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Electron vortex beams in a magnetic field and spin filter
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We investigate the propagation of electron vortex beams in a magnetic field. It is pointed out that when electron
vortex beams carrying orbital angular momentum propagate in a magnetic field, the Berry curvature associated
with the scalar electron moving in a cyclic path around the vortex line is modified from that in free space. This
alters the spin-orbit interaction, which affects the propagation of nonparaxial beams. The electron vortex beams
with tilted vortices lead to a spin Hall effect in free space. In the presence of a magnetic field in time-space we
have spin filtering such that either positive or negative spin states emerge in spin Hall currents with clustering of
spin 1

2 states.
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I. INTRODUCTION

The experimental discovery of electron vortex beams
carrying orbital angular momentum [1–3] has prompted a good
deal of theoretical investigation. The existence of vortex beams
in free space for nonrelativistic scalar electrons was predicted
earlier by Bliokh et al. [4]. The relativistic electron vortex
beams representing the angular momentum eigenstates of a
free Dirac electron correspond to Bessel beam solutions [5].
Bessel beams in general represent a superposition of monoen-
ergetic plane waves having constant momentum generating a
fixed polar angle θ0 with the z axis. In the limit of vanishing
spin-orbit interaction (SOI) the solutions are eigenstates of
both orbital angular momentum (OAM) and spin angular mo-
mentum (SAM). These occur for paraxial Besel beams when
the polar angle θ0 → 0. However, when the SOI is switched
on we have nonparaxial beams which are eigenvalues of the
total angular momentum but not of OAM and SAM separately.

It has been shown [6,7] that a fermion can be quantized in
the framework of Nelson’s stochastic quantization procedure
[8,9] when an internal variable is introduced to represent a
direction vector (vortex line) attached to a space-time point.
The direction vector (vortex line), which is topologically
equivalent to a magnetic flux line, gives rise to spin degrees
of freedom and essentially represents a spin vortex. This
effectively gives rise to a gauge theoretical extension of the
space-time coordinate as well as momentum, and the spin
appears as an SU(2) gauge bundle. This framework demon-
strates the Skyrmionic [10,11] representation of a fermion
where it is depicted as a scalar particle encircling the vortex
line which is topologically equivalent to a magnetic flux line.
Interestingly, electron vortex beams carrying OAM appear
as a natural consequence in this Skyrmionic representation
where scalar electrons move around the vortex line [12]. The
geometrodynamics of electron vortex beams is then governed
by the Berry phase [13] acquired by the scalar electron
moving around the vortex line. This phase term vanishes
when the polar angle θ formed between the vortex line and
the wave-front propagation direction (z direction) is zero. In
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fact, this corresponds to the situation when the plane-wave
wave-vector of Bessel beams makes an angle θ0 with the z

axis in the limit of θ0 → 0. In this case, we have paraxial
beams which correspond to the electron counterpart of the
screw dislocation of optical vortices. When SOI is switched
on, caused by the nonzero value of the Berry phase term,
nonparaxial beams are generated. Moreover, when the polar
angle θ formed by the vortex line with the z axis is π

2 , the
Berry phase acquired by the scalar electron orbiting around
the vortex line involves quantized monopole charge μ = 1

2
[12]. This corresponds to the electron counterpart of the edge
dislocation of optical vortices. However, for any arbitrary
angle (θ �= 0, π

2 ) the corresponding Berry phase involves a
nonquantized monopole charge and corresponds to the mixed
edge-screw dislocation of optical vortices. Bessel beams in
this case involve tilted vortices where the tilting refers to the
finite(non-zero) angle of the plane wave wave vector with
respect to the wave-front propagation direction. It has been
argued that for the propagation of electron vortex beams in
free space with tilted vortices, we have a spin Hall effect [12].

Our goal here is to analyze the situation when the electron
vortex beams move in an external magnetic field. Indeed,
this external field will have an effect on the Berry curvature
associated with the cyclic motion of the scalar electron moving
around the vortex line. The change in the Berry phase modifies
the SOI and as such an impact on the nonparaxial beams. In
a magnetic field the Berry phase is modified by the Gouy
phase factor which is associated with the diffractive Laguerre-
Gaussian (LG) beams in free space. In a magnetic field this
is related to the transverse kinetic energy of spatially confined
modes and leads to the contribution of the Gouy energy to
Landau energy [14]. This phase factor determines the squared
spot size of the LG beams [15]. It is observed that this change
in the effective Berry phase in an external magnetic field may
alter significantly the situation related to the generation of
the spin Hall currents in electron vortex beams with tilted
vortices. Indeed, in the presence of an external magnetic field
in time-space we have spin filtering and clustering of spins.
However, if the external field is considered to be a hopping one,
such that at two consecutive time sequences there is a flip in
the orientation of the field in two opposite directions, we have
alternating spin Hall currents with positive and negative spins.

