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Continuous-wave lasing between Landau levels in graphene
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We predict the general feasibility and demonstrate the design of the continuous-wave terahertz laser operating
between Landau levels in graphene placed on a polar substrate in a magnetic field of order 1 T. Steady-state
population inversion under a continuous-wave optical pumping becomes possible due to surface-phonon-mediated
relaxation of carriers. The scheme is scalable to other materials with massless Dirac fermions, for example, surface
states in three-dimensional topological insulators such as Bi2Se3 or Bi2Te3.
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I. INTRODUCTION

Free nonrelativistic electrons in a magnetic field behave as
a system of harmonic oscillators, with selection rules allowing
only the transitions between neighboring states with equal
probabilities. Therefore they cannot be used as an active
medium for lasers and masers. One way to get around this
limitation is to accelerate electrons to high enough speeds
that the relativistic effects become important. This leads to
an anharmonicity in the electron spectrum and possibility
of the maser action by accelerated electron beams, which
has been so impressively implemented in vacuum electronic
devices such as gyrotrons [1]. Free carriers in semiconductors
seem to offer a similar opportunity as the electron dispersion
can show significant nonparabolicity above the bottom of the
conduction band. Moreover, semiconductors offer a flexibility
to grow heterostructures with different cyclotron transition
energies which could be used for carrier injection into a given
Landau level (LL); see the proposal for a LL laser in the
quantum Hall regime [2]. In practice, however, ultrafast energy
and momentum relaxation in semiconductors would quickly
destroy population inversion between the LLs. Although
Landau level quantization does help with reducing scattering
rate and improving the performance of quantum cascade
lasers [3] that operate through population inversion between
quantum-well subbands, the only “solid-state gyrotrons” so
far are p-Ge lasers operating between light-hole LLs at liquid
helium temperatures in strong electric and magnetic fields
[4,5].

Graphene seems to be an ideal material for the realization
of LL lasers. Low-energy excitations near the Dirac points in
graphene have a linear conical spectrum which is obviously
extremely nonparabolic. In a transverse magnetic field the
two-dimensional (2D) conical spectrum splits into a series
of nonequidistant LLs with energies scaling as a square root
of the magnetic field and the principal quantum number.
It was suggested in [6] that the optical pumping to an
arbitrary excited state n � 1 will lead to electrons cascading
down the LLs preferentially emitting photons, which would
potentially lead to the EM field amplification on any of
these downward transitions. Unfortunately, the proposal [6]
assumed that the radiative transitions are the fastest ones in
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graphene. It did not include the most important nonradiative
relaxation channels and did not attempt to calculate actual LL
populations. In particular, it turns out that the Auger relaxation
is a very powerful relaxation mechanism for Dirac electrons
in a magnetized graphene that proceeds much faster than
radiative transitions and washes out any population inversion
over the time scale of a few picoseconds; see below and also
recent theoretical calculations of the Auger relaxation rate [7]
and experimental measurements in [8]. A recently proposed,
more sophisticated pumping scheme [9] takes into account
Auger relaxation processes and still leads to only a transient
population inversion existing over a picosecond time scale.

Here we propose what we believe is a viable LL laser
scheme for graphene that takes into account all relevant
relaxation processes and in fact utilizes them to reach a
steady-state population inversion, vital for any viable laser.
Our scheme is transferable to thin (λ � �z � 5 nm) films of
three-dimensional (3D) topological insulators such as Bi2Se3,
where the Landau levels associated with massless metallic
surface states [10,11] should demonstrate similar coupling
to the EM field, despite different chirality [12]. Note that
our scheme provides the population inversion in a steady
state, i.e., under a continuous-wave pumping, in contrast to
previous proposals, with or without the magnetic field, that
could provide only a transient gain during a picosecond time
interval [6,9,13].

