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The cavity-optomechanical radiation pressure interaction provides the means to create entanglement between
a mechanical oscillator and an electromagnetic field interacting with it. Here we show how we can utilize
this entanglement within the framework of time-continuous quantum control, in order to engineer the quantum
state of the mechanical system. Specifically, we analyze how to prepare a low-entropy mechanical state by
(measurement-based) feedback cooling operated in the blue-detuned regime, the creation of bipartite mechanical
entanglement via time-continuous entanglement swapping, and preparation of a squeezed mechanical state by
time-continuous teleportation. The protocols presented here are feasible in optomechanical systems exhibiting a
cooperativity larger than 1.
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I. INTRODUCTION

Quantum control plays a crucial role in modern quantum
experiments across different fields. In optomechanics alone
its applications range from feedback cooling of the mechan-
ical motion [1], mechanical squeezing [2,3] and two-mode
squeezing [4], to back-action elimination [5,6] with possible
applications in gravitational wave detection. Importantly for
quantum information processing and communication, it can
also be used to robustly generate entanglement between remote
quantum systems, as has been demonstrated recently for spin
qubits [7]. At the same time entanglement itself can be an
essential component to facilitate control of quantum systems,
e.g., as a resource for teleportation [8] when employed as
a means for remote state preparation. In optomechanics,
pulsed entanglement between a mechanical oscillator and
the electromagnetic field [9] has recently been demonstrated
in an electromechanical setup [10]; state preparation (and
verification) of an arbitrary mechanical quantum state (e.g.,
a Fock state) is yet to be accomplished (see, however, [11]).
Typical quantum control protocols are operated in a time-
continuous fashion and often rely on continuous measurements
which are capable of tracking the quantum state of the
controlled system. The resulting measurement record—and
the so-called conditional quantum state inferred from it—is
then used as a basis for the applied feedback [12]. Thus, the
control protocol’s success critically depends on the precision
of the employed measurement. The most essential prerequisite
for quantum limited feedback control turns out to be the regime
of strong (linearized, thermal) cooperativity. This regime has
been witnessed in several experiments in the past few years
[13–18]. Recently, monitoring a mechanical oscillator with a
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measurement strength matching its thermal decoherence rate
(equivalent to a cooperativity above 1) and measurement-based
feedback cooling to an occupation number of several phonons
has been demonstrated in [19].

In this article we explore protocols which exploit optome-
chanical entanglement as a resource for measurement-based
time-continuous control of cavity-optomechanical systems
(see Fig. 1 for the different setups being considered). The
presented protocols rely on the fact that for a laser drive
appropriately (blue) detuned from the cavity resonance, the
radiation-pressure interaction generates entanglement between
the mechanical oscillator and the cavity output light. We
will show that due to this fact it is in principle possible to
feedback-cool the mechanical motion to its ground state, even

FIG. 1. (Color online) Different optomechanical setups consid-
ered in this article: (a) single homodyne detection for feedback
cooling (non-unit efficiency is modeled by a beam splitter before
a perfect detector, marked by the yellow box; see Sec. III A),
(b) time-continuous teleportation, (c) time-continuous entanglement
swapping, (d) detail of the entanglement swapping setup. The green
(dark gray) dashed boxes mark the time-continuous Bell measurement
setups; the orange (light gray) box in (d) marks the auxiliary
stabilizing measurements.
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though the optomechanical interaction effects heating of the
mechanical mode in this particular regime. This stands in
contrast to common feedback-cooling schemes which operate
on cavity resonance [1,19]. The scheme presented here is
based on standard homodyne detection to monitor a single
quadrature of the output light, and feedback by (phase and
amplitude) modulation of the driving laser. The feedback
signal is calculated by applying linear-quadratic-Gaussian
(LQG) control from classical control theory, which attains
the optimal cooling performance for the chosen configuration.
Beyond cooling, entanglement-based protocols for quantum
control can be used to achieve more sophisticated quantum
state engineering. We study in detail two optomechanical
implementations of time-continuous Bell measurements [20]:
Time-continuous teleportation allows for preparation of a
mechanical oscillator in a general Gaussian (squeezed) state,
while time-continuous entanglement swapping can be used
to prepare two remote mechanical systems in an (Einstein-
Podolsky-Rosen) entangled state. Both schemes generate
dissipative dynamics which drive the mechanical system(s)
into the desired stationary state. They are shown to work if
the effective measurement strength is on the same order as
the mechanical decoherence rate (i.e., for an optomechanical
cooperativity of around 1), which is the same condition that
holds for ground-state cooling [14,15], observation of back-
action noise [13,18], and ponderomotive squeezing [16,17],
all of which have been achieved experimentally. Although
we here consider optomechanical systems only, the presented
methods are very versatile, applicable to different (continuous
and discrete) physical systems, and can be extended to describe
more complex topologies, such as multiple interferometric
measurements and quantum networks [20].

The results on time-continuous teleportation and entangle-
ment swapping have been published in parts in [20]. Here we
provide an extended treatment focusing on an optomechanical
implementation and present a detailed derivation of the
resulting equations.

The paper is organized as follows: In Sec. II we summarize
and illustrate the central results concerning cooling, mechan-
ical squeezing, and bipartite mechanical entanglement gener-
ation. We start this section by discussing the phase diagram
of the optomechanical steady state, emphasizing its unique
features for a blue-detuned laser drive. Section III presents in
detail all technical aspects in the derivation of our results. Some
background information about quantum stochastic calculus
and LQG control is presented in Appendices A and B.

II. CENTRAL RESULTS

A. The cavity-optomechanical system

In this article we consider a cavity-optomechanical system
with a single mechanical mode oscillating at a resonance
frequency ωm. The cavity has a resonance frequency ωc and
a [full width at half maximum (FWHM)] decay rate κ , and
is driven by continuous-wave laser light at a frequency ωl . In
a linearized description and in a frame rotating with ωl , the
system is described by the effective Hamiltonian [21]

Hsys = ωmc†mcm − �lc
†
l cl + g(cm + c†m)(cl + c

†
l ), (1)

where cm and cl are bosonic annihilation operators of the
mechanical and the optical mode, respectively. �l = ω0 − ωc

is the detuning of the driving laser with respect to the cavity,
and g is the optomechanical coupling strength. In writing this
Hamiltonian we implicitly assumed that the cavity is driven
strongly, such that the radiation-pressure interaction can be
linearized around a large classical intracavity amplitude. The
coupling strength is then given by g = g0[2κP/�ω0(κ2 +
�2)]1/2 with the single-photon coupling g0 and the input laser
power P . To work with the linearized description we assume
the existence of a unique classical steady state with a large in-
tracavity photon number, thus neglecting effects of bistability
[21,22]. Additionally we assume g0 � κ,ωm, which is needed
to safely neglect nonlinear radiation pressure effects [21].

The linearized radiation-pressure Hamiltonian Hom =
g(cm + c

†
m)(cl + c

†
l ) can be decomposed into two terms: a

beam-splitter-like interaction g(cmc
†
l + c

†
mcl) which is res-

onant for �l = −ωm (red-detuned laser drive) and effects
cooling of the mechanical motion, and a two-mode squeezing
term g(cmcl + c

†
mc

†
l ) which is dominant for �l = ωm (blue

driving) and is responsible for creation of optomechanical
correlations and entanglement. For a resonant drive (�l = 0)
we retain the full Hamiltonian ∝ gxmxl , which is commonly
associated with quantum nondemolition (QND) measurements
of harmonic oscillators [23,24] and is the interaction typically
used for measurement-based feedback control of these systems
[25–27]. The optical and mechanical quadrature operators
we define as xi = (ci + c

†
i )/

√
2 and pi = −i(ci − c

†
i )/

√
2

(i ∈ {m,l}) which leads to canonical commutation relations
[xi,pj ] = iδij . In the following it will be convenient to collect
them into the vector operator X = (xm,pm,xl,pl)T.

B. The optomechanical phase diagram

Optomechanical sideband cooling and entanglement cre-
ation in steady state have been analyzed in detail in
the literature [28–31]. Both phenomena are captured by
the standard optomechanical master equation (MEQ) for the
quantum state ρ, given by [28]

ρ̇(t) = Lρ(t) = −i[H,ρ(t)] + κD[cl]ρ(t)

+ γ (n̄ + 1)D[cm]ρ(t) + γ n̄D[c†m]ρ(t), (2)

where L is the so-called Liouville operator. Here γ denotes the
(FWHM) width of the mechanical resonance, and n̄ the me-
chanical bath’s mean phonon number. Optical and mechanical
decoherence is described by the Lindblad operators D[c]ρ =
cρc† − 1

2ρc†c − 1
2c†cρ. As our system is Gaussian, its state

is fully characterized by the first and second moments of X ,
i.e., the mean values 〈X〉(t) = tr[Xρ(t)] and the symmetric
covariance matrix

�(t) = Re (〈X XT〉(t)) − 〈X〉(t)〈XT〉(t). (3)

(Throughout this paper we will often omit the explicit time
argument for the sake of brevity if no ambiguity exists.)
The linear equations of motion of 〈X〉 and � are given by
(Appendix B)

d

dt
〈X〉(t) = F〈X〉(t), (4a)

d

dt
�(t) = F�(t) + �(t)FT + N. (4b)
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The 4 × 4 matrices F and N describe the system’s dynamics
and noise properties, respectively, and are algebraically con-
nected to the Liouvillian in the MEQ (2).

Provided the system is stable, it will in the long-term assume
a steady state, limt→∞ ρ(t) = ρss, where ρss is determined by
the condition Lρss = 0. The stability of a linear system can
be assessed by applying the Routh-Hurwitz (RH) stability
criterion [32] which is fulfilled iff all eigenvalues of F
have negative real parts. If a stable steady state exists the
means 〈X〉ss:=tr[Xρss] = 0 will vanish, while the steady-
state covariance matrix �ss is given by the solution to the
so-called Lyapunov equation, which is obtained from (4b) by
setting its left-hand side to zero, i.e., F�ss + �ssFT + N = 0.
This equation can readily be solved to obtain steady-state
properties such as the mean mechanical occupation number
nss

m = 〈c†mcm〉ss or logarithmic negativity Ess
N [33,34]. In this

section we will mainly be concerned with these steady-state
properties of optomechanical systems.

