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Parity-time-antisymmetric atomic lattices without gain
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Lossy atomic photonic crystals can be suitably tailored so that the real and imaginary parts of the susceptibility
are, respectively, an odd and an even function of position. Such a parity-time (PT ) space antisymmetry in
the susceptibility requires neither optical gain nor negative refraction, but is rather attained by a combined
control of the spatial modulation of both the atomic density and their dynamic level shift. These passive
photonic crystals made of dressed atoms are characterized by a tunable unidirectional reflectionlessness
accompanied by an appreciable degree of transmission. Interestingly, such peculiar properties are associated
with non-Hermitian degeneracies of the crystal scattering matrix, which can then be directly observed through
reflectivity measurements via a straightforward phase modulation of the atomic dynamic level shift and even off
resonance.
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I. INTRODUCTION

Artificial optical materials have attracted great attention
in the past few decades for achieving various properties
and functionalities not available in natural media. Photonic
crystals [1,2] and left-handed materials [3] are two prominent
metamaterials promising the possibility of stretching usual
rules and displaying new paradigms of light propagation and
interaction. In fact, they have been well exploited to design and
realize all-optical, optoelectronic, and optomechanical devices
like ultrafast light switching, diffraction free superlens, and
quantum motion detectors [4–7], just to name a few. However,
they cannot be directly used to implement unidirectional light
transport and its manipulation [8,9], an essential and more
difficult task than others in all-optical networks. In this respect,
only in recent years significant progress has been made by
considering moving photonic crystals of driven atoms [10,11]
and optical materials with parity-time (PT ) symmetry [12,13].
As compared to traditional photonic crystals, PT -symmetric
materials are periodically modulated not only in terms of the
real part n′ but also the imaginary part n′′ of the refractive index
n, exhibiting a delicate balance of gain and loss alternately
along the modulation direction.

On the other hand, non-Hermitian Hamiltonians could
exhibit real eigenvalues if they are invariant under the com-
bination of parity and time-reversal operations [14]. Hinging
on the mathematical isomorphism between the Schrodinger
equation and the Maxwell paraxial wave equation, this unusual
behavior has been implemented to realize fairly interesting
optical settings in media whose refractive indices satisfy
n(z) = n∗(−z) [15–17]. Such an even optical PT symmetry
has been used, in fact, in the realization of coherent perfect
absorbers [18–20], giant wave amplification [21,22], spatial
optical switching [23], quantum state transformation [24],
and quantum state discrimination [25]. So far most even
PT -symmetric materials are solid-state systems that consist
of periodically arranged microstructures bearing on the whole
balanced gain and loss. Homogeneous vapors of multilevel
ultracold atoms can further be used to attain even PT -

symmetric optical potentials though via rather complicated
spatial modulations of the driving fields [26–28]. These atomic
proposals have the obvious advantages of real-time all-optical
tunable and reconfigurable capabilities. Very recently, the
odd optical PT -symmetry with n(z) = −n∗(−z) was also
considered [29], which however requires a more involved
and even impractical balance of positive and negative real
refractive indices.

In contrast, media with PT -antisymmetric susceptibilities,
i.e., χ (z) = −χ∗(−z), requiring neither optical gain nor
negative refraction is explored here. The present work builds
on a recent proposal [30] where such a medium could be
realized in a one-dimensional (1D) atomic lattice and extends it
by presenting a detailed analysis on the connection between the
unidirectional reflectionless properties of such lattices and the
non-Hermitian (NH) degeneracies of their scattering matrix.
In particular, we present a thorough discussion of the singular
behavior of the scattering matrix eigenvalues that are, in turn,
contrasted to those of the corresponding scattering matrices
for media with PT -even and PT -odd refractive indices.

Driven atomic lattices have aroused great interest of
research for achieving controlled photonic band gaps, radi-
ation damping enhancement, and two-color lasing oscillation
[31–34]. Here we assume that all trapped atoms—the density
modulation of which is dominated by a cosine term—are
driven into the four-level N configuration with a far-detuned
dressing field applied to induce the dynamic shift of one empty
ground level. We find that a probe field may experience the
PT -antisymmetric susceptibility when this dressing field has
a traveling-wave (TW) and a standing-wave (SW) component
such that the dynamic frequency shift is modulated as a sine
function along the lattice direction. That is, real and imaginary
parts of the probe susceptibility are, respectively, an odd and
an even function of the lattice position in each dipole trap. This
dressing field modulation destroys the two-photon resonance
condition between the probe and coupling fields in the regime
of electromagnetically induced transparency (EIT) [35] and
therefore we consider indeed passive atomic lattices with
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essential absorptive loss. Such optical PT antisymmetry then
allows us to observe high-contrast unbalanced reflectivities
and even fully unidirectional reflection with finite transmission
at one NH-degeneracy point. It is of special interest that
(i) a vanishing probe reflectivity at the probe resonance
can be easily switched between the two lattice ends by
changing the detuning signs of both TW and SW dressing
components; (ii) fully unidirectional reflection can be attained
even out of the probe resonance when the dynamic level
shift deviates from a sine function of the lattice position.
Last but not least, both PT -antisymmetric susceptibility and
unidirectional light reflection depend also critically on the
dynamically controlled Gaussian density distribution in each
dipole trap. A coupled-mode analysis is also done to illustrate
how fully unidirectional reflection requires that χ ′(z) and
χ ′′(z) be exactly mismatched by a half-period to display an
odd and an even function, respectively, in the 1D spatial
modulation.