We solve kinetic and density matrix equations coupled with
Maxwell’s equations to calculate populations, gain, and laser
threshold conditions as a function of the optical pumping
power. The calculation details are in the sections below. Here
we present a general idea of the laser scheme. It is illustrated
in Fig. 1. It shows one specific implementation of the scheme
with an optical pumping originating from level n = −2 to
obtain maximum population inversion between levels −1 and
−2. However, the scheme can be implemented for any pair
of LLs (−n,−n − 1) as long as level −n stays deep enough
below the Fermi level. The lasing wavelength can be from
subterahertz to the midinfrared range, depending on the value
of n, the magnetic field, and the substrate used.

The general idea is as follows. In the equilibrium (without
pumping) levels n = −1 and −2 are fully occupied to a
degeneracy surface density Ns = gsgv/2πlc

2, where spin and
valley degeneracy factors are gs = 2 and gv = 2 for graphene,
and lc = √

c�/eB is the magnetic length. The Fermi level
is placed at the Dirac point in the figure, assuming intrinsic
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FIG. 1. (Color online) The scheme to obtain population inversion
between the electron states below the Fermi level by using a
continuous-wave optical pumping. Electrons excited by a pump pref-
erentially relax to the upper laser state −1 due to resonant emission
of surface optical phonons at the graphene-substrate interface.

graphene. However, this can be changed, as long as level
n = −1 is fully occupied in equilibrium. An optical pumping
resonant to the transition −2 → 1 moves part of the carriers up
from level n = −2, creating a population inversion between
a fully occupied level n = −1 and level −2. In order for this
population inversion to exist in a steady state, i.e., under a
continuous-wave optical pumping, the relaxation of carriers
back to lower laser state −2 should be slower than the
relaxation rate to the upper laser state −1. Unfortunately,
the Auger mechanism does not satisfy this criterion. Our
simulations show that there is no population inversion in the
steady state, no matter how strong the optical pumping power.
This is because an increase in the depopulation rate of level
−2 by an optical pumping is compensated by an increase
in the Auger scattering rate to level 2, primarily through the
scattering of electrons from states in levels 1 and −1 to states
in levels 2 and −2, respectively. In order to overcome this
obstacle, the magnetic field needs to be tuned in order to
bring the transitions 1 → 0 and 0 → −1 (of the same energy)
in resonance with an LO phonon energy. This will greatly
increase the rate of electron relaxation from excited states to
the upper laser state n = −1 through LO phonon emission,
whereas the transitions to state −2 will be out of resonance
and not affected much.

The LO phonon energy in graphene is close to 200 meV,
which would require a magnetic field of almost 30 T to bring
the transition frequency ω10 close to ωLO . In order to reduce
the required magnetic field, one can utilize the scattering on
bulk, surface, or interface optical phonons of the substrate and
choose the substrate with a lower optical phonon energy, for
example, a polar semiconductor such as GaAs or InGaAs [14].
For definiteness, below we assume the substrate to be GaAs,
which leads to the surface optical (SO) phonon energy of
�ωSO = 36 meV [15]. This is equal to ω01 = ωc = √

2vf / lc
in a magnetic field of 1 T. The laser transition wavelength
would be then around 82 μm, i.e., around 3 THz, which is

the range where there is a shortage of laser sources. We will
also assume the optical pumping between levels −2 and 1,
although the pumping resonant to the transition from −2 to 3
would be equally efficient and lead to a similar value for the
gain. Moreover, the transition frequency for the latter transition
in a magnetic field of 1 T would correspond to a CO2 laser
wavelength of around 10 μm, which could be more convenient
than the 14-μm wavelength corresponding to the transition
−2 → 1. Of course, all energies can be changed as needed
by choosing different substrates or different LLs for the lower
laser state, for example, n = −3 instead of −2.

The scheme in Fig. 1 provides population inversion between
hole states −1 and −2. Its “mirror image” provides a similar
population inversion between electron states 1 and 2 when the
optical pump is applied between states −1 and 2 [16]. In this
case the SO phonons depopulate the lower laser state instead
of populating the upper one.

II. ELECTRON STATES AND OPTICAL TRANSITIONS
BETWEEN THE LANDAU LEVELS IN GRAPHENE

For completeness, we give a brief summary of the electron
states and optical transitions between the LLs in graphene,
since this information is extensively used below. They have
been calculated many times before and observed both in
monolayer and multilayer samples [17].