The characteristic features of an optomechanical system’s
steady state can nicely be illustrated by plotting a phase
diagram with respect to the laser detuning �l and the
optomechanical coupling g, as depicted in Fig. 2 for an
optomechanical system in the resolved sideband regime (κ <

ωm) for a high-Q (Q = ωm/γ ) mechanical oscillator. The gray
background depicts the regions of instability, given by the
corresponding Routh-Hurwitz criterion, where no steady state
exists. The first thing to note is that the system is unstable
in nearly all the right half-plane, i.e., for a blue-detuned laser
drive, while for red detuning the system becomes unstable
only for appreciably high optomechanical coupling. Centered
around the first mechanical sideband at �l = −ωm where
the beam-splitter part of the optomechanical interaction is
resonant lies the region where nss

m < 1 (dashed purple line)
and thus ground-state cooling is possible. Right at the border
of stability, for a similar detuning, we find regions of large
steady-state entanglement between the intracavity field and
the mechanical resonator (colored in turquoise/blue) [31].
On the opposite side of the phase diagram, around the blue
mechanical sideband at �l = ωm, we also expect to observe
optomechanical entanglement due to the effect of the optome-
chanical two-mode squeezing dynamics. However, there the
formation of a steady state is inhibited by the optomechanical
instability which is due to parametric amplification of the
amplitude of both the mechanical and the optical mode [21].
The connection of laser cooling, entanglement generation,
and the instability region has been analyzed in detail in [31].
Although no steady state exists for a blue-detuned laser drive,
various alternative approaches permit us to work with the
resonantly enhanced two-mode squeezing dynamics of the
optomechanical interaction. Pulsed optomechanical entangle-
ment creation, for example—which does not require to be
operated in a stable regime—has been analyzed in detail in [9],
and has been experimentally demonstrated (for an electrome-
chanical system) in [10]. Working with a continuous-wave
blue-detuned laser drive, on the other hand, is still possible if
we employ stabilizing feedback which inhibits the exponential
growth of the optomechanical system’s quadratures. One
possible type of feedback is measurement-based feedback
using homodyne detection, which we will consider in the
following.

(a)

(b)

FIG. 2. (Color online) Upper plot: Steady-state phase diagram
of an optomechanical system for κ = ωm/2, Q = 5 × 106, n̄ =
3.5 × 105. The gray hatched area depicts unstable regions where no
steady state exists. The dashed purple (dark gray) line shows regions
of ground-state cooling of the mechanical oscillator, here nss

m < 1.
The turquoise/blue (gray unhatched) area shows optomechanical
entanglement (logarithmic negativity Ess

N ), with largest values close
to the instability region. The orange (light gray) line encloses the
regions where the conditional mean mechanical occupation number
〈c†mcm〉ss

c < 1 for a measurement of the optical phase quadrature, i.e.,
φ = π/2. The right axis shows the corresponding optomechanical
cooperativity, given by C = 4g2/(n̄ + 1)γ κ . Lower plot: Cut through
the phase diagram at g = ωm/10, depicting the conditional phonon
number 〈c†mcm〉ss

c for LO phases φ = π/2 (orange [light gray] line)
and φ = 0 (green [dark gray] line). The dashed purple line again
shows the mean occupation number for the unconditional state for
sideband cooling.

By adding a homodyne detector to our setup [measuring
a single light quadrature defined by the local oscillator (LO)
angle φ], we can condition the optomechanical system’s state
on the resulting photocurrent I (t), which leads to a stochastic
master equation (SME) in the Itō sense (see [12,35] and
Sec. III A):

dρc(t) = Lρc(t)dt + √
ηκ H[eiφcl]ρc(t)dW (t). (5)

ρc is the so-called conditional quantum state, which describes
our knowledge of the system given a specific measurement
record I (t). The effect of conditioning is described by
the operator H[s]ρc = (s − tr[sρc])ρc + ρc(s − tr[sρc])†. H is
thus nonlinear in ρc, as is expected for a measurement term.

033822-3



SEBASTIAN G. HOFER AND KLEMENS HAMMERER PHYSICAL REVIEW A 91, 033822 (2015)

I (t) can be expressed as

I (t)dt = √
ηκ〈cle

−iφ + c
†
l e

iφ〉c(t)dt + dW (t), (6)

where dW is a Wiener increment with dW (t)2 = dt , and
0 < η < 1 is the efficiency of the detection. Here and in the
following we denote by 〈A〉c(t) = tr[Aρc(t)] the expectation
value with respect to the conditional state. In contrast to the
conditional state ρc which solves a SME, we will call the
solution of a standard MEQ [such as (2)] the unconditional
state, which we denote by ρ.

Gaussian conditional quantum states are fully described by
the mean vector X̂(t) = 〈X〉c(t) and covariance matrix

�̂(t) = Re (〈X XT〉c(t)) − 〈X〉c(t)〈XT〉c(t), (7)

defined with respect to ρc. Their equations of motion are given
by a linear stochastic differential equation and a (deterministic)
matrix Riccati equation, respectively,

d X̂(t) = FX̂(t)dt + K(t)[I (t) − HX̂(t)]dt, (8)

d

dt
�̂(t) = F�̂(t) + �̂(t)FT + N

− [�̂(t)HT + M][�̂(t)HT + M]T, (9)

where H describes the homodyne measurement and M is
related to the system’s noise properties (see Appendix B).
K(t) is a time-dependent gain factor which depends on �̂(t).
For a one-dimensional system [with a two-dimensional phase
space (x,p)] these equations allow us to give a simple graphic
interpretation of the SME (5) in terms of a phase-space
description (see Fig. 3): The conditional trajectory X̂ (blue
line) is determined by the measurements I (t) and therefore
follows a random walk in phase space. The covariance matrix
�̂ (turquoise ellipse) on the other hand evolves determinis-
tically, independent of the measurement results. Averaging
over all possible phase-space trajectories recovers the broad
Gaussian distribution described by the standard MEQ (2) [or
equivalently, Eqs. (4)]. For an unstable system (e.g., in the blue-
detuned regime), the blue line will spiral outwards, leading to a

FIG. 3. (Color online) Schematic comparison of the master equa-
tion (2) and the stochastic master equation (5) for a single-mode
Gaussian system in phase space. The conditional state with a co-
variance �̂(t), depicted by the turquoise (small, off-centered) ellipse,
moves through phase space on a trajectory given by a realization
of X̂(t) (blue [dark gray] line). Averaging over many sample paths
recovers the broad, unconditional distribution, determined by �(t)
(purple [large, centered] ellipse).

growing unconditional covariance. The conditional covariance
matrix �̂, however, may still possess a (finite) steady state. This
is due to the fact that the exponential growth is tracked by the
conditional mean, with respect to which the covariance matrix
is defined. The steady-state conditional covariance matrix �̂

ss

can be found in analogy to �ss by setting the left-hand side of
Eq. (9) to zero and by solving the resulting algebraic Riccati
equation [12].

Having obtained �̂
ss

we can easily evaluate the conditional
state’s mean mechanical occupation number, depicted in
Fig. 2(a) for a measurement of the phase quadrature of
the light field, i.e., φ = π/2. We find a large region where
〈c†mcm〉ss

c < 0.4 for all detunings −ωm � �l � ωm (orange
line). In the region around the red sideband �l ≈ −ωm this
effect can mainly be attributed to passive sideband cooling of
the mirror, which we discussed above. However, we now also
find a region of low occupation on the opposite (blue) sideband
at �l ≈ ωm. In this region the reduction of the conditional
phonon number, which at the same time means an increase
of the mechanical state’s purity, is due to correlations between
the mechanical oscillator and the light field. These correlations
allow us to extract information about the mechanics from the
homodyne measurement. We will see in the next section that in
the sideband-resolved regime κ < ωm this effect is strongest
for �l ≈ ωm where the two-mode squeezing, entangling term
of the optomechanical Hamiltonian is resonant.

To illustrate how the choice of the LO phase influences
the conditional mechanical occupation we plot a cut through
Fig. 2(a) at a fixed optomechanical coupling g = ωm/20 in
Fig. 2(b). If we choose to measure the optical amplitude
quadrature we find that on resonance we do not have a
reduction of the conditional phonon number. For a detuned
laser drive (|�l| � ωm) however, we again find regions of
〈c†mcm〉ss

c < 1. This is easily explained by noting that on reso-
nance (�l = 0) only the optical phase quadrature couples to the
mechanical oscillator, while the amplitude quadrature contains
noise only. Measuring the amplitude quadrature therefore does
not allow us to make inferences about the mechanical motion.
In general there will be an optimal LO angle, depending
on all system parameters (especially g, �l , κ) at which we
obtain maximal information about the mechanical motion.
Thus, homodyne detection at this particular angle yields
the minimal conditional occupation. Typically—especially in
the weak-coupling regime where g < κ—the optimal angle
corresponds to the optical quadrature which is antisqueezed
by the optomechanical interaction and thus features the best
signal-to-noise ratio. We will see in the next section how
these features of the optomechanical phase diagram connect
to feedback cooling of the mechanical oscillator.

C. Optomechanical feedback cooling

Now that we discussed the conditional optomechanical state
in detail, the question arises whether it can be realized via
feedback, i.e., whether we can prepare the unconditional state
of the system such that it resembles the conditional state.

Consider the setup depicted in Fig. 1(a), where the results
from a homodyne measurement of the cavity output light are
fed back to the optomechanical system in a suitable manner,
such that the mechanical system is driven to a low-entropy
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steady state. This situation has been analyzed in [25–27,30].
However, the regime discussed for feedback cooling is typi-
cally restricted to resonant drive and the bad-cavity regime κ >

ωm. In this section we will discuss that feedback cooling can
also be effectively operated in the sideband-resolved regime
κ < ωm, and even on the blue sideband �l = ωm, which is
normally affiliated with heating. Here we will show that we
can harness the entanglement created by the optomechanical
two-mode squeezing interaction for a measurement-based
feedback scheme, which enables us to cool the mechanical
motion to its ground state.

Feedback onto the mechanical system can either be effected
by direct driving through a piezoelectric device [36], or by
modulation of the laser input, as we will assume in the
following. This type of optical feedback can be described by
adding an additional time-dependent term

Hfb = −i
√

κ[ε(t)∗cl − ε(t)c†l ] =
√

2κ[up(t)xl + ux(t)pl]
(10)

to the Hamiltonian, where ε(t) = ux(t) + iup(t) ∈ C is the
complex amplitude of the feedback signal, and |ε(t)|2
accordingly is the incoming photon flux. To choose an
appropriate feedback strategy we employ quantum linear
quadratic Gaussian (LQG) control [37], which is designed to
minimize a quadratic cost function as described in Appendix B.
Applied to feedback cooling the basic working principle is the
following: From the measurement results of the homodyne
detection we calculate the system’s conditional state ρc(t),
whose evolution is described by (5). Based on this state we
can then determine the optimal feedback signal ε(t) which
minimizes the steady-state mechanical occupation number
〈c†mcm〉ss = 1

2 [〈x2
m + p2

m〉ss − 1]. This of course means that
the final occupation number depends on the conditional state
(more specifically on the covariance matrix �̂), and thus
on the chosen LO angle for the homodyne detection as we
discussed above. A suitable cost function for this problem is
given by

h(xm(t),pm(t),ε(t)) = hm[xm(t)2 + pm(t)2] + |ε(t)|2, (11)

with hm > 0. Note that h also includes a contribution by
the feedback signal ε, which precludes feedback strategies
with unrealistically high feedback strength. The parameter
hm therefore effects a trade-off between feedback strength
and final occupation number nss

m: high values of hm result in
low occupation number possibly requiring large |ε| and vice
versa. The mean photon flux in the feedback signal can be
calculated as described in Appendix B. For the parameters
used in this section we find that on average |ε|2 is small
compared to the overall driving strength in typical experiments.
Only in the region of κ → 0—where almost no photons enter
the cavity—the required |ε|2 may increase dramatically. We
note that in order for LQG control to work correctly, certain
observability and controllability conditions need to be satisfied
[12], which is indeed the case for our system. Additionally, we
assume here that the feedback is instantaneous. In practice this
means that any feedback delay τ should be small on the typical
time scales of the system, i.e., τ � 1/ωm, 1/κ .

