0
−jjμ′′ μ′ 0

0 0 μ′′′
] is the position-dependent

periodic structure in the xy plane. Taking advantage of the
periodic nature of the problem, the E field may be expanded
into a sum of plane waves using Bloch’s theorem as

Ez(r) =
∑

G

E(k + G) exp[i(k + G) · r], (3)

where k is a wave vector in the Brillouin zone; G represents a
lattice vector in reciprocal space, describing the periodic struc-
ture; and E(k + G) is the expansion coefficient corresponding
to G. The tensor elements of 1

μ(r) can be expressed as a Fourier
series expansion,

μ′ =
∑

G

μ′(G) exp(iG · r), (4)

μ′′ =
∑

G

μ′′(G) exp(iG · r), (5)

where

μ′(G) = 1

Au

∫
μ′(r) exp(−iG · r)dr, (6)

μ′′(G) = 1

Au

∫
μ′′(r) exp(−iG · r)dr. (7)

In (6) and (7) Au indicates the area of Wigner-Seitz (WS)
unit cells that may be used to represent the periodic structure.
By taking Eqs. (3)–(5) into (2), we finally obtain

∑
G′

[μ′(G − G′)K′ · K

− jμ′′(G − G′)(K′ × K · ez)]E(k + G′)

= ω2

c2
E(k + G), (8)
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FIG. 1. (Color online) Magneto-optical unidirectional edge
modes. (a) 2D MO PC with its two edges in two opposite directions.
(b) Projected band diagram for 2D MO PC with metallic cladding.
Blue dashed and red solid lines represent the unidirectional edge
modes for two different edges, respectively. (c) Steady-state
field pattern for each unidirectional edge mode. Red and blue
represent positive and negative field values. A source, indicated
by a star, is located at the two edges and operates at a frequency
ω = 0.5426 × 2πc/a.

where K = k + G and K′ = k + G′. Equation (8) includes
the sum of infinite reciprocal vectors G′ and we select finite
reciprocal vectors instead in the allowed precision range. Then
the equation becomes a matrix eigenvalue equation. For a fixed
wave vector k, the frequencies ω of the allowed modes in the
periodic structure are found through solving Eq. (8).

We firstly consider the isolated edge modes. Using gyro-
magnetic materials, we design a one-way waveguide using a
2D MO square-lattice yttrium-iron-garnet (YIG) PC operating
at microwave frequencies. The structure parameters are chosen
the same as those in Ref. [3]. The 2D MO PC and its two edges
in two directions are shown in Fig. 1(a). To excite the edge

modes a metallic cladding must be bound on one side of the
2D MO PC. The projected band for the edge states is shown in
Fig. 1(b). We take kx as the projection of the 2D wave vector
and a is the lattice length. The band structure is symmetric
with respect to kx = 0 since the structure itself has inversion
symmetry. As is shown in Fig. 1(a), the PC has two edges in two
opposite directions: the bottom edge of the upper semi-infinite
PC and the top edge of the lower semi-infinite PC. Thus the red
solid curve and the dashed blue curve inside the gap of infinite
PC correspond to the two isolated edge modes, respectively.
It is clearly seen from Fig. 1(b) that the slope of the red curve
is always positive, while the slope of the blue curve is always
negative, which means that the group velocity for each mode
points in only one direction. But the group velocity directions
for the two modes are opposite. The isolated one-way edge
mode can be further illustrated through the simulations of
electromagnetic waves based on the finite element method. A
point source (labeled by a star) with ωa/2πc = 0.54 is placed
at the centers of the two edge waveguides. The distributions of
electric field in the z direction are shown in Fig. 1(c). The left
transmitted field and right transmitted field correspond to the
dashed blue curve and the red solid curve, respectively.

III. COUPLING OF TWO EDGE MODES

In this paper we focus on the coupling of the two edge
modes. To achive it we just break up the 2D MO PC and
obtain a line defect waveguide and two edge configurations.
Under an applied dc magnetic field, the structure may excite
unidirectional edge modes on the two edges of two semi-
infinite 2D MO PCs, respectively. If the interval between the
two edges is adjusted properly, the two edge modes can be
coupled, which results in some new modes. The structure
model is shown in Fig. 2. In the band calcutions for the
waveguide modes or the coupled edge modes, a supercell must
be used just as indicated by the dashed rectangle in Fig. 2.
The interval between the two edge rod centers is indicated by
d. Theoretically, the supercell must contain infinite rods. In

FIG. 2. 2D MO PC with a line defect waveguide. The width of the
waveguide is denoted as d . Two arrows denote the directions of two
isolated unidirectional edge modes. The dashed rectangle denotes a
supercell in the calculations.
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FIG. 3. (Color online) The band diagrams for the structure as
Fig. 2 with d = 1.5a. There are two cases: without a magnetic field
(left plot), and with applied magnetic field in the same directions
(right plot) on the two PCs, respectively. P1, P2, and P3 denote three
frequencies at different mode dispersion curves.

pratical calculations a finite number of rods can satisfy the
needed accuracy.