In Sec. II we shall recapitulate certain features of the
Skyrmionic model of a fermion and its relevance in electron

1050-2947/2015/91(3)/033812(6) 033812-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.033812


CHOWDHURY, BASU, AND BANDYOPADHYAY PHYSICAL REVIEW A 91, 033812 (2015)

vortex beams. Section III deals with the study of the spin-orbit
couplings in an external field. In Sec. IV we narrate the
situation related to the spin Hall effect when vortex beams
with tilted vortices move in a magnetic field in time-space.

II. SKYRMIONIC MODEL OF A FERMION AND
ELECTRON VORTEX BEAMS

The quantization of a fermion can be achieved [6,7] in the
framework of Nelson’s stochastic quantization procedure [8,9]
when an internal variable is introduced to represent a direction
vector, giving rise to the spin degrees of freedom. This
effectively gives rise to the SL(2,C) gauge theory; and because
it demands Hermiticity, the gauge field belongs to the SU(2)
group. The spin degrees of freedom appear as an SU(2) gauge
bundle. This represents a gauge theoretical extension of the
space-time coordinate as well as momentum, which can be
written as gauge covariant operator acting on functions in
phase space

Qμ = −i

(
∂

∂pμ

+ Aμ(p)

)
,

(1)

Pμ = i

(
∂

∂qμ

+ Bμ(q)

)
,

where Aμ (Bμ) is the momentum (spatial coordinate) de-
pendent SU(2) gauge field. Here qμ (pμ) denotes the mean
position (momentum) of the external observable space. In
this scenario a massive fermion appears as a Skyrmion. In
fact as the direction vector represents a vortex line which
is topologically equivalent to a magnetic flux line, we may
depict a fermion as a scalar particle orbiting around a magnetic
flux line. When a particle encircles the loop enclosing the
magnetic flux line it acquires a geometric phase (Berry phase)
apart from the usual dynamical one [13]. The Berry phase
acquired by the scalar particle is given by 2πμ where μ is the
monopole charge associated with the magnetic flux line [16].
When the monopole is located at the center of a unit sphere the
Berry phase is given by μ�(C) where �(C) is the solid angle
subtended by the closed contour at the origin and is given by

�(C) =
∫

C

(1 − cos θ ) dφ = 2π (1 − cos θ ), (2)

where θ is the polar angle of the vortex line with the
quantization axis (z axis). So for μ = 1

2 , corresponding to
one magnetic flux line, the Berry phase is

φB = π (1 − cos θ ). (3)

Transforming to a reference frame where the scalar electron is
considered to be fixed and the vortex state (spin state) moves
in the field of the magnetic monopole around a closed path, φB

in Eq. (3) corresponds to the geometric phase acquired by the
vortex state. The angle θ corresponds to the deviation of the
vortex line from the z axis. Equating φB in Eq. (3) with 2πμ,
which is the geometric phase acquired by the scalar electron
moving around the vortex line in a closed path, we find the
associated effective monopole charge as

μ = 1
2 (1 − cos θ ). (4)

This suggests that for θ = 0 and π
2 , μ takes quantized values;

but for other angles 0 < θ < π
2 it is nonquantized. When

the vortex line representing the spin axis is parallel to the
wave propagation direction implying θ = 0 we have the
paraxial vortex beams, whereas when θ = π

2 the vortex line is
orthogonal to the wave propagation direction. For other values
of θ, corresponding to nonquantized monopole charge, the
vortex line is tilted in an arbitrary direction. Actually, these
angular values of θ correspond respectively to the screw, edge,
and mixed screw-edge dislocations of optical vortices.