II. PT -ANTISYMMETRIC SUSCEPTIBILITY

We consider here an ensemble of cold atoms distributed into
the optical lattices of dipole traps formed by the retroreflecting
red-detuned laser beams of wavelength λo [Fig. 1(a)]. The re-
sultant atomic lattices have a period a = 0.5λo/ cos θo with θo

being a small angle between the dipole-trap laser beams and the
lattice axis along −→

z . These trapped atoms exhibit one typical
Gaussian density distribution Nj (z) = N0 exp[−(z − zj )2/d2]
in each period with d being the 1/e half-width and zj the j th
lattice center. Such periodically distributed atoms are driven
into the four-level N configuration by three coherent fields
of frequencies (amplitudes) ωp (Ep), ωc (Ec), and ωd1 (Ed1)
or ωd2 (Ed2) [Fig. 1(b)]. The weak probe field ωp, moderate
coupling field ωc, and strong dressing field ωd1 or ωd2 interact,
respectively, with the dipole-allowed transitions |1〉 ↔ |3〉,
|2〉 ↔ |3〉, and |2〉 ↔ |4〉. Corresponding frequency detun-
ings (Rabi frequencies) are �p = ωp − ω31, �c = ωc − ω32,
and �d1 = ωd1 − ω42 or �d2 = ωd2 − ω42 (�p = Epd13/2�,
�c = Ecd23/2�, and �d1 = Ed1d24/2� or �d2 = Ed2d24/2�)
defined as usual with ωij being resonant transition frequencies
and dij being electric-dipole moments.

In what follows, we assume that �d1 = �d , �d2 =√
2�d cos(kdz − φd ), and �d1 = −�d2 = �d with the restric-

tion |�d | � �d . In this case, the |2〉 ↔ |4〉 transition is driven
by a TW dressing component and a SW dressing component.
The two transition pathways contributed by either a TW or a
SW dressing component don’t interfere with each other due to
a giant frequency difference 2 |�d |. Under the rotating-wave
and electric-dipole approximations, we can write down the
interaction Hamiltonian and then obtain the density matrix
equations

∂tρ12 = −(γ12 + i�12)ρ12 − i�cρ13 − i�d1ρ
(1)
14 − i�d2ρ

(2)
14 ,

∂tρ13 = −(γ13 + i�p)ρ13 − i�∗
cρ12 − i�∗

p,

FIG. 1. (Color online) (a) Typical scattering experiment geome-
try where a pair of incident electric-field amplitudes (E+

L ,E−
R ) are

scattered by a periodic lattice of atoms into outgoing electric-field
amplitudes (E−

L ,E+
R ). These four amplitudes are connected by the

transformation S in Eq. (11). For fields (E+
L ) incident from the left,

e.g., outgoing amplitudes consist of waves (E+
R ) transmitted with

amplitude tL in the +z direction as well as waves (E−
L ) reflected with

amplitude rL in the −z direction. Similarly for fields (E−
R ) incident

from the right with transmission and reflection amplitudes tR and
rR. This atomic periodic structure arises from a 1D optical lattice
(black solid) of period a where ultracold 87Rb atoms are trapped
at the bottom of dipole traps with a Gaussian distribution of full
width 2d . Each atom experiences also a dynamic level shift (red
dashed) with a spatial period a and a phase shift 2φd relative to
the corresponding dipole trap. (b) All atoms are driven into the
four-level N configuration by a weak near-resonant probe field (green)
on the |1〉 ↔ |3〉 transition, a moderate near-resonant coupling field
(blue) on the |2〉 ↔ |3〉 transition, and a strong far-detuned dressing
field (red) on the |2〉 ↔ |4〉 transition. Both probe (�p , �p) and
coupling (�c, �c) fields are assumed to travel in the z direction.
The dressing field has instead a TW component (�d , +�d ) traveling
in the x direction and a SW component [

√
2�d cos(kdz − φd ), −�d ]

modulated in the z direction. The empty ground level |2〉 then exhibits
a dynamic shift δds(z) = δd0 cos[2(kdz − φd )] with δd0 = �2

d/�d

and kd = π/a in the limit of |�d | � �d and �d � γ14 (see the
Appendix).