The final mechanical occupation is found by first calculat-
ing the steady-state variances (�xm)2 and (�pm)2 for a closed

(a)

(b)

FIG. 4. (Color online) Steady-state mechanical occupation num-
ber nss

m minimized with respect to the LO angle φ against detuning of
the driving laser �l (a) in the bad-cavity regime (κ = 4ωm) and (b) in
the sideband-resolved regime (κ = ωm/2), for detection efficiencies
η = 1 (solid lines) and η = 8/10 (dashed lines). Different colors or
gray levels denote different coupling strengths g. Other parameters:
Q = 5 × 106, n̄ = 3.5 × 105, hm = 100.

feedback loop as outlined in Appendix B. nss
m is then given by

nss
m = 1

2 [(�xm)2 + (�pm)2 − 1] (for 〈xm〉ss = 〈pm〉ss = 0).
In Fig. 4 we plot the steady-state occupation numbers

of the feedback-cooled mechanical mode against the laser
detuning �l , for the bad-cavity regime (upper plot) and
the sideband-resolved regime (lower plot), for two different
coupling strengths g. For each detuning the homodyne phase φ

is chosen such that the occupation number is minimized.1 Note
that we keep g constant while varying �l (or κ). This means
that the driving laser power has to be adjusted accordingly.
In the bad-cavity regime κ > ωm we find that driving on
resonance is favorable for both values of g. In this case the
optimal LO phase is φ = π/2, as discussed in the previous
section. This is the usual regime for feedback cooling [1,19],
which is inspired by the idea of quantum nondemolition
measurements [38], as they are commonly used in gravitational
wave detection.

1This can be achieved in a systematic way by finding the “optimal
unravelling”; see [12]. Here we simply use a simplex method for
optimization.
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(a)

(b)

FIG. 5. (Color online) Steady-state mechanical occupation num-
ber nss

m minimized with respect to φ for different driving frequencies
�l = 0,±ωm, corresponding to a laser drive on the mechanical
sidebands and on resonance (represented by different colors or gray
levels). Solid lines represent feedback cooling, while the dashed
line (for �l = −ωm only) corresponds to sideband cooling without
feedback. (a) nss

m against coupling g for fixed cavity decay rate
κ = ωm/2 (sideband-resolved regime). (b) nss

m against κ for g =
ωm/10 (weak-coupling regime). Other parameters for both (a) and
(b): Q = 5 × 106, n̄ = 3.5 × 105, hm = 100, η = 1.

For micromechanical systems, however, the sideband-
resolved regime κ < ωm is typically more relevant. In this
regime the picture changes completely. For weak coupling
(g < κ) we find two pronounced dips at both mechanical
sidebands (�l = ±ωm), where nss

m is locally minimal and
clearly lies below the value on resonance. It is obvious
from the figure that cooling works best on the red sideband
(�l = −ωm), where we have a cumulative effect from passive
sideband and feedback cooling (see also Fig. 5). However,
even on the blue sideband (�l = ωm)—which is commonly
associated with heating—we find an appreciable reduction
of the mechanical occupation by feedback cooling. As we
discussed in the previous section, we can attribute this effect
to large optomechanical correlations, which allow for a good
readout of the mechanical motion and thus a good feedback
performance. If we increase the coupling strength to g = 0.3κ

we see a peak appearing around the blue sideband (which

we attribute to ponderomotive squeezing of the output fields),
pushing the occupation number above the value at �l = 0.
For both regimes we plot graphs for two different detection
efficiencies η = 1 (lossless detection) and η = 8/10. Clearly,
non-unit detection efficiency leads to a noticeable degradation
of feedback-cooling performance. Only at the red sideband and
in the sideband-resolved regime, where the effect of sideband
cooling dominates, the final occupation number is virtually
unaffected.

Figure 5(a) shows the mechanical occupation for three
detunings �l = 0,±ωm plotted against g. For �l = −ωm we
show, additionally to the closed-loop feedback solution (red
solid line), the solution for sideband cooling (red dashed line).
While for �l = 0 and �l = −ωm the occupation number
steadily decreases—in the depicted range—for growing g, for
�l = ωm a clear minimum is visible in the weak-coupling
regime at g ≈ κ/10. This minimum lies well below the value
for �l = 0 (but still above the value for the red sideband).
This means that there exists a considerably large parameter
regime where a detuned operation significantly improves the
performance of feedback cooling. Note that all curves rise
drastically in the strong-coupling regime, where g/κ � 1 (not
shown in the plot). In Fig. 5(b) we plot nss

m against cavity
linewidth κ for constant coupling g. Again we find that
feedback on the sidebands works best in the sideband-resolved
regime, while in the bad-cavity regime working on resonance
yields (slightly) better performance. Again, the occupation
number is minimized with respect to the homodyne phase φ

at each point in the plot.
In summary we illustrated that feedback cooling in the

resolved-sideband regime is a viable option for cooling the
mechanical oscillator into its ground state. It turns out that in
this regime driving the system on the blue mechanical sideband
yields a lower mechanical occupation number than operating
on resonance. As an extension of this protocol we will show
in the next section that a similar setup operating at the same
working point can be used to remotely prepare a squeezed
mechanical state via time-continuous teleportation.

D. Time-continuous optomechanical teleportation

Time-continuous teleportation is facilitated by what we
call a time-continuous Bell measurement [20], as depicted
in Fig. 1(b): The output field A of an optomechanical system
(denoted by S) is mixed with a second field B on a beam
splitter. The resulting fields are then sent to two homodyne
detection setups which measure the Einstein-Podolsky-Rosen
(EPR) quadratures x+ = xa + xb and p− = pa − pb where
xa , xb and pa , pb are the amplitude and phase quadratures
of the respective fields. The field B is prepared in a pure
state of Gaussian-squeezed white noise, which we denote
by |M〉, where M ∈ C characterizes the squeezing (see
Appendix C); |M| describes the absolute increase (reduction)
of the antisqueezed (squeezed) quadrature, while arg (M)
determines the squeezing angle. Provided the optomechanical
system–field interaction creates entanglement between the
mechanical mode and the outgoing light field, the state of
B can be teleported to the mechanical oscillator by applying
(instantaneous) feedback proportional to the measurement
results of the Bell measurement (I±). This effectively generates
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dissipative dynamics which drive the mechanical system
into a steady state coinciding with the input light state. In
Sec. III B we derive the constitutive equations of motion (the
conditional master equation and feedback master equation) for
a generic system. In this section we will focus on the optome-
chanical implementation. Technical details are discussed in
Sec. III D 1.

In order to successfully implement continuous teleportation
in optomechanical systems we need to appropriately design
our measurement setup. To do this we first need a clear picture
of the system’s dynamics: In the regime g � κ � ωm and
for a blue drive with �l = ωm the optomechanical interaction
is Hom ≈ g(cmcl + c

†
mc

†
l ). Under the weak-coupling condition

(g � κ) the cavity follows the mechanical mode adiabatically.
We will see that in this regime we effectively obtain the
required entangling interaction between the mirror and the
outgoing field. Moreover, the mechanical oscillator resonantly
scatters photons into the lower sideband at ωc = ω0 − ωm.
Spectrally, the photons which are correlated with the mechan-
ical motion are therefore located at this sideband frequency.
We thus set up our Bell measurement in the following way:
First, we choose the center frequency of the squeezed input
light located at the sideband frequency ωc. Second, we now
use heterodyne detection to measure quadratures at the same
frequency.

In Sec. III D 1 we show that after adiabatic elimination of the
cavity mode and a rotating-wave approximation, the evolution
of the conditional mechanical state ρ(m)

c in a rotating frame
with ωm (neglecting the mechanical frequency shift by the
optical-spring effect; see Sec. III D 1) is described by the SME

dρ(m)
c = γ−D[cm]ρ(m)

c dt + γ+D[c†m]ρ(m)
c dt

−
√

ηg2κ

2

{
H[iμη+c†m]ρ(m)

c dW+

−H[νη+c†m]ρ(m)
c dW−

}
, (12)

where we defined γ− = γ (n̄ + 1) + 2g2Re(η−), γ+ = γ n̄ +
2g2Re(η+), and η± = [κ/2 + i(−�l±ωm)]−1. The second
row describes passive cooling and heating effects via the
optomechanical interaction, as has been derived before in
the quantum theory of sideband cooling [28,29]. The third
row describes the time-continuous Bell measurement, where
the squeezing parameter M is encoded in μ = 1 − α

and ν = 1 + α, with α = (N + M)/(N + M∗ + 1)
(Appendix C). The parameter N > 0 is connected to M

via |M|2 = N (N + 1). η is the detection efficiency as before.
The measured photocurrents of the Bell measurement are

I+dt = −i
√

ηg2κ/2 〈η+c†m − H.c.〉dt + dW+, (13a)

I−dt =
√

ηg2κ/2 〈η+c†m + H.c.〉dt + dW−, (13b)

where dW± are correlated Wiener increments whose
(co)variances are given by

w1dt := (dW+)2 = [N + 1 + (M + M∗)/2]dt, (14a)

w2dt := (dW−)2 = [N + 1 − (M + M∗)/2]dt, (14b)

w3dt := dW+dW− = −[i(M − M∗)/2]dt, (14c)

as is shown in Sec. III B. For the choice �l = ωm we have
η+ = 2/κ and η− = 1/( κ

2 + 2iωm). Thus I± approximately
correspond to measurements of the mechanical quadratures
pm and xm, respectively. We model the feedback as instan-
taneous displacements of the mechanical oscillator in phase
space, where the feedback strength is proportional to the
heterodyne currents I±(t). This is described by Hamiltonian
terms I±(t)F±, where F± = F

†
± are generalized forces. The

feedback operators we choose to be F+ = −
√

2g2κ η+ xm and
F− = −

√
2g2κ η+ pm, which generate a displacement in pm

and xm, respectively. The prefactors of F± (i.e., the feedback
gain) we chose such that they match the measurement strength
of the Bell detection. The corresponding feedback master
equation (in the same rotating frame) can be written as

ρ̇(m) = γ (n̄ + 1)D[cm]ρ(m) + γ n̄D[c†m]ρ(m)

+ (4g2/κ) {λ1(ε)D[J1(ε)] + λ2(ε)D[J2(ε)]} ρ(m),

(15)

where ε = [1 + (4ωm/κ)2]−1 quantifies the suppression of
the counterrotating interaction terms (i.e., the optomechanical
beam splitter). This suppression is large (ε � 1) in the
sideband-resolved regime where κ � ωm and small (ε ≈ 1)
in the bad-cavity regime (κ � ωm). The effective Lindblad
terms are determined by λi and Ji , which are obtained
(see Appendix D) from the eigenvalue decomposition of the
positive matrix

� =
( w2

η
− 1

2 (1 + ε) −w3
η

+ i
2 (1 + ε)

−w3
η

− i
2 (1 + ε) w1

η
− 1

2 (1 + ε)

)
.