III. ELECTRON VORTEX BEAMS IN A MAGNETIC FIELD
AND SPIN-ORBIT INTERACTION

In this section we consider the electron vortex beam in
the presence of an external magnetic field ( �B). If the magnetic
field is an axially symmetric longitudinal one, the vortex vector
potential can be chosen as [14]

�A(�r) = B(r)r

2
�̂eφ, (5)

where �B = �∇ × �A. Now if we consider the electron vortex
beams in the presence of a magnetic field oriented along the
z axis having magnetic flux φ, we can write the vortex vector
potential as

�A(�r) = φ

2πr
�̂eφ = α

r
�̂eφ, (6)

with α = φ

2π
being denoted as the magnetic field parameter.

The nonrelativistic Hamiltonian with covariant momentum is
given by

H = 1

2m
[ �p − e �A(�r)]2. (7)

In the nonrelativistic case, the configuration variables can be
obtained from Eq. (1) in the sharp point limit [17]. From
Eq. (1), the gauge theoretical extended spatial coordinate can
be written as �R = �r + �A(p), where �A(p) is the SU(2) gauge
field representing the spin degrees of freedom. In the sharp
point limit the Schrödinger equation in cylindrical coordinates,
in terms of the external observable variable, is given by [14]

− �
2

2m

[
1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

(
∂

∂φ
+ ig

2r2

w2
m

)2

+ ∂2

∂z2

]
ψ

= Eψ, (8)

where wm = 2
√

�

|eB| is the magnetic length parameter, g =
sgnB = ±1 indicates the direction of the magnetic field.
The parameter 2r2

w2
m

essentially represents the magnetic field
parameter α.

Since the Berry phase is instrumental in SOI [12,18], we
now study the effect of the magnetic field on SOI through the
change in the Berry phase. This SOI is evaluated from the
modified OAM and is given by

�̃L = �R × �P , (9)

where �R = �r − �A(p) is the modified coordinate with �A(p)
is the SU(2) gauge field, and �P = �p − �A(r) is the covariant
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momentum which incorporates the gauge potential �A(r)
corresponding to the external field.

One may note that the SOI in the nonrelativistic limit
can be derived from the Dirac equation by introducing
Foldy-Wouthuysen transformations separating the positive and
negative energy components of the Dirac equation. Using
the projection on the positive energy subspace, the electron
position operator is given by [19,20]

�R = �r − �A′
(p), (10)

with

�A′
( �p) = �p × �σ

2p2

(
1 − m

E

)
. (11)

In the relativistic case m
E

→ 0 and in this case we realize the

spatial coordinate as �R = �r − �A(p) from Eq. (1) with

�A( �p) = μ
�p × �σ
p2

, (12)

where μ represents the monopole strength having the value
|μ| = 1

2 and �σ is the vector of Pauli matrices. We may mention
here that from the connection (11), we obtain the Berry phase
by integrating it along the contour of the Bessel beam spectrum
in momentum space given by [5]

φB =
∫

�A′
( �p)d �p = 2π
s, (13)

where 
s is the spin variable which induces the SOI by
modifying the OAM. As discussed in the previous section,
in the present formalism the Berry connection corresponds to
a monopole and the Berry phase acquired by the scalar particle
orbiting around the vortex line (magnetic flux line) in a closed
loop is given by 2πμ [16].

The angular momentum of a charged particle in the field of
a magnetic monopole is given by

�J = �L − μ�̂r, (14)

where �L is the OAM. Thus when OAM is vanishing, the total
angular momentum �J , which is effectively the spin, is given by
|μ| with Sz = ±μ. In view of this, we note that the Berry phase
obtained in terms of the spin variable 
s in Dirac equation
formalism corresponds to the phase obtained in terms of the
monopole charge μ.

The SOI in the presence of a magnetic field can be obtained
from the modified OAM operator and can be written as

�̃L = �R × �P
= [�r − �A(p)] × [ �p − �A(r)]

= �r × �p − �A(p) × �p − �r × �A(r) + �A(p) × �A(r)

= �L − �L1 − �L2 + �L3. (15)

To find 〈 �̃L〉 we have to calculate 〈 �L1〉,〈 �L2〉, and 〈 �L3〉 explicitly.
From Eq. (12) we can write

〈 �L1〉 = �A(p) × �p =
〈
μ

�p × �σ × �p
p2

〉

= −
〈
μ �p ×

( �p
p2

× �σ
)〉

. (16)