Neglecting intervalley scattering, we will need electron
states in only one of the two equivalent K,K ′ valleys, for
example the K valley. Without a magnetic field, the low-energy
Hamiltonian in the vicinity of the �K Dirac point is given by
[18]

H = vF �σ · �̂p = vF

(
0 p̂x − ip̂y

p̂x + ip̂y 0

)
, (1)

where vF = 108 cm/s. In the presence of a transverse magnetic
field or any EM field described by the vector potential A, we

replace �̂p with �̂� = �̂p + e �A/c. For a magnetic field in the +z

direction, we can write �A = (0,Bx,0) in the Landau gauge,
then the eigenfunctions are expressed as [19]

FK
nk(�r) = 1√

L
eiky�n(k,x), (2)

with

�n(k,x) = Cn

(
sgn(n)i|n|−1φ|n|−1

(
x + l2

c k
)

i|n|φ|n|
(
x + l2

c k
)

)
, (3)

where Cn = 1 when n = 0, and Cn = 1/
√

2 when n �= 0;
sgn(x) = 1, 0, −1 for x > 0, x = 0, x < 0, respectively. The
function φ|n|(x) has the same form as the eigenfunction in the
massive electron case:

φ|n|(x) = 1√
2|n||n|!√πlc

exp

[
−1

2

(
x

lc

)2
]

H|n|

(
x

lc

)
, (4)

where H|n|(x) is the Hermite polynomial. The corresponding
eigenenergy is εn = sgn(n)�ωc

√|n|, with ωc = √
2vf / lc.
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In this paper, an electron state will be labeled by |n,k,s,ξ 〉,
where s = {↑, ↓} denotes spin, ξ = {K,K ′} denotes valley; k,
s, ξ are degenerate quantum numbers, and the total degeneracy
density of a Landau level n is 2/πl2

c .
The interaction Hamiltonian for an optical field with an

in-plane polarization can be written as

Ĥ
op
int = vF

e

c
�σ · �Aop, (5)

where �Aop is the vector potential of the optical field, which is
related to the electric field by �Eop = (−1/c)∂ �Aop/∂t . If we
define two circular polarization vectors, l̂⊕ = (x̂ + iŷ)/

√
2 and

l̂� = (x̂ − iŷ)/
√

2, the vector potential of a single-frequency
optical field can be written as

�Aop = 1
2 (A⊕ l̂⊕ + A� l̂�)e−iωt + c.c. (6)

Plugging this expression into the Schrödinger equation and
using the rotating wave approximation, we get the same
selection rules as in [20]: transitions between n1 and n2 (n2 >

n1) are coupled by photons with l̂⊕ polarization if |n2| =
|n1| + 1, and with l̂� polarization if |n2| = |n1| − 1.

By expressing �Aop through �Eop in Ĥ
op
int , we can get the

magnitude of the dipole moment for a resonant transition
between Landau levels n1 and n2:∣∣μn1n2

∣∣ =
√

2Cn1Cn2evF /ω. (7)

The two-dimensional linear optical susceptibility near the
resonance to the transition between n1 and n2 (n1 < n2) is

χn1n2 = 2

πl2
c

∣∣μn1n2

∣∣2(
fn2 − fn1

)
�ω − (

εn2 − εn1

) + i�/T2
, (8)

where T2 is the phenomenological dephasing time, which we
take to be equal to 100 fs. It is strongly affected by disorder. The
gain at resonance scales ∝T2 so it is important to maximize this
time. The factors f in the numerator are occupation numbers
of given Landau levels. The optical transition rate between n1

and n2 (n1 < n2) is

�op
n1n2

= 1

2

∣∣∣∣μn1n2E
op

�

∣∣∣∣
2 1/T2

(1/T2)2 + [(
εn2 − εn1

)/
� − ω

]2 . (9)