∂tρ
(1)
14 = −(

γ14 + i�
(1)
14

)
ρ

(1)
14 − i�∗

d1ρ12,

∂tρ
(2)
14 = −(

γ14 + i�
(2)
14

)
ρ

(2)
14 − i�∗

d2ρ12, (1)

with ρ11 	 1 and ρ22 	 ρ33 	 ρ44 	 0 in the limit of a weak
probe field. In Eqs. (1), we have phenomenally introduced the
coherence dephasing rates γ12, γ13, and γ14 as usual and simul-
taneously defined the multiphoton detunings �12 = �p − �c,
�

(1)
14 = �12 + �d , and �

(2)
14 = �12 − �d for convenience.

Setting ∂tρij = 0 in Eqs. (1), we attain the steady-state solution

ρ31(z) = i�p

[
(γ12 − i�12) + �2

d

/
(γ14 − i�12 − i�d ) + 2�2

d cos2(kdz − φd )/(γ14 − i�12 + i�d )
]

�2
c + (γ13 − i�p)

[
(γ12 − i�12) + �2

d

/
(γ14 − i�12 − i�d ) + 2�2

d cos2(kdz − φd )/(γ14 − i�12 + i�d )
] . (2)
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FIG. 2. (Color online) Plots of Im(χpj ) (a, c) and Re(χpj ) (b, d)
vs lattice position z − zj in the j th period with γ12 = 2.0 kHz, γ13 =
γ14 = 3.0 MHz, �c = 0, �c = 2.5 MHz, �d = 300 MHz, φd =
π/4, a = 5d 	 400 nm, d13 = 2.0 × 10−29 C m, and N0 = 2.0 ×
1012 cm−3. Panels (a, b) refer to �p = 0, while panels (c, d) refer
to �p = 0.2 MHz. The black-square, red-circle, and blue-triangle
curves are obtained, respectively, with �d = 27.4 MHz, 32.9 MHz,
and 38.3 MHz.

For simplicity, we further assume γ13 = γ14 = γ , γ � γ12,
and �c = 0, while focusing on the special case of |�d | � �d ,
�d � γ , and γ � �p. These conditions allow us to rewrite
Eq. (2) into a much simpler form

ρ31(z) 	 i�p{γ12 − i[�p + δds(z)]}
�2

c + (γ − i�p){γ12 − i[�p + δds(z)]} , (3)

with a dynamic shift δds(z) = δd0 cos[2(kdz − φd )] of maximal
amplitude δd0 = �2

d/�d for the ground level |2〉. Considering
the Gaussian density distribution Nj (z), it is straightforward
to attain the twofold modulated probe susceptibility in the j th
lattice period

χpj
(z) = iαj (z){γ12 − i[�p + δds(z)]}

�2
c + (γ − i�p){γ12 − i[�p + δds(z)]} , (4)

with αj (z) = Nj (z)d2
13/2ε0�. Notice that both forward and

backward beams of the SW dressing component may have
a small angle θd relative to the lattice axis −→

z with kd =
2π cos(θd )/λd and we can attain kd = π/a by accurately
modulating the two small angles θo and θd even if λd 
= λo.
In addition, it is worth stressing that δds(z) turns out to be a
sine function of the lattice position z with φd = ±π/4. The
correlated Gaussian-sine modulation is then expected to yield
an antisymmetric probe susceptibility with its real (imaginary)
part being an odd (even) function of the lattice position. Further
technical details related to the dynamic control of the probe
susceptibility modulation in the four-level N scheme here
proposed are discussed in the Appendix.

In Fig. 2, we plot imaginary and real parts of probe
susceptibility χpj (z) as a function of lattice position z with
�p = 0 in panels (a) and (b) but �p = 0.2 MHz in panels (c)
and (d). It is clear that Im[χpj (z)] and Re[χpj (z)] are spatially

FIG. 3. (Color online) Plots of Im(χpj ) (a, c) and Re(χpj ) (b, d)
vs lattice position z − zj in the j th period with the same parameters
as in Fig. 2 except �p = 0, �d = 32.9 MHz, and φd = +π/4 (black
square), +3π/16 (red circle), and +π/8 (blue triangle) in panels
(a, b); φd = −π/4 (black square), −3π/16 (red circle), and −π/8
(blue triangle) in panels (c, d).

modulated in distinct ways along the lattice axis for a given
probe detuning �p. At probe resonance �p = 0, in particular,
Im[χpj (z)] and Re[χpj (z)] are respectively an exact even and
odd function of the lattice position relative to the lattice
center, indicating that our atomic lattices exhibit perfect PT

antisymmetry characterized by χpj (+z) = −χ∗
pj (−z). With

�p = 0.2 MHz, however, Re[χpj (+z) + χpj (−z)] deviates
slightly while Im[χpj (+z) − χpj (−z)] deviates severely from
zero to result in considerable errors in the PT antisymmetry.
In addition, it is convenient to manipulate the ratio between
maximum amplitudes of Im[χpj (+z)] and Re[χpj (+z)] by
changing the dressing Rabi frequency �d (i.e., the dynamic
frequency shift δd0). This straightforward manipulation op-
portunity is significant for potential applications, e.g., in
achieving high-contrast asymmetric reflectivities and even
fully unidirectional reflection.