The expectation value of �σ is given by

〈�σ 〉 = 〈ψ |�σ |ψ〉
〈ψ |ψ〉 = �n, (17)

where ψ is a two-component spinor ψ = ( ψ1
ψ2

) with 〈ψ |ψ〉 =
1 and �n is a unit vector. Thus,

〈 �L1〉 = −
〈
μ �p ×

( �p
p2

× �σ
)〉

= −〈μ�κ × (�κ × �σ )〉 (18)

with �p
p

= �κ, �κ being the unit vector. This gives

〈 �L1〉 = −μ�n. (19)

Similarly, for �L2 we have

�L2 = �r × �A(r)

= �r × α

r
�̂eφ

= −α �̃κ × �̂eφ, (20)

where �̃κ = �r
r
. This gives

〈 �L2〉 = −〈α〉�̃n, (21)

�̃n being another unit vector. Because the spin and orbital
angular momentum appears as orthogonal to each other, we
have �σ × �r × �p = 0. With this, we can write

�L3 = �A(p) × �A(r)

= 0. (22)

The term �L3 contributes nothing to the OAM and thus we have
〈 �L3〉 = 0. Finally,

〈 �̃L〉 = 〈 �L〉 − 〈 �L1〉 − 〈 �L2〉 = l + μ + 〈α〉, (23)

where 〈α〉 is given by

〈α〉 =
〈

2r2

w2
m

〉
=

〈ψ | 2r2

w2
m
|ψ〉

〈ψ |ψ〉 . (24)

From the solution of Eq. (8), which has the form of nondiffract-
ing Laguerre-Gaussian (LG) beams given by

ψL
l,n 	

(
r

wm

)|l|
L|l|

n

(
2r2

w2
m

)
exp

(
− r2

w2
m

)
exp[i(lφ + kzz)],

(25)
we readily obtain [14]

〈α〉 =
〈

2r2

w2
m

〉
= 2n + |l| + 1, (26)

where n = 0,1,2, . . . is the radial quantum number and |l| is
the azimuthal quantum number. The modified OAM is thus
obtained as

〈 �̃L〉 = l + μ + g〈α〉
= l + μ + g(2n + |l| + 1), (27)

where g denotes the sign of the external magnetic field. This
suggests that a part of the angular momentum is transformed
from the SAM to OAM implying SOI.
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With all these expressions at hand, Eq. (8) helps us to write
the dispersion relation (� = 1) as

E = p2

2m
− �l + |�|(2n + |l| + 1) = E‖ + EZ + EG. (28)

Here E‖ = p2

2m
is the energy of the free longitudinal motion

and the quantized transverse motion energy corresponds to the
term

E⊥ = EZ + EG, (29)

with EZ and EG representing Zeeman and Gouy energy
respectively. Equation (28) displays that the Berry phase of the
scalar electron orbiting around the vortex line in the presence
of a magnetic field is modified by the Gouy phase factor 〈α〉,
which is related to the diffractive LG beam in free space. In
a magnetic field the Gouy phase is related to the contribution
due to the transverse motion energy EG in Eq. (28). This phase
factor essentially determines the squared spot size of the LG
beam [14].

The modified Berry phase is now given by

φB = 2π (μ + g〈α〉) = 2π [μ + g(2n + |l| + 1)], (30)

where g = ±1 represents the sign factor depending on the
orientation of the magnetic field. It is noted that 〈α〉 = (2n +
|l| + 1) being an integer will contribute trivially to the phase
factor and so the effective phase is given by 2πμ. Though
the external magnetic field changes the Berry phase trivially,
the change in the Berry curvature will have its effect on the
anomalous velocity which is associated with the spin Hall
effect generated in the vortex beams with tilted vortices, which
will be discussed in the next section.

IV. TILTED VORTEX AND SPIN HALL EFFECT IN AN
EXTERNAL MAGNETIC FIELD IN TIME-SPACE

In a recent paper [12] it has been pointed out that electron
vortex beams in free space with tilted vortices give rise
to the spin Hall effect. This follows from the fact that, as
indicated in Sec. II, for a tilted vortex the associated Berry
phase acquired by the scalar electron moving around the
vortex line involves nonquantized monopole charge which we
denote as μ̃. The nonquantized monopole charge μ̃ undergoes
a renormalization group flow and can be considered as a
time-dependent parameter [21,22]. The time dependence of
the monopole charge makes the corresponding gauge field a
time-dependent one. The time derivative of the gauge field
∂ �A
∂t

generates an electric field �E which accelerates electrons
so that the momentum carries explicit time dependence. We
denote the time-dependent momentum as �k. In this case we
can introduce a noninertial coordinate frame with basis vectors
( �f , �w,�u) attached to the local direction of momentum �u = �k

k
.