III. LASER THRESHOLD CONDITION

To determine the threshold condition for a LL graphene
laser, we consider the simplest geometry resembling a
quantum-well vertical-cavity laser, in which an active layer
consisting of one or several graphene monolayers on a polar
substrate is located between the two mirrors of given reflection
factors r1,2; see Fig. 2. We will assume that there are two media
with dielectric constants κ1 and κ2 from both sides of the active
layer. We will also assume for simplicity that the thickness of
an active layer is much smaller than the wavelength of the
terahertz laser field. For a field of amplitude Ei incident on
the graphene layer, the amplitudes of reflected and transmitted
waves Er and Et can be related using the Maxwell’s equations

FIG. 2. (Color online) A vertical-cavity configuration of the
graphene laser.

with proper boundary conditions as

Et = 2

1 +
√

κ2
κ1

− 4πiω√
κ1c

χ
Ei,

(10)

Er =
⎛
⎝ 2

1 +
√

κ2
κ1

− 4πiω√
κ1c

χ
− 1

⎞
⎠ Ei.

To make the equations even simpler, we will take κ1 = κ2 =κ .
It is straightforward to include more complex cavity structures
if needed for a particular design.

The fields also need to satisfy the boundary conditions at
the mirrors:

E1ie
−ikL1 = r1(E1r + E2t )e

ikL1 ,
(11)

E2ie
−ikL2 = r2(E1t + E2r )eikL2 .

From the boundary conditions Eqs. (10) and (11), the condition
to have stable nonzero optical fields inside the cavity is

− 2πiω√
κc

χ = r1r2 − e−2ik(L1+L2)

r1r2 + r1e−2ikL2 + r2e−2ikL1 + e−2ik(L1+L2)
.

(12)

To get the threshold, we assume that the optical fields are in
resonance with respective transitions and the lengths L1 and
L2 are adjusted so that every term in the denominator has the
same sign. Then the minimum required imaginary part of the
susceptibility in the active layer can be found from the real
part of Eq. (12):

− 2πω√
κc

Im[χ ] = 1 − |r1r2|
1 + |r1| + |r2| + |r1r2| . (13)

We discuss the feasibility of reaching the lasing threshold
below, after calculating the rates of scattering processes, the
nonequilibrium populations of the LLs, and the resulting
graphene susceptibility at the laser transition in the presence
of an optical pumping.

The carriers excited by an optical pumping relax through
a variety of scattering processes. The steady-state populations
are determined by a balance between relaxation and the
continuous-wave pumping. In the next two sections we give
a detailed description of the most important processes that
determine the redistribution of populations and the resulting
steady-state gain.
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FIG. 3. (Color online) Examples of the Auger scattering pro-
cesses between n = 0,±1,±2 LLs.

IV. AUGER PROCESSES

A strong magnetic field suppresses scattering processes
due to energy quantization and reduction in the phase space
available for scattered carriers. However, Auger processes
remain very efficient. Due to the symmetry between electron
and hole LLs there is always resonance for scattering of
carriers from (0,0) LLs into (1,−1) states and for all other
combinations allowed by the energy conservation: (1,−1) ↔
(2,−2), (0,0) ↔ (2,−2), (−1,1) ↔ (2,−2), etc.; see Fig. 3.
Recently the Auger relaxation rates were measured to be in a
few picoseconds range in pump-probe experiments [8], which
agrees with our simulations. Below we outline the general
derivation of the Auger scattering rate and then apply it to our
problem.

A. General formulas

Auger processes are mediated by the Coulomb interaction
between carriers. The general Coulomb interaction Hamilto-
nian for electrons can be written as [21]

VC = 1

2

∑
αβγ δ

Vαβγ δa
†
αa

†
βaδaγ , (14)

where

Vαβγ δ = 〈α(1)|〈β(2)|VCoul(�r1 − �r2)|γ (1)〉|δ(2)〉. (15)

In order to simplify this expression and include the effect of
screening, we expand VCoul(�r1 − �r2) in Fourier series

VCoul(�r1 − �r2) =
∑

�q
V�qei �q·(�r1−�r2), (16)

where V�q = 2πe2/κ0Aq for a 2D case. Using this expression,
we get

Vαβγ δ =
∑

�q
V�q〈α(1)|ei �q·�r1 |γ (1)〉〈β(2)|e−i �q·�r2 |δ(2)〉. (17)