For the structure in Fig. 2 we consider two cases: without
any magnetic field, and with applied magnetic field in the same
direcitions on the two PCs, respectively. The band structures
with d = 1.5a for the two cases are shown in Fig. 3 in which
the blue areas denote the bulk mode bands. The left subplot
corresponds to the first case in which two curves inside the
band gaps are the waveguide modes. No edge mode occurs
in this case. The right subplot corresponds to the second
case. From the right subplot case we find two special dashed
dispersion curves in the second gap. The two mode curves
are the main studied objects in the paper. The upper band is
very flat and the flat region occupies most of the 1D Brillouin
zone. The lower band is symmetric and has two opposite slop.
We first consider the upper band. The flat band means that
the group velocities are near zero, thus the light seems to be
stopped in the waveguide. The wide superflat band is very
important because it can achive near-zero group velocity in
the waveguide. Although similar bands have been achieved in
Refs. [10–13], the structures in them are very complicated
and the designs must be elaborately optimized. The other
limitations in them are that the band cannot be modulated and
they are sensitive to structure perturbation. The flat band in
the current structure results from the coupling of two opposite
unidirectional edge modes. Because the chiral edge states are
robust against scattering from disorder [1–4], their coupled
modes could also be robust against the structure perturbation.
The positions of the flat band can be adjusted by changing
the value of the nondiagonal element μ2 which is determined
by the external magnetic field. Figure 4 shows the results.
As μ2 decreases, the frequency range of the whole flat band
monotonously drops and the band curves tend to have a small
slope.

Furthermore, the group velocity for the band can also
be modulated by the external magnetic field. For the given

FIG. 4. (Color online) The position change of the upper dashed
band in Fig. 3 with the value of the nondiagonal element μ2.

frequency ω = 0.5426(2πc/a) which is just at the position of
the flat part of the band, we calculate the group velocity by
calculating vg = dω/dkx for different values of μ2. The results
are shown in Fig. 5. As μ2 decreases from 12.4 to 11.95, the
group velocity monotonously increases from 0 to 0.20c. When
μ2 still decreases, the group velocity begins to decrease. The
tunability for the flat band and the group velocity makes the
system more useful than other similar slow-light waveguides.

For the lower band in the same gap as the flat band, the
dispersion curve is symmetric and has large slopes; thus one
frequency corresponds to two modes with opposite group
velocity directions. The two modes will form a degenerate
state. When a source with one frequency is located in the
waveguide, two modes with opposite group velocity may be
simultaneously excited and interfered. In the following we will
study its unique property based on the electromagnetic field
simulations.

These field patterns from the electromagnetic field simula-
tions can further reveal the properties of these bands and their

FIG. 5. The group velocity versus μ2 for ω = 0.5426(2πc/a)
which is at the position of the flat band in Fig. 3.
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FIG. 6. (Color online) (a–c) The steady-state Ez field patterns correspond to three mode frequencies P1, P2, and P3 at different mode
dispersion curves in Fig. 3. P1 corresponds to a typical waveguide mode. P2 is at the flat band. Its field is along two edges which result from
the coupling of two unidirectional edge modes. P3 is at the lower dashed band in Fig. 3. Its field is self-trapped around the source because of
the destructive interference of two degenerated modes with opposite group velocity directions. (d–f) The distributions of the Poynting vectors
correspond to P1, P2, and P3, respectively.

difference. We choose three frequencies, P1(0.45 × 2πc/a),
P2 (0.5427 × 2πc/a), and P3(0.5405 × 2πc/a), which are on
different bands in Fig. 3 (the horizontal dashed lines denote
the frequency positions). The steady-state Ez field patterns for
them are plotted in Figs. 6(a)–6(c), respectively. A source,
indicated by a star, is located at the center of the waveguide.
Blue and red represent positive and negative field values. P1

corresponds to the waveguide mode because there are no any
edge modes in the structure. There are two modes with the
same frequency; thus it is a generated state. As can be seen,
the field is concentrated inside the waveguide and decays
quickly from the edges to bulk crystals. Figure 6(d) shows the
distribution of the Poynting vectors for P1 near the waveguide.
We find the energy flow is concentrated inside the waveguide
and point to two opposite directions from the source. P2 and P3