For efficient detection (η = 1) we obtain λ1 = (2N + 1) +
O(ε) and λ2 = O(ε), which means that in the sideband-
resolved regime the jump operator J2(ε) contributes only
weakly. In zeroth order in ε the dominating dissipative dynam-
ics are generated by J1(0) ∝ −i(2N + 1 − M − M∗)xm +
(1 + M − M∗)pm. If we define as Uπ/2 the local unitary which
effects the canonical transformation xm → pm, pm → −xm,
we find by comparison with (C3) that U

†
π/2J1(0)Uπ/2|−M〉 =

0. Taking into account relations (C2) one can easily show that
Uπ/2|−M〉 = |M〉. This means that |M〉〈M| is a dark state of
D[J1(0)] and thus in the ideal limit of γ = 0, ε = 0, η = 1 the
steady state of (15) is limt→∞ ρ(m)(t) = |M〉〈M|. Hence, the
optical input state is perfectly transferred to the mechanical
mode.

Moving away from the ideal case, the protocol’s perfor-
mance is degraded by mechanical decoherence effects (γ n̄ >

0), counterrotating terms of the optomechanical interaction
which are suppressed by ε < 1, and inefficient detection
(η < 1) which leads to imperfect feedback. Figure 6 shows the
steady-state squeezing ζ transmitted to the mechanical mode
for different parameters plotted against the optomechanical
cooperativity C = 4g2/(n̄ + 1)γ κ . In the upper plot we
assume perfect detection efficiency η = 1 and find that in this
case there exists a critical value Ccrit(N ) = 1/[

√
N (N + 1)]

determined by the input squeezing N above which the resulting
mechanical state is squeezed for any thermal occupation
number n̄. The lower plot clearly shows that this is no longer
true if we assume non-unit detection efficiency η. We find
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(a)

(b)

FIG. 6. (Color online) Mechanical squeezing ζ against co-
operativity C: (a) Varying mechanical bath occupation n̄ =
0, 1/10, 1/2, ∞ (represented by different colors or gray levels) and
unit detection efficiency η = 1. The solid (dashed) lines represent
a sideband resolution of κ/ωm = 1/10 (1). (b) Different detection
efficiencies η = 1, 9/10, 7/10, 6/10 (represented by different colors
or gray levels) and κ = ωm/10. Here the solid (dashed) lines represent
n̄ = 0 (∞). In both plots the horizontal solid line at ζ = −6 dB
(corresponding to N ≈ 0.56) shows the squeezing level of the input
light and the vertical dashed line the critical cooperativity Ccrit ≈ 2.7.

that below a certain critical value ηcrit(N,n̄) we can no longer
transfer squeezing to the mechanical oscillator, but we rather
heat it instead. (This is even true for a zero-temperature
mechanical environment, as illustrated in the plot.) In this
general case it can be beneficial to chose a modified feedback
gain, i.e., use feedback operators F̃± = σF± with σ �= 1.
In the parameter regime we consider however the resulting
improvement negligible.

E. Time-continuous optomechanical entanglement swapping

We now replace the squeezed field mode with a second
optomechanical cavity, as is depicted in Fig. 1(c). The goal
of this scheme is to generate stationary entanglement between
the two mechanical subsystems. This is again facilitated by
a time-continuous Bell measurement—measuring the output
light of both cavities—plus feedback [20]. The implementation
is akin to the teleportation protocol presented above: Both
cavities are driven on the blue sideband to resonantly enhance
the two-mode squeezing interaction, and their output light is
sent to the Bell detection setup which operates at the cavity

resonance frequency ωc. Feeding back the Bell detection
results I± corresponding to the x+ and p− quadratures of
the optical fields to both mechanical systems dissipatively
drives them towards an entangled state. There is a slight
complication, however. A single Bell measurement only
allows us to separately monitor two of the four variables
(xm,1,pm,1,xm,2,pm,2) needed to describe the quantum state
of the mechanical systems.2 Combined with the fact that we
drive the system on the blue side of the cavity resonance
(and thus in an unstable regime) this means that we cannot
actively stabilize the system and—depending on the driving
strength and sideband resolution—no steady state may exist.
To compensate for this we extend the setup by two additional
heterodyne detectors, measuring x− and p+ with outcomes
I ′
∓. The effective measurement strength of this stabilizing

measurements with respect to the Bell measurement is set
by the transmissivity υ of the beam-splitter in front of
the heterodyne setup (see Fig. 1). Appropriate feedback of
all measurement currents I±, I ′

± (for simplicity labeled Ii ,
i = 1, . . . ,4, below) to both mechanical systems finally allows
us to stabilize them in an entangled state. Note that this setup
effectively realizes two simultaneous Bell measurements of
the pairs (x+,p−) and (x−,p+) with detection efficiencies υ

and 1 − υ, respectively. In the rest of this section the two
optomechanical systems are assumed to be identical and all
detectors to have the same quantum detection efficiency η.

In Sec. III D 2 we show that in an adiabatic approximation
the conditional state of the two mechanical oscillators ρ(m) in a
rotating frame can be described by the SME (setting �l = ωm)

dρ(m)
c = ε

4g2

κ

(
D[cm,1]ρ(m)

c + D[cm,2]ρ(m)
c

)
dt

+
2∑

i=1

{
γ (n̄ + 1)D[cm,i]ρ

(m)
c + γ n̄D[c†m,i]ρ

(m)
c

}
dt

+ 2g2

κ

4∑
i=1

(
D[Ji]ρ

(m)
c dt + √

ηH[Ji]ρ
(m)
c dWi

)
,

(16)

where we set (J1,J2) = √
υ(cm,+,icm,−), (J3,J4) =√

1 − υ(icm,+,cm,−), and cm,± = cm,1 ± cm,2. The Wiener
processes Wi are uncorrelated with unit variance, i.e.,
dWidWj = δij dt , and correspond to the photocurrents

Iidt =
√

4g2/κ〈Ji + J
†
i 〉cdt + dWi. (17)

The final steady state of this protocol depends on the feed-
back operators Fi = F

†
i we apply. In analogy to the previous

section we choose (F1,F2) = √
υσ (ic+ − ic

†
+,c− + c

†
−) and

(F3,F4) = √
1 − υ(c+ + c

†
+,ic− − ic

†
−), which can realize

independent displacements of all mechanical quadratures. This
time we introduced an additional gain parameter σ which we
can vary in order to optimize the amount of entanglement in the
resulting steady state. With these choices the feedback master

2In the language of control theory this means that the complete
system is not observable (see for example [12]).
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equation for optomechanical entanglement swapping takes the
form

ρ̇(m)
c = −i

[
Hfb,ρ

(m)
c

] + ε
4g2

κ
(D[cm,1] + D[cm,2])ρ(m)

c

+
2∑

i=1

{
γ (n̄ + 1)D[cm,i]ρ

(m)
c + γ n̄D[c†m,i]ρ

(m)
c

}
+ 2g2

κ

4∑
i=1

{
D[Ji − iFi]ρ

(m)
c + 1 − η

η
D[Fi]

}
, (18)

where the dynamics generated by the feedback is described by
Hfb = i[(1 + σ )υ − 1](2g2/κ)(c2

m,+ + c2
m,− − H.c.). We can

now analyze the stability properties of the linear feedback sys-
tem by evaluating the corresponding Routh-Hurwitz criterion.
In the case of no stabilizing feedback (υ = 1) we find that
the admissible optomechanical coupling is limited from above
by 4g2/κ < 1/(1 − ε), which only gives an appreciably high
limit for values of ε ≈ 1 and thus in the bad-cavity regime. The
stabilization is caused by the counterrotating beam-splitter
terms cm,ic

†
l,i + H.c. of the optomechanical Hamiltonian,

which cool the mechanical systems. This cooling effect,
however, diminishes the amount of generated steady-state
entanglement. If we switch on the stabilizing feedback and
thus choose υ < 1, we can rewrite the RH criterion in the
form [3 + (4g2/κ)−1 + ε] > 4υ > [(1 − ε) − (4g2/κ)−1]/σ
(where we assumed ε < 1). These inequalities are tightest in
the limit ε → 0, g2/κ → ∞ where we have 3 > 4υ > 1/σ .
For the rest of this section we choose υ = 3/4 which ensures
stability of the feedback system for any values of g2/κ and
ε—and consequently the sideband resolution κ/ωm—as long
as the feedback gain fulfills σ > 1/3. In the stable regime and
for ε = 0, η = 1 we find a simple analytic expression for the
steady-state logarithmic negativity,

Ess
N = ln

(
1
2C(n̄ + 1)(3σ − 1)(4υ − 1) + 1

C(n̄ + 1)[3σ (σ − 1) + 1] + 2n̄ + 1

)
, (19)

where we again introduced the cooperativity C = 4g2/(n̄ +
1)γ κ . Generally we can—for each set of parameters
(C,n̄,ε,υ,η)—maximize the entanglement EN with respect to
the feedback gain σ . In Fig. 7 we plot the resulting steady-state
values in terms of logarithmic negativity EN and EPR variance

�EPR = min
φ1,φ2

([
�

(
x

φ1
m,1 − x

φ2
m,2

)]2 + [
�

(
p

φ1
m,1 + p

φ2
m,2

)]2)
,

(20)

where x
φ

m,i = (cm,ie
−iφ + c

†
m,ie

+iφ)/
√

2 and p
φ

m,i = x
φ+π/2
m,i

are rotated mechanical quadratures. A Gaussian state is
entangled if �EPR < 2 [39,40]. In the first plot we assume
a perfect detection efficiency η = 1 and consider different
bath occupation numbers n̄. We again see that there exists
a critical cooperativity Ccrit above which we are able to
generate entanglement regardless of n̄. From (19) we can
deduce the expression Ccrit(υ,σ ) = 4/[3σ (1 + 4υ − 2σ ) −
(1 + 4υ)]. (As is evident from the plot, the Ccrit is independent
of ε.) For the parameters used in the plot (taking into account
the optimization with respect to σ ) we find Ccrit = 2. Again,
counterrotating terms decrease entanglement but are strongly

(a)

(b)

FIG. 7. (Color online) Two-mode mechanical steady-state entan-
glement in terms of Ess

N and �EPR against cooperativity C, maximized
with respect to feedback gain σ : (a) Varying mechanical bath
occupation n̄ = 0, 1/10, 1/2, ∞ (represented by different colors
or gray levels) for unit detection efficiency η = 1. The solid
(dashed) lines represent a sideband resolution of κ/ωm = 1 (1/10).
(b) Different detection efficiencies η = 1, 9/10, 7/10, 6/10 (repre-
sented by different colors or gray levels) and κ = ωm/10. Here the
solid (dashed) lines represent n̄ = 0 (∞). The black vertical line
shows the critical cooperativity Ccrit = 2.

suppressed by the sideband resolution. In Fig. 7(b) we take into
account losses and non-unit detection efficiency, η < 1, which
drastically reduces the amount of achieved entanglement.
As before we find a critical loss value ηcrit(n̄,υ) (for the
parameters chosen in the plot slightly above 65%) below which
entanglement creation is prohibited.