To include screening by carriers in graphene, we replace
V�q with Vs(�q,ω) = V�q/ε(�q,ω), where the dielectric function

ε(�q,ω) in the random phase approximation is given by the
Lindhard formula,

ε(�q,ω) = 1 − V�q�0(�q,ω), (18)

and the polarizability �0(�q,ω) is written as

�0(�q,ω) =
∑
αβ

fα − fβ

εα − εβ + �ω + iγ
|Fαβ(�q)|2, (19)

with the form factor Fαβ(�q) = 〈α|ei �q·�r |β〉 and γ is the line
broadening, which can be attributed to disorder [18]. We use
the same value of the line broadening γ = 1013 s−1 here and
in all other places where it is included. The value of ω is
determined by �ω = εγ − εα in Vαβγ δ [22]. The occupation
factors fα,β in Eq. (19) are determined self-consistently from
the steady-state solutions to the rate equations (36) with
screening included.

The rate of the Auger scattering from state |ab〉 to state
|cd〉 is calculated from Fermi’s golden rule, symmetric with
respect to the initial and final states:

�ab↔cd = 2π

�
|〈cd|VC |ab〉|2 δ(εc + εd − εa − εb), (20)

where the matrix element is

〈cd|VC |ab〉 = 1
2 (Vcdab − Vdcab + Vdcba − Vcdba) . (21)

Thus there are essentially four terms because electrons are
indistinguishable particles. The state |ab〉 in Eq. (21) means
only that both |a〉 and |b〉 are occupied, instead of specifying
that electron 1 is in |a〉 and electron 2 is in |b〉. One can find
mistakes in the literature with some of the terms missing.

B. Auger scattering between Landau levels in graphene

For graphene in a transverse magnetic field, an electron
state can be written as |α〉 = |nα,kα,sα,ξα〉, with notations
explained in Sec. II. We will address the screening effect first.
The form factor in Eq. (19) can be evaluated to be

Fαβ(�q) = 〈α|ei �q·�r |β〉
= δsα,sβ

δξα,ξβ
δqy ,kα−kβ

e−iqx l
2
c kβ Gnαnβ

(qy,qx), (22)

where we have defined

Gnαnβ
(qy,qx) ≡

∫
dx�†

nα
(qy,x)eiqxx�nβ

(0,x). (23)

So the polarizability becomes

�0(�q,ω) = 2A

πl2
c

∑
nαnβ

fnα
− fnβ

εnα
− εnβ

+ �ω + iδ

∣∣Gnαnβ
(qy,qx)

∣∣2
.

(24)

One can check that |Gnαnβ
(qy,qx)| depends only on the

magnitude of �q, so �0(�q,ω) and Vs(�q,ω) are functions only
of q = |�q|. We calculated the form factor numerically and
checked that it agreed with the analytical expression in [18].

Then, using Eqs. (17) and (30), the Coulomb matrix
element is
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Vabcd = δsa,sc
δsb,sd

δξa,ξc
δξb,ξd

×
∑

�q
Vs(�q,ω)δqy,ka−kc

e−iqx l
2
c kcGnanc

(qy,qx)δ−qy ,kb−kd
eiqx l

2
c kd Gnbnd

(−qy,−qx)

= δsa,sc
δsb,sd

δξa,ξc
δξb,ξd

δka+kb,kc+kd

×
∑
qx

Vs (�q,ω) e−iqx l
2
c (kc−kd )Gnanc

(qy,qx)Gnbnd
(−qy,−qx)

∣∣∣
qy=ka−kc

. (25)

For a fixed ka , this matrix element decays quickly when kc −
ka is large, since Gnanc

(qy,qx) X∝ exp(−(qlc)2/4) when q is
large [18]. If kc is bounded, then kb is bounded too; otherwise
the term e−iqx l