This coordinate frame rotates as �k varies with time. Such
rotation with respect to a motionless (laboratory) coordinate
frame describes a precession of the triad ( �f , �w,�u), with some
angular velocity. When we take the direction of the vortex
line at an instant of time as the local z axis which represents
the direction of propagation of the wave front, we note that
this corresponds to the paraxial beam in the local frame. In
this local noninertial frame, the local monopole charge will

correspond to a pseudospin. Indeed, the expectation value of
the spin operator

〈�S〉 = 1

2

〈ψ |�σ |ψ〉
〈ψ |ψ〉 (31)

undergoes precession with the precession of the coordinate
frame. This implies that the polarization state depends on the
choice of the coordinate frame [23]. When the direction of the
vortex line is taken to be the local z axis in the noninertial
frame, the local value of μ̃ is changed and takes the quantized
value |μ| = 1

2 owing to the precession of the spin vector
and thus corresponds to the pseudospin in this frame. The
pseudospin vector is parallel to the momentum vector �k. In
terms of the time-dependent momentum �k, the Berry curvature
is given by

��(�k) = μ
�k
k3

. (32)

This curvature gives rise to an anomalous velocity

�va = �̇k × ��(�k) = μ�̇k ×
�k
k3

. (33)

Thus the anomalous velocity is perpendicular to the pseu-
dospin vector and points along the opposite directions depend-
ing on the chirality sz = + 1

2 (− 1
2 ) corresponding to μ > 0

(<0). This separation of the spins gives rise to the spin Hall
effect. It is observed that μ here corresponds to the helicity
as we have μ = sz = ± 1

2 . Denoting �̇u
| �̇u| = �n, we note that

the spin current is orthogonal to the local plane (�u,�n). Thus
we find that for a tilted vortex with respect to the wave
propagation direction, though the Berry phase acquired by
the orbiting scalar electron may be viewed as an artefact of a
rotating coordinate frame, the spin Hall effect is a Coriolis-type
transverse deflection as the spin current is orthogonal to the
local plane (�u,�n).

When we consider electron vortex beams with tilted
vortices in an external magnetic field in time-space we note that
the corresponding time-dependent gauge potential will modify
the Berry curvature given by Eq. (32). The modified Berry

curvature is given by �̃� = ��(�k) + �B(�k), where
∫
�

�B(�k) d �� is
the contribution to the Berry phase due to the external field and
represents the flux passing through the surface � in momentum
space.

The Berry curvature of the electron vortex beams
propagating in a magnetic field is then given by

�̃�(�k) = (μ + g〈α〉)
�k
k3

, (34)

where g〈α〉 �k
k3 is the contribution of the external field to the

Berry curvature in momentum space and g = ±1 denotes the
sign factor depending on the orientation of the magnetic field.
The anomalous velocity is then given by

�̃va = (μ + g〈α〉)
�̇k × �k
k3

= [μ + g(2n + |l| + 1)]
�̇k × �k
k3

,

(35)

with μ = ± 1
2 in the local noninertial frame and n and |l| are

integers. It may be mentioned that Fujita et al. [24] have shown
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that a well-defined gauge field in time-space which has the
physical significance of an effective magnetic field is found
to be the underlying origin of the anomalous velocity owing
to the curvature in momentum-space. In our present study
we find that the Berry curvature associated with the orbiting
scalar electron is modified by the curvature generated by the
time-dependent magnetic field and hence alters the anomalous
velocity in free space. As mentioned in Sec. III the quantized
value of |μ| = 1

2 corresponds to the spin with sz = ± 1
2 , the

modified value of the Berry phase factor |μ + g〈α〉| corre-
sponds to the total spin of the system. The resultant spin of the
system is now given by |μ + g〈α〉| = |μ + g(2n + |l| + 1)|.