III. DERIVATION OF CONDITIONAL AND FEEDBACK
MASTER EQUATIONS

We present here a brief (and informal) derivation of the
stochastic master equations (SME) and Markovian feedback
master equations (FME) we use throughout the paper. A
rigorous and complete account of the quantum stochastic
formalism and quantum filtering theory can be found in the
literature, e.g., [12,41–45], and a brief summary of the most
important relations is given in Appendix A.
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A. The homodyne master equation

We consider a situation similar to Fig. 1(a), where a system
S couples to the one-dimensional electromagnetic field A,
which is initially in vacuum and is subject to homodyne
detection. We first assume unit detection efficiency, but will
discuss the case of inefficient detection at the end of the section.
The system-field coupling is mediated by the Hamiltonian3

Hint = i[s a†(t) − s†a(t)], (21)

where s is a system operator (e.g., a cavity creation or
destruction operator), and the light field is described (in
an interaction picture at a central frequency ω0) by a(t) =∫

dω a0(ω) e−i(ω−ω0)t [46], where a0(ω) is the (Schrödinger)
annihilation operator of the field mode at ω. In a Markov
approximation the field operators are δ correlated, and fulfill
the commutation relations

[a(t),a†(t ′)] = δ(t − t ′). (22)

Under this approximation we can introduce the Itō increments
dA, dA†, which (formally) obey dA(t) = a(t)dt , etc., and the
vacuum multiplication table given in Appendix A.

The Schrödinger equation for the full system (S + A)
initially in the state |φ0〉 = |ψ0〉S |vac〉A can be written in Itō
form as

d|φ(t)〉 = {−iHeffdt + s[dA†(t) + dA(t)]}|φ(t)〉, (23)

where we used the fact that dA(t)|φ(t)〉 = dA(t)|φ0〉 =
dA(t)|vac〉 = 0 [35]. A homodyne measurement of an elec-
tromagnetic quadrature x = a + a† with a result Ix effectively
projects the state of the light field onto the eigenstate |Ix〉 of
x, where x|Ix〉 = Ix |Ix〉 [47]. Projecting (23) onto |Ix〉 leads
to the linear stochastic Schrödinger equation (SSE) [48]

d|ψ̃c(t)〉 = [−iHeffdt + s Ix(t)dt] |ψc(t)〉, (24)

with the forward-pointing Itō increment d|ψ̃c(t)〉 =
|ψ̃c(t + dt)〉 − |ψc(t)〉. |ψ̃c〉 is the unnormalized system state
which is conditioned on the homodyne photocurrent Ix . Ix

is δ correlated, i.e., 〈Ix(t)Ix(s)〉 = δ(t − s), and its probability
distribution is given (for a fixed time t) by ϒt (Ix) = |〈Ix |φ(t +
dt)〉|2 [12,47]. Using this, one can show that Ix can be written
as [12,35]

Ix(t)dt = 〈s + s†〉c(t)dt + dW (t), (25)

where W is a classical Wiener process with dW (t)2 = dt and
E[dW (t)] = 0. Here the conditional expectation value should
be read as 〈A〉c(t) = 〈ψc(t)|A|ψc(t)〉. We can introduce the
classical stochastic process X̃ defined by dX̃(t) = Ix(t)dt ,
which is statistically equivalent to dA(t) + dA(t)†. This is
due to nondemolition properties of the measurement operator;
see [44]. It obeys dX̃(t)2 = dt .

The corresponding equation of motion for the unnormalized
conditional state ρ̃c = |ψ̃c〉〈ψ̃c| can be deduced from (24),

dρ̃c(t) = ρ̃c(t + dt) − ρc(t)

= Lρc(t)dt + [sρc(t) + ρc(t)s†]dX̃(t), (26)

3Note that both operators s and a(t) have a dimension [s] = [a(t)] =√
Hz.

where we used Itō calculus as presented in Appendix A. Here
the Liouvillian L is given by

Lρ = −i(Heffρ − ρH
†
eff) + sρs†. (27)

Equation (26) is the quantum analog to the classical Zakai
equation [49]. Note that although the Liouvillian is trace
preserving (i.e., tr[Lρ] = 0), the second term in (26) does not
possess this property. The equation for the normalized state
ρc(t) = ρ̃c(t)/tr[ρ̃c(t)] is then found by noting that

tr[ρ̃c(t + dt)] = 1 + 〈s + s†〉c(t)dX̃(t), (28)

where now 〈A〉c = tr[ρc(t)A] and we used tr[ρc(t)] = 1. Thus
we find

tr[ρ̃c(t + dt)]−1 = 1 − 〈s + s†〉c(t)dX̃(t) + [〈s + s†〉c(t)]2dt,

(29)

which is obtained by expanding tr[ρ̃c(t + dt)]−1 to second
order in dX̃ (which leads to a first-order expansion in dt).
Using Itō multiplication rules this leads to

dρc(t) = ρ̃c(t + dt)

tr[ρ̃c(t + dt)]
− ρc(t)

= Lρc(t)dt + H[s]ρc(t)dW (t), (30)

which is the desired result [12,35]. The (nonlinear) measure-
ment term is given by

H[s]ρc = (s − tr[ρcs])ρc + ρc(s − tr[ρcs])†. (31)

It is clear from the derivation that under the made assumptions
the SSE (24) is equivalent to the SME (30). The stochastic
master equation is more general, however, as it can account
for additional, unobserved decay channels (such as photon
losses or inefficient detection, or coupling of a mechanical
oscillator to a heat bath), as well as for mixed initial
states.

We can generalize the homodyne master equation in several
ways: Above we assumed a measurement of a specific light
quadrature x = a + a†. To measure a rotated quadrature xφ =
ae−iφ + a†e+iφ we have to make the replacement s → eiφs,
which simply follows from replacing a → e−iφa. We can as
easily obtain the SME corresponding to heterodyne detection
at a LO frequency ωlo �= ω0 by substituting s → ei�lot s,
where �lo = ωlo − ω0. Below we will discuss the situation
where we split up the field with a beam splitter (with
a splitting ratio η : 1 − η) and perform two simultaneous
homodyne measurements on its outputs. The measured modes
A′, B after the beam splitter [see Fig. 1(a)] are related
to A before the beam splitter via [50] a(t) = √

η a′(t) +√
1 − η b(t), where A′ and B are both initially in vacuum

and are uncorrelated such that dA(t)dB†(t) = 0, etc. Plugging
this relation into (23) and projecting onto the quadratures
e−iφ1a′ + eiφ1a′†, e−iφ2b + eiφ2b† one can repeat the above
steps and find

dρc = Lρcdt + √
ηH[eiφ1s]ρcdW1

+
√

1 − ηH[eiφ2s]ρcdW2, (32)

with uncorrelated Wiener processes Wi , i.e., dWidWj = δij .
To model photon losses or inefficient photodetectors, we
average over, say, the second measurement process, and thus
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discard all information obtained from it. Due to the fact that
E[dW2] = 0, the equation of motion for the resulting condi-
tional state—which is now conditioned on the measurement
results of the first channel only—is obtained by dropping
the last term in (32). The beam-splitter transmissivity is then
identified with the efficiency of the photodetection. Formally
we can obtain the same result from (30) by replacing s →√

ηs in the measurement term, while keeping the Liouvillian
unchanged.

B. Time-continuous teleportation

1. Conditional master equation

We now extend the derivation of the homodyne SME
presented in the previous section to the Bell-measurement
setup depicted in Fig. 1(b). Again, a one-dimensional field
mode A [described by a(t)] couples to a system S via (21). A

is assumed to be in the vacuum state. A second field mode, B

[with a field operator b(t)] is prepared in a pure squeezed state,
parametrized by M ∈ C, which we simply denote by |M〉. M

describes the degree and angle of squeezing, as described in
Appendix C. The Itō multiplication table for B is thus given
by

× dB dB† dt

dB M dt (N + 1)dt 0
dB† N dt M∗dt 0
dt 0 0

with the condition |M|2 = N (N + 1). A and B are combined
on a balanced beam splitter, whose output is sent to two
homodyne detection setups, which are set up such that
they measure the EPR operators x+ = (a + a† + b + b†)/

√
2

and p− = i(a − a† − b + b†)/
√

2. We call the continuous
measurement of the two quadratures x+ and p− a time-
continuous Bell measurement [20]. To find the corresponding
SME, describing the state of S conditioned on measurements
of x+ and p−, we apply the same reasoning as in the previous
section. We start from the Schrödinger equation (23) but now
choose the initial condition |φ0〉 = |ψ0〉S |vac〉A|M〉B . Using
the eigenvalue equation for squeezed states (C3), written as
[dB(t) − αdB(t)]|M〉 = 0 with α = (N + M)/(N + M∗ +
1), and again dA(t)|vac〉 = 0, we can write

d|φ〉 = {−iHeffdt + s[dA† − αdA + dB − αdB†]}|φ〉
= {−iHeffdt +

√
1/2 s[μdX+ + iνdP−]}|φ〉, (33)

where μ = 1 − α, ν = 1 + α and dX+(t) = x+(t)dt ,
dP−(t) = p−(t)dt . Going from the first to the second line
we used the fact that a† + b = (x+ + ip−)/

√
2. We emphasize

that x+ and p− commute and can be measured simultaneously.
We can thus directly project equation (33) onto the EPR
state |I+I−〉AB defined by x+|I+I−〉AB = I+|I+I−〉AB and
p−|I+I−〉AB = I−|I+I−〉AB . This yields the linear stochastic
Schrödinger equation

d|ψ̃c〉 = {−iHeffdt +
√

1/2 s[μdX̃+ + iνdP̃−]}|ψc〉,
(34)

where dX̃+(t) = I+(t)dt and dP̃−(t) = I−(t)dt are again clas-
sical processes which possess the same statistical properties as

their quantum counterparts. The photocurrents I± (analogous
to the previous section) can be written as

I+dt =
√

1/2〈s + s†〉cdt + dW+, (35a)

I−dt = i
√

1/2〈s − s†〉cdt + dW−, (35b)

with Wiener increments dW±. Comparison to the output of a
single homodyne setup (25) shows that I± correspond to two
simultaneous homodyne measurements with half efficiency.
The (co)variances of dW± are given in equations (14) and
directly follow from the definition of dX+, dP− and the
multiplication tables for dA and dB. We now repeat the
procedure from the previous section which is now more
involved due to the fact that we have to deal with two
correlated random processes. It is convenient to introduce the
complex process dY (t) = μdX̃+(t) + iνdP̃−(t), which obeys
dY 2 = 2ζdt := − 2N/M∗dt and |dY |2 = 2dt . We can then
write the Zakai equation corresponding to (34) as

dρ̃c = Lρcdt +
√

1/2(sρcdY + ρcs
†dY ∗), (36)

with L defined in (27). To normalize this equation we first
calculate

tr[ρ̃c(t + dt)] = 1 +
√

1/2[〈s〉c(t)dY (t) + H.c.], (37)

which we use to obtain (by expanding to second order in dY )

tr[ρ̃c(t + dt)]−1 = 1 −
√

1/2[〈s〉c(t)dY (t) + H.c.]

+ (1/2){[〈s〉c(t)]2ζ + [〈s†〉c(t)]2ζ ∗

+ 4|〈s〉c(t)|2}dt. (38)

Combining this with (36) we find after some algebra

dρc = Lρcdt +
√

1/2[μ(s − 〈s〉c)ρc + H.c.]ρcdW+

+
√

1/2[iν(s − 〈s〉c)ρc + H.c.]ρcdW−

= Lρcdt +
√

1/2{H[μs]ρcdW+ + H[iνs]ρcdW−}.
(39)

It can easily be checked that this is an equation of the form
(B1) and thus a valid Belavkin equation [51].