2
c (kc−kd ) would oscillate too fast with qx , which

essentially causes the summation over qx to vanish.
The Auger scattering rate between two pairs of Landau

levels (na,nb) and (nc,nd ) is

�nanb↔ncnd
= 1

2A/πl2
c

∑
ξa,ka,sa

∑
ξb,kb,sb

∑
ξc,kc,sc

∑
ξd ,kd ,sd

�ab↔cd

×
(

×1

2
if na = nb or nc = nd

)
, (26)

where the factor 1/2 in the parenthesis is because of double
counting the initial or final states. In Eq. (36), one of the
summations can be dropped immediately, since the result
from the other three summations will be independent of
the fourth set of quantum numbers. This summation will
give exactly the degeneracy 2A/πl2

c , so it will cancel with
the prefactor. One summation of k can also be eliminated due
to the conservation of momentum ka + kb = kc + kd . As the
energy is fully quantized, we will replace the δ function in
Eq. (20) with a Lorentzian of linewidth γ .

V. PHONON SCATTERING

A. General formulas

The interaction Hamiltonian between phonons and elec-
trons can generally be written as

H
ph
int =

∑
�k,�q

F (q)c†�k+�qc�k(b�q + b
†
−�q), (27)

where c and c† are annihilation and creation operators for
electrons, b and b† are annihilation and creation operators for
phonons, and F (q) is defined below. Using Fermi’s golden
rule, the scattering rate from an initial electronic state |ϕi〉 to
a final state |ϕf 〉 is

�
ph
i→f = 2π

�

∑
�q

(nq + 1)|F (q)|2|Mf i(�q)|2δ(εf + εph
q − εi

)

+ 2π

�

∑
�q

nq |F (q)|2|Mf i(�q)|2δ(εf − εph
q − εi

)
,

(28)

where the first term is for the phonon emission, the second
term is for the phonon absorption, and the matrix element is

given by

Mf i(�q) = 〈ϕf |
∑

�k
c
†
�k+�qc�k|ϕi〉

=
∫

d�rϕ†
f (�r)ei �q·�rϕi(�r). (29)

Using the wave functions in Eq. (2), the matrix element Mf i(�q)
for |i〉 = |ni,ki,s,ξ 〉 and |f 〉 = |nf ,kf ,s,ξ 〉 is calculated to be

δqy,kf −ki
e−iqx l

2
c ki Gnf ni

(qy,qx). (30)

The averaged scattering rate from an initial Landau level ni to
a a final Landau level nf is

�ph
ni→nf

=
∑
kf

�
ph
i→f

= 2π

�

∑
�q

(nq + 1)|F (q)|2|Gnf ni
(qy,qx)|2

× δ
(
εf + εph

q − εi

)
+ 2π

�

∑
�q

nq |F (q)|2∣∣Gnf ni
(qy,qx)

∣∣2

× δ
(
εf − εph

q − εi

)
. (31)

We will only consider the case of low enough temperatures,
when phonon absorption is unimportant and only phonon
emission processes contribute to the scattering rate. At room
temperature this is still a reasonable approximation; it can be
easily dropped if a greater accuracy is needed. We include
the screening effect by carriers in graphene in the phonon
scattering processes. This can be done by replacing F (q) with
Fs(q,ω) = F (q)/ε(q,ω), where the dielectric function ε(q,ω)
is given in Eqs. (18) and (24), where again the occupation
factors are determined self-consistently from the steady-state
solutions to the rate equations (36) with screening included.

B. LA phonon scattering

For longitudinal acoustic (LA) phonon scattering, the
expression for F (q) is [23]

FLA(q) = −
√

�

2ρAvs

D
√

q, (32)

where ρ = 7.6 × 10−8 g/cm2 is the area mass density of
graphene, vs = 2 × 106 cm/s is the sound velocity, and the
deformation potential D is in the 10−50 eV range. Also, the
energy of a LA phonon is ELA

q = �vsq. By plugging these
expressions into Eq. (31), we get the scattering rate by LA
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phonons:

�LA
ni→nf

= D2q2
0

4πρ�v2
s

∫ 2π

0
dθ

∣∣Gnf ni
(q0 sin θ,q0 cos θ )

∣∣2
,

(33)

where q0 = (εni
− εnf

)/�vs . The coefficient is of the order of
1014 s−1 for B ∼ 1 T. However, the integrand in Eq. (33) is
roughly of the order of exp[−(q0lc)2/2], which is extremely
small, since q0lc ∼ ωclc/vs = √

2vF /vs = 50
√

2. Therefore
the LA phonon scattering does not contribute significantly to
electronic transitions between Landau levels due to a large
ratio vf /vs � 1.