correspond to the coupled modes of two unidirectional edge
modes. P2 is just on the flat band. The field pattern for P2 is
clearly different from that for P1. As can be seen, the field is
mainly concentrated on both edges. We think the waveguide
modes are totally suppressed in this gap. P2 corresponds to a
single even mode. We can see the field pattern is antisymmetric
and it satisfies Ez(−r) = Ez(r) [14]. One may ask what led
to the superflat band. We think under current configuration,
the source excites two opposite edge modes along each side.
Because of the symmetry of two mode dispersion curves, the
two modes with the same frequency have the same properties,
only with the opposite wave-vector directions. Under a proper
interval between the two edges, the two edge modes are
coupled to each other. The coupling can lead to a constructive
interference and a field similar to a standing wave may be
formed on each edge. In Fig. 6 there are clear standing-wave
patterns along two edges which means that the flat band comes
from the constructive interference of two edge modes. Because
the standing waves do not transmit the energy, the band has

near-zero group velocity and becomes very flat. The energy
flow for P2 shown in Fig. 6(e) is concentrated around the edge
rods and forms an anticlockwise loop. The average component
of the Poynting vectors in the waveguide direction is near zero.

As for the frequency P3 that is on the lower coupled band,
an interesting feature is found from Fig. 6 that not only in the
vertical direction but also in the horizontal waveguide direction
the field is localized. There seems to be a cavity around the
source. However, there is no barrier in the waveguide direction.
Thus light seems to be self-trapped in the waveguide. The
ability to confine light is important both scientifically and
technologically. Although many light confinement methods
exist, they all achieve confinement with materials or systems
such as metallic mirrors, photonic band-gap materials, and
highly disordered media (Anderson localization). In 2013 Hsu
et al. achieved light confinement in a patterned dielectric slab,
even though outgoing waves are allowed in the surrounding
medium. Such bound states are called “embedded eigenvalues”
which are in a continuum of radiation modes [15,16]. Authors
attributed the bound state to the destructive interference of
the forward- and back-reflected leakage waves which cancel
the radiation amplitudes. However, the embedded eigenvalues
only occur at some special k points over the first Brillouin
zone. The ideas in Refs. [15,16] help us analyze our results. In
the current structure, light is confined in the vertical direction
because of the effect of the photonic band gap, but light
radiation is usually allowed in the waveguide direction. Thus
the localized state for P3 can be looked at as another kind
of embedded eigenvalue. As is known, for P3 two coupled
modes with the opposite group velocity directions may be
simultaneously excited and interfere with each other. Just as
the “embedded eigenvalues” which are due to the destructive
interference of the forward- and back-reflected leakage waves,
the light self-trapping in the waveguide direction is also
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because of the destructive interference of the forward- and
back-reflected coupled waves. The destructive interference
cancels the radiation amplitude along the waveguide. By
checking the Poynting vector distribution, we find the Poynting
vectors only occur around the source and the neighbor six
rods. More interesting, the Poynting vectors make the large
anticlockwise loop around the periphery of the six rods and
the small anticlockwise loop around each rod. We also find that
the light self-trapping state is not only at P3. For frequencies
within the lower dashed band of the middle subplot of Fig. 3
and the gap, as well as below the flat band, all point sources will
excite the self-trapping state. Thus we call the lower dashed
band as a self-trapping band.

We can give an analytical description of the system to
gain a physical understanding of the flat and self-trapping
bands. A convenient and effective approach is the coupled
oscillator model which describes a coupling behavior of the
two original isolated edge modes in the system. The detailed
description for the model can refer to Refs. [17,18]. The
system can be represented as two degenerated edge modes.
The Hamiltonian of the coupled system can be written as
follows:

H =
[
ωk �

� ω−k

]
, (9)

where ωk and ω−k are the eigenfrequencies of the uncoupled
edge modes which have the opposite wave vectors, and �

denotes the coupling strength of the two edge modes. Eq. (9)
lead to an eigenmatrix equation. The eigenvalues ω of the
Hamiltonian represent the new eigenfrequencies of the coupled

system which can be obtained from the equation∣∣∣∣ω − ωk �

� ω − ω−k

∣∣∣∣ = 0. (10)

Because of ωk = ω−k , we have ω = ωk ± � and obtain two
branch coupled mode bands. Because the coupling strength
is dependent on the difference of the two edge modes, i.e.,
the value of kx , the less the value of kx , the more the value of
�. From Fig. 1 we see that ωk monotonously decreases as kx

decreases. Thus the branch formed by ω = ωk + � remains
flat, whereas the other branch formed by ω = ωk − � drops
quickly as kx decreases. Therefore, the flat and self-trapping
bands are in agreement with the coupled oscillator model
analysis.

IV. CONCLUSIONS

In this paper we construct a configuration of a 2D MO PC to
achieve the coupling of two unidirectional edge modes. Given
proper structure parameters, we can obtain a tunable superflat
band and a self-trapping band. The photonic modes in the two
bands are clearly different from general waveguide modes.
The near-zero group velocity and self-trapping function for the
two interesting bands may find their important applications in
functional devices such as switches, optical delay lines, and
all-optical storage.
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