To conclude this section let us briefly discuss, as a slight
variation of the above setup, the situation where instead
of the squeezed state |M〉B we use a displaced squeezed
state |M,β〉B = D(β)|M〉B (see Appendix C) as an initial
state of mode B, and thus as an input state for telepor-
tation. Transforming the Schrödinger equation (23) into a
displaced frame with D(β) shows that the structure of the
SSE (24) and the SME (39) remains unchanged, if the mea-
surement processes are replaced by appropriately displaced
versions, dX̃+ → dX̃+ − √

1/2(β + β∗)dt and dP̃− →
dP̃− + i

√
1/2(β − β∗)dt . Consequently, the same transfor-

mation has to be applied to the currents I± in Eqs. (35). A more
rigorous derivation of the results in this section is presented
in [52].

2. Feedback master equation

We follow [53] to apply Markovian (i.e., instantaneous)
feedback proportional to the homodyne currents I± to the
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system S. This procedure consists of three steps: converting
the Itō equation for the conditional state into Stratonovich
form [35], adding a feedback term, and converting back to the
Itō form in order to average over all possible measurement
trajectories and to obtain an unconditional master equation.
The feedback we model as generalized forces F± = F

†
± in

the form of additional Hamiltonian terms which we write as
K±ρI± = −i[F±I±,ρ].

We start by rewriting the SME (39) in terms of the complex
Wiener increment dWy = μdW+ + iνdW− (this time includ-
ing the detector efficiency η as discussed in Sec. III A),

dρc = Lρcdt +
√

η/2(GρcdWy + G†ρcdW ∗
y ), (40)

where we defined Gρ = (s − tr[sρ])ρ and G†ρ = (Gρ)†. The
Stratonovich form of this equation is given by

(S) dρc = Lρcdt +
√

η

2
(GρcdWy + G†ρcdW ∗

y )

− η

4
(GρcdWy + G†ρcdW ∗

y )2

= L̄ρcdt +
√

η

2
(GρcdWy + G†ρcdW ∗

y ), (41)

with the definition L̄ = L − η

2 [ζG2 + ζ ∗(G†)2 + 2G†G]. Here
we used the fact that G†G = GG†. Adding feedback terms
[ρ̇c]fb = √

1/2η[K+I+ + K−I−] and converting back to the
Itō form yields

dρc = Lρc + (1/4η)(K+dX̃+ + K−dP̃−)2ρc

+ (1/2)(K+dX̃+ + K−dP̃−)(GdWy + G†dW ∗
y )ρc

+
√

1/2η(K+dX̃+ + K−dP̃−)

+
√

η/2(GdWy + G†dW ∗
y )ρc, (42)

where we chose an ordering KG to get a trace-preserving
master equation [53]. We can now average over all possible
measurement trajectories (i.e., over all classical processes X̃+,
P̃−, Wy) to obtain an unconditional (deterministic) master
equation. A longish calculation leads to

ρ̇ = Lρ + 1

2

{
w1 − w3

η
D[F+] − i[F+,sρ + ρs†]

}
+ 1

2

{
w2 − w3

η
D[F−] − i[F−,(is)ρ + ρ(is)†]

}
+ w3

2η
D[F+ + F−], (43)

where we used the fact that 1
2 (K±)2 = D[F±] and

1
2 (K+K− + K−K+) = D[F+ + F−] − D[F−] − D[F+]. wi

are the (co)variances of dW+, dW− and are given by
(14). Using the identity D[s + iF±]ρ = D[s]ρ + D[F±]ρ +
i[F±,sρ + ρs†] + i

2 [ρ,F±s + s†F±] this can be written in the

more familiar form

ρ̇ = −i[H + (1/4){(F+ + iF−)s + s†(F+ − iF−)},ρ]

+ (1/2)

{
D[s − iF+]ρ + D[s − F−]ρ

+ w3

η
D[F+ + F−]ρ +

(
w1 − w3

η
− 1

)
D[F+]ρ

+
(

w2 − w3

η
− 1

)
D[F−]ρ

}
. (44)

If we consider again the situation where we use a displace
squeezed state |M,β〉B as input, we make the replace-
ments dX̃+ → dX̃+ − √

1/2(β + β∗)dt and dP̃− → dP̃− +
i
√

1/2(β − β∗)dt in Eq. (42). This only changes the third
line as all products dX̃2, dX̃dWy , etc., are unaffected.
After taking the classical average this yields an additional
Hamiltonian term Hcoh = √

2[Re(β)F+ − Im(β)F−] which
has to be incorporated into L in the FME (43).

Note that equation (44) is not necessarily a Lindblad
equation, as the prefactors to the operatorsD may in general be
negative. It can easily be brought into Lindblad form, however;
see Appendix D.

C. Time-continuous entanglement swapping

1. Conditional master equation

Consider the setup depicted in 3(c): Two systems S1 and S2

couple to field modes A and B (described by field operators a

and b, both in vacuum) via interaction Hamiltonians analogous
to (21). A and B are combined on a 50 : 50 beam-splitter to
form the combinations a ± b in the outputs. These outputs
are sent to a pair of beam splitters (with an uneven splitting
ratio υ : 1 − υ) and subsequently to a total of four homodyne
setups. If we label the modes incident on the homodyne
detectors as Ci (described by field operators ci) for i = 1, . . . ,4
[see Fig. 1(d)], we find the following relations to modes A

and B,

a =
√

υ/2(c1 + c2) −
√

(1 − υ)/2(c3 + c4), (45)

b =
√

υ/2(c1 − c2) −
√

(1 − υ)/2(c3 − c4). (46)

We now choose the LO phases of the four homodyne setups
such that they measure x+ = c1 + c

†
1, p− = −i(c2 − c

†
2), x− =

c4 + c
†
4, and p+ = −i(c3 − c

†
3). These four measurements

allow us to simultaneously monitor both quadratures of both
systems (although with imperfect precision). The measure-
ment of x+ and p−, which we choose to have a relative strength
υ set by the beam-splitting ratio, realize a Bell measurement
as before, while the measurement of the conjugate quadratures
x− and p+, with a strength 1 − υ, we will need for stabilization
of S1 and S2.

To derive the SME we apply the same logic as before.
We start from the Schrödinger equation for the full system
(S1 + S2 + field modes),

d|φ〉 = [−iHeffdt + s1dA† + s2dB†]|φ〉, (47)
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with an initial state |φ〉 = |ψ(0)〉S1S2 |vac〉field and an effec-
tive Hamiltonian Heff = H (1)

sys + H (2)
sys − i

2

∑
i=1,2 s

†
i si . We then

rewrite this in terms of dX± and dP± and project onto
eigenstates corresponding to measurement outcomes I±, I ′

±.
With the definition s± = s1 ± s2 we find

d|ψ̃c〉 = −iHeff|ψc〉dt

+
√

υ/2[s+dX̃+ + is−dP̃−]|ψc〉

+
√

(1 − υ)/2[is+dX̃− + s−dP̃+]|ψc〉, (48)

where |ψ̃〉 is unnormalized. As all electromagnetic field modes
are assumed to be in vacuum we find that the measurement pro-
cesses have unit variance, dX̃±(t)2 = dP̃±(t)2 = dt , and that
they are mutually uncorrelated, i.e., dX̃+dX̃− = dX̃+dP̃+ =
0, etc. This can be shown by expressing ci in terms of a, b and
using Itō rules, where we have to take into account vacuum
noise entering through the open ports of the second pair of
beam splitters (not explicitly introduced here). The homodyne
currents are given by

I+dt =
√

υ/2 〈s+ + s
†
+〉c + dW+, (49a)

I−dt = i
√

υ/2 〈s− − s
†
−〉c + dW−, (49b)

I ′
+dt = i

√
(1 − υ)/2 〈s+ − s

†
+〉c + dV+, (49c)

I ′
−dt =

√
(1 − υ)/2 〈s− + s

†
−〉c + dV−, (49d)

where the Wiener increments dW± and dV± obey a multi-
plication table corresponding to the one of dX̃± and dP̃±.
Following the derivation from Sec. III A with four uncorrelated
homodyne measurements with non-unit efficiency we can
derive the corresponding SME

dρc = Lρcdt +
√

υ/2 {H[s+]ρcdW+ + H[is−]ρcdW−}

+
√

(1 − υ)/2 {H[is+]ρcdV+ + H[s−]ρcdV−} , (50)

with Lρ = −i[H (1)
sys + H (2)

sys ,ρ] + D[s1]ρ + D[s2]ρ.
These results can alternatively be derived in a similar spirit

but in a more formal way within the framework of quantum
networks, as for example presented in [50].

2. Feedback master equation

In this entanglement swapping scheme all four homodyne
currents, I± (Bell measurement) and I ′

± (stabilizing measure-
ments), are fed back to both systems. (For convenience we will
in the following label the photocurrents by Ii , i = 1, . . . ,4,
according to the light modes Ci they correspond to.) We
again describe this by the operations K[Fi]ρIi = −i[FiIi,ρ]
(i = 1, . . . ,4), where Fi = F

†
i now act on the combined

Hilbert space of S1 + S2. Using the procedure from before
it is straightforward to show that the corresponding FME can

be written as

ρ̇c = −i[H,ρ] − i

2

4∑
i=1

[s†i Fi + Fisi,ρc]

+
4∑

i=1

{
D[si − iFi] + 1 − η

η
D[Fi]

}
, (51)

with (si)4
i=1 = (

√
υs+,i

√
υs−,i

√
1 − υs+,

√
1 − υs−). Here

we assumed that all detectors have the same efficiency η.