C. Surface optical phonon scattering

Since we want to use phonon scattering to our advantage in
order to facilitate electron relaxation to the upper laser state, we
consider graphene on a polar substrate or sandwiched between
two substrates. In this case, the electrons in graphene can
couple to the surface or interface modes of optical phonons
[15,24], which we will call the surface optical phonons for
brevity. If the two substrates on both sides of the graphene layer
are the same, the SO phonon energy is equal to the longitudinal
optical (LO) phonon energy of the substrate [24]. If there is
vacuum on one side, the SO phonon energy is slightly shifted
from the LO phonon energy [15]. We will assume the former
case for definiteness but note that it would be straightforward
to calculate interface optical phonon modes for an arbitrarily
complex structure. If we assume that the graphene layer does
not affect the SO phonon modes, then the expression of F (q)
can be written as

FSO(q) =
[

2πe2
�ωSO

A

(
1

κsub∞
− 1

κsub
0

)]/ √
2q, (34)

where A is the area of graphene, κsub
0 (κsub

∞ ) is the low (high)
frequency dielectric constant of the substrate, and �ωSO is
the energy of the surface optical phonon. Since it has a

flat dispersion, we replace the δ functions with a Lorentzian
Lγ (E) = γ /π (E2 + γ 2), where γ is the broadening of Landau
levels, which again can be attributed to disorder. Using again
Eq. (31), we find the SO phonon scattering rate to be

�SO
ni→nf

= 1

2
e2ωSO

(
1

κsub∞
− 1

κsub
0

)
Lγ

(
εni

− εnf
− �ωSO

)

×
∫ ∞

0
dq

q2[
q − 2πe2

κ0A
�0(q,ω)

]2

×
∫ 2π

0
dθ

∣∣Gnf ni
(q sin θ,q cos θ )

∣∣2
, (35)

where the screening effect is included, and ω = (εni
− εnf

)/�.

VI. LANDAU LEVEL POPULATIONS UNDER
OPTICAL PUMPING

After the expressions for the optical transition rates and
the scattering rates due to SO phonon emission and Auger
processes have been found, we can write the density matrix
equations with adiabatically eliminated optical polarizations
to arrive at the set of rate equations for the filling factors of the
Landau levels:

d

dt
fna

= d

dt
fna

∣∣∣∣
op

+ d

dt
fna

∣∣∣∣
SO

+ d

dt
fna

∣∣∣∣
Auger

, (36)

where

d

dt
fna

∣∣∣∣
op

= −
∑
nb

�op
nanb

(
fna

− fnb

)
, (37)

d

dt
fna

∣∣∣∣
SO

= −
∑
nb

�SO
na→nb

fna

(
1 − fnb

)

+
∑
nb

�SO
nb→na

fnb

(
1 − fna

)
, (38)

and

d

dt
fna

∣∣∣∣
Auger

=
∑
nb

tna,nb

×
∑
nc

∑
nd�nc

�nanb↔ncnd

[−fna
fnb

(
1 − fnc

)(
1 − fnd

) + fnc
fnd

(
1 − fna

)(
1 − fnb

)]
, (39)

where tna,nb
= 2 if nb = na , and 1 otherwise. Here the subscript

op denotes the optical transition rates.
Using these rate equations, we can simulate the dynamics

of the graphene system for an arbitrary optical excitation. Note
that the system is highly nonlinear, first because of the state
filling and second, because the matrix elements depend on
the dynamic screening, which depends in turn on the instanta-
neous distribution of electrons in the Landau levels. Therefore
time-dependent simulations are time consuming. Here we
present the steady-state results for the continuous-wave optical
pumping.