The factor 〈α〉 = (2n + |l| + 1) together with μ = ± 1
2

always give rise to the clustering of spin 1
2 states. For the

lowest energy state with n = 0 and for positive g, the value
of g〈α〉 = 1. For μ = 1

2 (− 1
2 ), we have the helicity states as

μ + 〈α〉 = 3
2 ( 1

2 ). For higher values of n and |l|, we will have
higher half-integer values of (μ + 〈α〉). One point may be
noted that for +〈α〉 we will always have up spins. Similarly,
for −〈α〉 we will have only down spins. Thus depending on
the orientation of the magnetic field there is either positive or
negative spin current moving in the opposite direction which
leads to spin filtering. Our analysis suggests that a time variant
magnetic field can be used to have spin filtering of the tilted
electron vortex beams.

In a different approach, Karimi et al. [25] have proposed
a space variant Wein filter where the geometric phase plays a
crucial role. They have argued that when electron vortex beams
are subjected to a space variant magnetic field and a suitable
electric field, one can conceive of an apparatus as a space
variant Wein filter which induces a spin half turn. This can be
used for generating a pure electron vortex beam from a spin
polarized beam and conversely a spin polarized beam from a
pure electron vortex beam. This is caused by the conversion of
SAM and OAM through the generation of the geometric phase
which arises because of the spin manipulation.

Equation (35) suggests that when an external time-
dependent magnetic field is introduced such that electron
vortex beams with tilted vortices propagate in this field we can
tune the spin Hall current. As the expression of spin current is
given by

jk
s,j = �

4
〈{σ k,ṽa,j }〉, (36)

we can have in the system spin currents with either positive or
negative spin states with clustering of odd number of spin 1

2
states. Importantly, if the external field is of hopping type so
that at two consecutive time sequences the orientation of the
field is altered, we have alternating spin Hall current such that
the spin currents with sz = ± n

2 , where n = 1,3,5, . . . , prop-
agate in opposite directions in consecutive time sequences.
In a nutshell, propagation of tilted electron vortex beams
in an external time-dependent magnetic field gives rise to
polarization of spins such that we have spin currents as well as

clustering of spin 1/2 states. This theoretical analysis can be
used to demonstrate a spin filter such that at the output we have
spin currents with either up spin or down spin of the cluster.

V. DISCUSSION

We have studied here the situation when electron vortex
beams propagate in an external magnetic field from the
prospective of the Skyrmion model of a fermion. In fact
the Skyrmion model is achieved through the quantization
of a Fermi field in the framework of Nelson’s stochastic
quantization procedure when we introduce a direction vector
(vortex line) attached to the space-time point, which gives rise
to the spin degrees of freedom. A vortex line is topologically
equivalent to a magnetic flux line. Thus the Skyrmionic picture
of a fermion depicts it as a scalar particle moving around
the magnetic flux line. The electron vortex beam is a natural
consequence of this picture of a fermion. In a recent paper [12]
it has been observed that the dynamics of electron vortex
beams is determined by the Berry phase acquired by the scalar
electron orbiting around the vortex line. Indeed it is found
that when the phase involves a quantized Dirac monopole we
have paraxial (nonparaxial) beams such that the vortex line is
parallel (orthogonal) to the wave-front propagation direction.
However, when the Berry phase involves a nonquantized
monopole charge we have a tilted vortex with respect to
the wave-front propagation direction. It has been pointed
out that nonparaxial beams involve SOI which appears as a
manifestation of the Berry phase. Electron vortex beams with
tilted vortices give rise to the spin Hall effect in free space.

In the present study we show that in the presence of an
external magnetic field in time-space the Berry curvature is
changed and the phase is modified by the magnetic field
parameter. This parameter is associated with the Gouy phase
which is related to the diffractive LG beams in free space.
In a magnetic field, the Gouy phase factor is associated with
the transverse kinetic energy of spatially confined mode and
leads to the contribution of the Gouy energy to Landau energy.
Indeed, this parameter determines the squared spot size of the
LG beam. It has been argued here that when electron vortex
beams propagate in an external time-dependent magnetic field
we have modification of the spin Hall current from that in
the free space for a tilted vortex. It is found that this leads
to spin filtering when either positive or negative spin Hall
currents appear depending on the orientation of the magnetic
field with clustering of spins. For a hopping field which alters
its orientation at two consecutive time sequences, we have
alternating spin Hall currents with positive and negative spin
states at successive time sequences.
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