D. Optomechanical implementation

1. Time-continuous teleportation

Here we derive the stochastic and feedback master equa-
tions for the optomechanical teleportation setup outlined in
Sec. II D, following the lines of Sec. III B with modifications
accommodating the optomechanical implementation. The one-
dimensional electromagnetic field A couples to the cavity via
the linear interaction Hint = i

√
κ[cla

†(t) − c
†
l a(t)]. As before,

A is assumed to be in the vacuum state, while B is in a pure
squeezed state. In this section we refer to several different
rotating frames: the frame of the driving laser rotating at ω0

(which is our standard frame of reference), the squeezing frame
which defines the central frequency for the squeezed input light
at ωs , and the local oscillator frame at ωlo in reference to which
all measurements will be made. We therefore have the relations

a(t) = alo(t)e−i�lot , (52a)

b(t) = bs(t)e
−i�s t = blo(t)e−i�lot , (52b)

with the definitions �lo = ωlo − ω0, �s = ωs − ω0. The
squeezed input state is then, in the squeezing frame, defined
by the eigenvalue equation [bs(t) − αb

†
s (t)]|M〉B = 0 with

α = (N + M)/(N + M∗ + 1). The Schrödinger equation of
the full system in the LO frame can be written as (neglecting
for the moment the coupling to the mechanical bath as this can
easily added in the end)

d|φ〉 = −iHeff|φ〉dt + √
κ(dA

†
lo + αdAlo)ei�lot cl|φ〉

+√
κ(dBloe

−iδt − αdB
†
loe

iδt )ei�lot cl|φ〉, (53)

where |φ〉 is the state describing the complete system with an
initial condition |φ0〉 = |ψ0〉S |vac〉A|M〉B and δ = �lo − �s.
If we now choose �s = �lo, i.e., δ = 0, we can rewrite this as

d|φ〉 = [−iHeffdt +
√

κ/2 (μdX+ + iνdP−) cl e
i�lot ]|φ〉,

where dX+ = √
1/2(alo + a

†
lo + blo + b

†
lo)dt and dP− =

i
√

1/2(alo − a
†
lo − blo + b

†
lo)dt , and μ = 1 − α, ν = 1 + α as

before. By comparing this to the Schrödinger equation (33)
we can deduce that the heterodyne Bell measurement at ωlo

is described by SME (39) together with the expression for
the measurement currents (35) if we set s = cle

i�lot . Thus the
master equation

dρc = Lρcdt + √
κH[(μdW+ + iνdW−)cle

i�lot ]ρc (54)
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together with the output equations

I+dt =
√

1/2〈cle
i�lot + H.c.〉cdt + dW+, (55a)

I−dt = i
√

1/2〈cle
i�lot − H.c.〉cdt + dW− (55b)

provides us with a description of the conditional state of
the full optomechanical system (including the cavity mode)
conditioned on the heterodyne currents I±. What we eventually
seek to obtain, however, is an effective description of the
mechanical system only. In the weak-coupling regime this
can be achieved by adiabatically eliminating the cavity mode,
which corresponds to a perturbative expansion in the small
parameter g/κ � 1. At the same time it will be important
to keep κ/ωm and �l/ωm constant in order to capture the
dynamical back-action effects of the cavity, which are crucial
for a correct description of these systems. As this procedure
is well covered in the literature [26], we will only outline
it briefly and point out the most important differences from
earlier work. To be able to make the desired expansion we
must first transform (54) into the interaction picture defined
by the free Hamiltonian H0 = ωmc

†
mcm − �lc

†
l cl ,

dρ̃c = −ig[(cle
i�l t + H.c.)(cme−iωmt + H.c.),ρ̃c]dt

+√
κH[(μdW+ + iνdW−)cle

i(�lo+�l )t ]ρ̃c

+ κD[cl]ρ̃cdt. (56)

(All operators marked with a tilde, e.g., ρ̃, are defined with
respect to this rotating frame.) Following [26] one can show
that the SME for the mechanical system (in the rotating frame
at ωm) can be written as

dρ̃(m)
c = −

√
2g2

[
x̃m,ỹρ̃(m)

c − ρ̃(m)
c ỹ†] dt

+
√

g2κH[(−iμdW+ + νdW−)ỹei�lot ]ρ̃(m)
c ,

(57)

where ρ̃(m)
c denotes the conditional state of the mechanical sub-

system. Here we also defined ỹ = η−cme−iωmt + η+c
†
meiωmt

and η± = [κ/2 + i(−�l±ωm)]−1.
Equation (57) does not give rise to a valid Lindblad equation

when averaged over all possible measurement trajectories as
ỹ is not a Hermitian operator. In order to get a consistent
equation we apply a rotating wave approximation (RWA) to
both the dynamics generated by the first commutator term
and the measurement term. Let us take a closer look at the
first term in (56): Plugging in the definitions of x̃m and ỹ we
find resonant terms of the form cmρ̃(m)c

†
m, c

†
mcmρ̃(m), etc., and

off-resonant terms oscillating at e±2iωmt . The resonant terms
have two effects: First they give rise to cooling and heating
(see below), and second to a frequency shift of the mechanical
resonance frequency (optical spring effect), yielding ωeff

m =
ωm + g2 Im(η+ + η−). We have to account for this frequency
shift by changing to a different rotating frame at ωeff

m , which
we still denote by ρ̃(m) for simplicity.

We can now introduce a time coarse graining in the form of
δρ̃(m)

c = ∫ t+δt

t
dρ̃(m)

c which we apply to the resulting equation.
We assume that it can be arranged such that ρ̃(m)

c varies
slowly on the time scale δt (and can thus be pulled out

from under all time integrals), while we still average over
many mechanical periods, i.e., δt ωeff

m � 1. In the adiabatic
regime the relevant system time scales are given by g2/κ

and n̄γ , the effective interaction strength and mechanical
decoherence rate, respectively. Hence we find that δt must
fulfill ωeff

m � 1/δt � g2/κ,n̄γ . Although Eq. (57) is valid for
any �lo and �l , the form of the resulting equation in RWA
depends on the choice of �lo. As we illustrate in the main
text we drive the optomechanical cavity on the blue sideband
(ω0 = ωc + ωm), but want the LO to be resonant with the
scattered photons (ωlo = ω0 − ωeff

m ), and thus set �lo = −ωeff
m .

For the first term in (57) the RWA then simply amounts
to dropping all terms oscillating with e±2iωeff

m t (as they are
averaged out by the time coarse graining), which introduces an
error of order 1/(δt ωeff

m ). To treat the heterodyne measurement
we introduce the coarse-grained noise increments δW

(0)
± =∫ t+δt

t
dW±, which obey (14) if one replaces dt with δt . As

we assumed that δt is small on the relevant time scales of
the system in the interaction picture, we can now take the
limit δt → dt (and thus also δρ → dρ(m)

c , δW
(0)
± → dW

(0)
± ).

We find an effective SME for the mechanical system (valid for
�lo = −ωeff

m only),

dρ̃(m)
c = γ−D[cm]ρ̃(m)

c dt + γ+D[c†m]ρ̃(m)
c dt

+
√

g2κ/2 H[(−iμdW
(0)
+ + νdW

(0)
− )η+c†m]ρ̃(m)

c ,

(58)

where we added mechanical decoherence terms, and defined
γ− = γ (n̄ + 1) + 2g2Re(η−) and γ+ = γ n̄ + 2g2Re(η+).
This equation generalizes the standard optomechanical MEQ
from [28]. In principle there exist additional sideband modes
centered at ±2ωeff

m , which in RWA are not correlated with W
(0)
± ,

nor are they entangled with the mechanical motion. We thus
neglect them.

To apply feedback we have to extract the modes cor-
responding to the filtered noise processes W

(0)
± from the

heterodyne currents I±. This can be achieved by applying
the coarse-graining procedure from above to (55a) and (55b),
i.e., I

(0)
± = ∫ t+δt

t
I±dt . Together with 〈cl〉c = −ig〈y〉c, which

results from the adiabatic elimination, we find

I
(0)
+ dt ≈ −i

√
g2κ/2〈η+c†m − H.c.〉dt + dW

(0)
+ , (59a)

I
(0)
− dt ≈

√
g2κ/2〈η+c†m + H.c.〉dt + dW

(0)
− , (59b)

where we neglected contributions from higher sidebands,
introducing corrections on the order 1/(δt ωeff

m ). With the
identification s = −i

√
g2κ η+c

†
m the set of equations (58), (59)

is equivalent to the generic case discussed before. However,
Eq. (58) additionally contains decoherence terms due to
the coupling to the mechanical environment (γ n̄D[c†m] +
γ (n̄ + 1)D[cm]) and due to optomechanical back-action
(2g2 Re(η−)D[cm]). For the choice F+ = −

√
g2κη+(cm + c

†
m)

and F− = i
√

g2κη+(cm − c
†
m) (where the prefactors are cho-

sen to match the operator s), and after adding the appropriate
decoherence terms, the FME for optomechanical teleportation
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can be written as

˙̃ρ(m) = {γ (n̄ + 1)D[cm] + γ n̄D[c†m]}ρ̃(m)

+ 4g2

κ

{
(1 + ε)D[cm] + w3

η
D[xm + pm]

+
(

w1 − w3

η
− 1

)
D[pm]

+
(

w2 − w3

η
− 1

)
D[xm]

}
ρ̃(m), (60)

where ε = [1 + (4ωm/κ)2]−1 and we finally set �l = ωm. By
applying the diagonalization procedure from Appendix D we
can bring this into the form (15).

2. Time-continuous entanglement swapping

In this section we derive the SME (16) and FME (18) which
specify the generic case in Sec. III C for the optomechanical
implementation. Again, the goal is to derive equations for the
mechanical systems, which we obtain by adiabatic elimination
of the cavity and subsequent application of a RWA. As before
the Bell detection operates at the cavity frequency ωc detuned
by �lo = ωlo − ω0 with respect to the driving laser, and
relations (52) still apply. Following the logic from Sec. III D 1
we thus define si = √

κ ei�lot cl,i , which we use together with
the generic entanglement SME (50) and FME (49) as the
starting point for our approximations. Going to the rotating
frame with H0 = ∑

i(ωmc
†
m,icm,i − �lc

†
l,icl,i) and applying

the adiabatic approximation procedure to (50) leaves us with

dρ̃(m)
c = −

√
2g2

∑
i=1,2

[
x̃m,i ,ỹi ρ̃

(m)
c − ρ̃(m)

c ỹ
†
i

]
dt

+
√

g2κυ

2
H[(ỹ+dW+ + iỹ−dW−)ei�lot ]ρ̃(m)

c

+
√

g2κ(1 − υ)

2
H[(iỹ+dV+ + ỹ−dV−)ei�lot ]ρ̃(m)

c ,

(61)

where ỹ± = ỹ1 ± ỹ2 with ỹi = η−cm,ie
−iωmt + η+c

†
m,ie

iωmt .

To apply a time coarse graining δρ(m)
c = ∫ t+δt

t
dρ(m)

c we first
change to the frame rotating with ωeff

m (taking into account
the optical spring effect). If we choose �lo = −ωeff

m we can
drop the fast rotating terms in the first line of (61). For the
measurement terms (second and third lines) we again introduce
δW

(0)
± and neglect any sideband modes. After taking the limit

δt → dt we end up with

dρ̃(m)
c = γ−{D[cm,1] + D[cm,2]}ρ̃(m)

c dt

+ γ+{D[c†m,1] + D[c†m,2]}ρ̃(m)
c dt

+
√

g2κυ/2 η+H[c†m,+dW
(0)
+ + ic

†
m,−dW

(0)
− ]ρ̃(m)

c

+
√

g2κ(1 − υ)/2 η+H[ic†m,+dV
(0)
+

+ c
†
m,−dV

(0)
− ]ρ̃(m)

c , (62)

where we introduced cm,± = cm,1 ± cm,2 and we added
mechanical decoherence terms. We apply the same coarse

graining to the measurement currents (49) and find, by using
si = √

κei�lot cl,i and 〈cl,i〉c = −ig〈yi〉c,

I
(0)
+ dt = −i

√
g2κυ/2 〈η+c

†
m,+ − H.c.〉c + dW

(0)
+ , (63a)

I
(0)
− dt =

√
g2κυ/2 〈η+c

†
m,− + H.c.〉c + dW

(0)
− , (63b)

I
′(0)
+ dt =

√
g2κ(1 − υ)/2 〈η+c

†
m,+ + H.c.〉c + dV

(0)
+ ,

(63c)

I
′(0)
− dt = −i

√
g2κ(1 − υ)/2 〈η+c

†
m,− − H.c.〉c + dV

(0)
− .