VII. RESULTS AND DISCUSSION

For a GaAs substrate, the SO phonon energy is 36 meV,
which requires the magnetic field to be around 1 T. In
the simulations, broadenings of all transitions are set to
be 5 meV, and T2 is 0.1 ps. Also, we consider intrinsic
(undoped) graphene as an example, so without pumping
the n = 0 LL is half-filled, all LLs below are fully filled,
and all LLs above are empty. We define the gain between
n = −1 and −2 as the left-hand side of Eq. (13): g−1,−2 =
−(2πω/

√
κc)Im[χ (ω−1,−2)]. To minimize the absorption of

the THz field by the polar substrate, we would like to reduce
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FIG. 4. (Color online) Dependence of the steady-state filling
factors on the pumping intensity. Landau level numbers are shown to
the right of the curves.

its thickness to a few micrometers to be much smaller than the
wavelength of the terahertz field but at the same time, thick
enough to be considered bulk for SO phonon scattering. The
gain is maximized when there is air outside the active layer so
that κ = 1.

The dependence of the steady-state filling factors and gain
per graphene monolayer on the pump intensity are shown in
Figs. 4 and 5.

As can be seen from the figures, one can achieve a
significant steady-state population inversion between states
n = −1 and −2 and the gain value of about 0.05 per monolayer
of graphene. For comparison, the right-hand side of Eq. (13),
which describes mirror losses, is equal to 0.025 when the
reflectivities r1 = r2 = 0.95, which is easily achievable. The
closest allowed transition at the l̂� polarization is from n = −3
to n = −2 LLs. It is detuned from the laser transition frequency
by about 4 meV in a magnetic field of 1 T. Therefore its
contribution to losses is lower than the gain. Since the electron
motion is quantized, there are no other losses in graphene
associated with free carriers. The undoped GaAs is a popular
material for the nonlinear terahertz generation and its terahertz
losses are rather low, especially since the polar substrate can
be thinned down to a few micrometers. Therefore one can
operate in the desirable regime where the losses are dominated
by mirror losses. Note that the gain of 0.05 is higher than
the maximum value of πe2/(�c) � 0.023 in graphene without
a magnetic field. This is because energy quantization in a
magnetic field condenses the continuous density of states
into discrete LLs, leading to the maximum gain enhancement
scaling as the ratio of the transition frequency to linewidth. One
can further scale the gain up by stacking several graphene-on-
GaAs layers.

For surface states in 3D topological insulators such as
Bi2Se3 or Bi2Te3, the Fermi velocity has a similar value but
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FIG. 5. (Color online) Dependence of the gain between n = −1
and −2 LLs per graphene monolayer on the pumping intensity.

there is no spin or valley degeneracy. Therefore a similar laser
scheme with a thin film of Bi2Se3 (i.e., two surfaces) placed
on a polar substrate will give about two times smaller gain.
Additional free-carrier terahertz losses may exist in this case
due to unintentional doping of the bulk Bi2Se3.

One can also see in Fig. 4 that the population inversion
exists also between states n = 2 and 1, albeit at a 2 times lower
level. This seems unexpected, given that the optical pumping
brings carriers only to state 1. However, a closer look at the
rate equations shows that the population inversion between
levels 1 and 2 is a consequence of a strongly nonequilibrium
carrier distribution below the Fermi level created by the optical
pumping, namely, the population inversion between states −2
and −1. Indeed, when f−1 > f−2, the Auger scattering rate
from states (1,−1) to states (2,−2) is greater than the scattering
rate in the opposite direction. This creates the population
inversion f2 > f1 and the gain for the l̂⊕ polarization, which
is about two times smaller than the l̂� gain.

In conclusion, we show the feasibility of the Landau level
terahertz laser in a magnetized graphene. Despite ultrafast
Auger relaxation, steady-state operation of the laser under
continuous-wave optical pumping is possible by utilizing
surface or interface phonon relaxation. The scheme is scalable
to thin films of 3D topological insulators such as Bi2Se3 or
Bi2Te3.
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