(63d)

One can clearly see that Eqs. (62) and (63) are
equivalent to SME (50) and measurement currents (49)
if we set s± =

√
g2κη+c

†
m,± and add appropriate de-

coherence terms. We can therefore use FME (51) di-
rectly, and together with the choice (F1,F2) = √

υβ(icm,+ −
ic

†
m,+,cm,− + c

†
m,−), (F3,F4) = √

1 − υ(cm,+ + c
†
m,+,icm,− −

ic
†
m,−) we find Eq. (18).

IV. CONCLUSION

In this article we discuss different measurement-based
feedback schemes which utilize entanglement as a resource
in order to control the quantum state of mechanical systems.
We derive and discuss in detail the dynamics of the optome-
chanical system under measurement and feedback, specifically
the situations of feedback cooling, mechanical squeezing,
and generation of two-mode mechanical entanglement. The
protocols are shown to be feasible in current optomechanical
systems which operate in the strong-cooperativity regime.
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APPENDIX A: QUANTUM STOCHASTIC CALCULUS

The joint unitary evolution of a system S and a white-
noise electromagnetic field A can be described by a quantum
stochastic differential equation in Itō form [41]

dU (t) = [−iHeffdt + sdA†(t) − s†dA(t)]U (t), (A1)

with U (0) = 1, where s is a system operator, and the effective
Hamiltonian is given by Heff = Hsys − i 1

2 s†s, where Hsys is
the Hamiltonian describing the evolution of S. A(t) and A(t)†

are the bosonic annihilation and creation processes acting on
the Fock space of the electromagnetic field. The increments
dA, dA† are forward pointing, dA(t) :=A(t + dt) − A(t), and
are (formally) connected to the singular field operators a(t)
[46] introduced in Sec. III A by dA(t) = a(t)dt . The definition
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of the increments leads to the property that they commute with
U for equal times, i.e., [U (t),dA(t)] = [U (t),dA†(t)] = 0. If
we assume that initially the electromagnetic field is in the
vacuum state, the increments obey the multiplication rules

× dA dA† dt

dA 0 dt 0
dA† 0 0 0
dt 0 0 0

More generally two quantum stochastic processes X(t), Y (t)
obey the Itō product rule

d[X(t)Y (t)] = [dX(t)]Y (t) + X(t)dY (t) + dX(t)dY (t),

(A2)

again with dX(t):=X(t + dt) − X(t), etc. The standard chain
rule is modified in a similar way. For a differentiable function
f , we have

df (X(t)) = f ′(X(t))dX(t) + 1
2f ′′(X(t))dX(t)2, (A3)

which in particular leads to f (X(t + dt)) = f (X(t)) +
f ′(X(t))dX(t) + 1

2f ′′(X(t))dX(t)2. To convert between the
Itō and the Stratonovich formulation we can use the following
approach [35]. Consider the Stratonovich stochastic differen-
tial equation

(S) dX(t) = AX(t)dt + BX(t)dW (t), (A4)

with linear operators A and B, a Wiener process W (t) with
dW (t)2 = dt , and a initial condition X(0). This equation has
the formal solution

X(t) = T exp

{∫ t

0
[Ads + BdW (s)]

}
X(0), (A5)

where T denotes the time-ordered product. We can now
calculate the Itō increment dX(t) = X(t + dt) − X(t) and find

dX(t) = {exp[Ads + BdW (s)] − 1} X(t)

= {
[A + 1

2B
2]dt + BdW (s)

}
X(t),

(A6)

where we expanded the exponential to second order and used
Itō rules. All stochastic differential equations in this paper are
assumed to be in Itō form unless noted otherwise [and denoted
by an (S)].

APPENDIX B: QUANTUM LQG CONTROL

In this section we briefly review the most important
equations of quantum LQG control, following closely the
presentation in [54]. Consider a Gaussian n-dimensional open
quantum system coupling to m vacuum field channels, m′ � m

of which are subject to homodyne detection. (In the remainder
of this section, we will assume that all channels are measured
and thus m′ = m.4) The joint evolution of system plus field
is then given by (A1). The system’s state conditioned on the

4The case m′ < m can be used to describe inefficient photodetection
(see Sec. III A) or decoherence channels which cannot be observed
at all, e.g., phonon losses of a mechanical oscillator.

outcomes of the homodyne measurements is described by the
stochastic master equation (or quantum filter)

dρc = −i[H,ρc]dt +
m∑

i=1

D[Li]ρcdt +
m′∑
i=1

H[Li]ρcdWi,

(B1)

where dWi are Wiener processes with dWidWj = δij dt

and the Hamiltonian is at most quadratic in the system’s
quadratures, which we collect into a column vector X =
(X1, . . . ,X2n)T. The canonical commutation relations can then
be written as [Xi,Xj ] = iJij , where J is a skew-symmetric
real matrix. We can parametrize L = (L1, . . . ,Lm)T and H as
L = �X and

H = 1
2 XT RX + [XTR̃u(t) + H.c.], (B2)

where R ∈ Rn×n is symmetric, R̃ ∈ Cn×m, and u(t) is an m-
dimensional input signal, which will later be used as a control
input. We can describe the system in terms of a vector quantum
Langevin equation and an output equation [54]

d X(t) = [FX(t) + Gu(t)]dt + dV (t), (B3a)

dY (t) = HX(t)dt + [d A(t) + d A(t)†], (B3b)

with the definitions F = J[R + Im(�†�)], H = � + �†, G =
J(R̃ + R̃∗), and dV = iJ(�Td A† − �†d A), where d A =
(dA1, . . . ,dAm)T. We assume the field is in the vacuum
state ρvac, such that dAi(t)dAj (t) = δij dt . The measurement
currents from the homodyne measurements are (formally)
given by I(t) = dY (t)/dt .

Using these definitions we can deduce the equations of
motion for the conditional mean values X̂ = tr[Xρc] and
symmetric covariance matrix �̂ = tr[X XTρc] − X̂ X̂T. We
find [54]

d X̂(t) = [FX̂(t) + Gu(t)]dt + K(t)[dY (t) − HX̂(t)dt],

(B4a)

d

dt
�̂(t) = F�̂(t) + �̂(t)FT + N

− [�̂(t)HT + M][�̂(t)HT + M]T, (B4b)

where

K(t) = �̂(t)HT + M, (B5a)

Ndt = Re(dVdV T) = 1

2
J(�†� + �T�∗)JTdt, (B5b)

Mdt = Re (dV (d A + d A†)T) = i

2
J(�T − �†)dt. (B5c)

Equations (B4) together with (B5) are known as the Kalman-
Bucy filter in classical estimation theory [55]. Assuming a
stable system [12], the steady-state solution of the conditional
covariance matrix �̂ can be found by setting the right-hand
side of (B4b) to zero, and solving the resulting algebraic
Riccati equation. If instead we are interested in the properties
of the unconditional state, we can solve the Lyapunov equation
obtained from (B4b) by dropping the last term. [The resulting
equation can also be obtained from (B3a) by application of Itō
calculus.]
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The goal of LQG control is to control a system in a way
that minimizes a quadratic cost function. In this paper we only
deal with the asymptotic control problem for t → ∞ as we
are interested in the steady state of our systems. We therefore
want to find a feedback strategy which minimizes the total cost
[56] ∫ ∞

0
E[h(X(t),u(t))]dt, (B6)

where we introduced E[·] = tr[ρ(0)ρvac (·)], the expectation
value with respect to the initial state ρ(0) of the system and
the vacuum state of the field. We choose h to be of the form

h(X,u) = XTPX + uTQu, (B7)

where P � 0 and Q > 0 are both real, symmetric matrices
of appropriate dimensions. Under the assumption of certain
stability conditions [12] the optimal feedback signal is given
by [54]

u(t) = −C(t)X̂(t), (B8)

C = Q−1GT�ss, (B9)

with �ss the solution of the algebraic Riccati equation

FT�ss + �ssF + P − �ssGQ−1GT�ss = 0. (B10)

In Sec. II C we need to calculate the steady-state covariance
matrix of a linear system including optimal feedback. This can
be achieved by first noting that (due to the separation principle
[12]) we can write (B4a) as

d X̂(t) = (F − GC)X̂(t)dt + KdW̃ , (B11)

where dW̃ is a Wiener process with dW̃ (t)dW̃ (t)T = 1mdt

(the so-called innovations process). We also need that [44,57]

Re(E[(X(t) − X̂(t))(X(t) − X̂(t))T]) = �̂(t), (B12)

E[(X(t) − X̂(t))X̂(t)T] = 0, (B13)

where the first relation follows from the definition of X̂ and
�̂, and the second from the orthogonality principle [44]. We
therefore find

Re (E[X(t)X(t)T]) = �̂(t) + E[X̂(t)X̂(t)T], (B14)

where the equation of motion for the last term on the right-hand
side �(t) = E[X̂(t)X̂(t)T] can be deduced from (B11), with a
steady-state solution �ss which fulfills

(F − GC)�ss + �ss(F − GC)T + KKT = 0. (B15)

The steady-state solution of the symmetric covariance matrix
of the controlled quantum system is thus given by

lim
t→∞ Re (E[X(t)X(t)T]) = �̂

ss + �ss. (B16)

Finally, we want to estimate the magnitude of the expected
feedback signal. We quantify this by E[uT(t)u(t)]. In the
steady state we find

E[uT(t)u(t)] = E[X̂TCTCX̂] = tr[C�ssCT]. (B17)

APPENDIX C: SOME BASICS ON SQUEEZED STATES

The field operator b(t) describing an ideal, white, squeezed
light field fulfills

〈b†(t)b(t ′)〉(N,M) = N δ(t − t ′), (C1a)

〈b(t)b(t ′)〉(N,M) = M δ(t − t ′), (C1b)

with N > 0 and M ∈ C. For the quadratures x = (b + b†)/
√

2
and p = −i(b − b†)/

√
2 we therefore find

〈x2〉(N,M) = 1

2
(2N + 1 + M + M∗), (C2a)

〈p2〉(N,M) = 1

2
(2N + 1 − M − M∗), (C2b)

1

2
〈xp + px〉(N,M) = − i

2
(M − M∗). (C2c)

For a physically meaningful state the uncertainty product must
be (�x)2(�p)2 − 1

4 〈xp + px〉2 � 1
4 , which leads to |M|2 �

N (N + 1) (where equality is valid for a pure state). In addition
the pure squeezed state |M〉 fulfills the eigenvalue equation

[(N + M∗ + 1)b − (N + M)b†]|M〉 = 0. (C3)

It follows that the displaced squeezed state |M,β〉 =
D(β)|M〉:= exp(βb† − β∗b)|M〉 fulfills the same equation if
we make the replacement b → b − β.

APPENDIX D: DIAGONALIZATION
OF NON-LINDBLAD TERMS

In general the feedback master equations in Sec. III are not
in Lindblad form as the prefactors of the operators D can be
negative. To cure this we can rewrite the non-unitary part of the
evolution in terms of R = (x,p)T as ρ̇ = ∑

ij �ij (RiρRj −
1
2ρRjRi − 1

2RjRiρ), where � is a Hermitian matrix. By
virtue of the eigenvalue decomposition of � we can write
ρ̇ = ∑

i λiD[Ji]ρ with Ji = vi · R, where λi and vi (i = 1,2)
are the eigenvalues and eigenvectors of �, respectively.
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