In Fig. 3, we examine how the relative phase φd between
the SW dressing field component and the atomic density
modulation affects the PT antisymmetry of the probe suscep-
tibility χpj (z). We find that the perfect PT antisymmetry is
attained only for φd = ±(1/4,3/4)π , promising an exact sine
modulation of the dynamic level shift δds . With the decreasing
[panels (a) and (b)] or increasing [panels (c) and (d)] of φd ,
however, the minima of both probe absorption [panels (a) and
(c)] and dispersion [panels (b) and (d)] simultaneously move
left or right to result in worse and worse PT antisymmetry. As
the relative phase is φd = (0,±1/2)π , the PT antisymmetry
of probe susceptibility will be completely destroyed in the
presence of an exact cosine modulation of the dynamic level
shift δds . That is, both real and imaginary parts of the probe
susceptibility χpj (z) are modulated into an even function of
the lattice position (not shown).

The probe susceptibility in Eq. (4) has a lot of spa-
tial Fourier components oscillating at exp[±2imkdz] with
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FIG. 4. (Color online) Plots of fpa and fpb (a, c); χpa and χpb

(b, d) vs maximal dynamic shift δd0 with the same parameters as
in Fig. 2 except �p = 0 and a = 5d = 400 nm (a, b); a = 10d =
400 nm (c, d). The red-circle and blue-triangle curves correspond,
respectively, to fpa and fpb in panels (a, c) and to χpa and χpb in
panels (b, d).

m ∈ {0,1,2, . . .}, but only its zero- and first-order components
are responsible for the dynamic propagation of a probe field
with kp 	 ±kd . It is rather involved or even impossible
to attain analytical expressions of the zero- and first-order
susceptibility components due to the correlated Gaussian
and sine modulations. Therefore, we choose fully numerical
Fourier calculations in the case of �p = 0, φd = π/4, and
γ12 → 0 to examine the zero- and first-order susceptibility
components with

χpj (z) = −α0δd0 sin(2kdz)

�2
c + iγ δd0 sin(2kdz)

exp[−(z − zj )2/d2]

= α0x

γ

− sin(2kdz)

1 + ix sin(2kdz)
exp[−(z − zj )2/d2] (5a)

= iχp0 + iχpa cos(2kdz) − χpb sin(2kdz) + · · · (5b)

= α0x

γ

{
fpb(b0 − b2)[ix − sin(2kdz)]

+ ix

2
fpa(b1 − b3) cos(2kdz)

}
+ · · · (5c)

in which for simplicity we have set x = γ δd0/�2
c , while

bn = √
π (d/a) exp[−(nπd/a)2] is attained via the Fourier

transform on a Gaussian density distribution.
In Fig. 4, we plot fpa , fpb, χpa , and χpb of first-order

susceptibility components as a function of maximal dynamic
shift δd0 with Gaussian widths d = a/5 in panels (a) and (b) but
d = a/10 in panels (c) and (d). The two left panels show that
fpa and fpb become smaller and smaller with the increasing
of δd0 but remain rather close in the synchronous attenuation
(especially true for a smaller d) independent of δd0. This means
that rather accurate results could be attained even if we set
fpa = fpb = 1.0 (available in the limit of x → 0) in Eq. (5c)

to predict an exceptional point of δd0 corresponding to χpa =
χpb. In fact, the exceptional point is located at δd0 	 2.62 MHz
with d = a/10 in panel (d) but will move slightly to δd0 	
2.75 MHz if we assume fpa = fpb = 1.0 (examined but not
shown). Comparing panel (d) to panel (b), we find that the
exceptional point occurs at a larger maximal dynamic shift
δd0 	 4.03 MHz in the presence of a larger Gaussian width
d = a/5. So a narrower Gaussian distribution is preferred for
achieving the exceptional point of χpa = χpb with a smaller
maximal dynamic shift δd0 (dressing Rabi frequency �d ). The
controlled Gaussian width d depends on the trapping depth U0

of dipole potentials and the average temperature T of trapped
atoms via d = (λo

√
κBT )/(2π

√
2U0) [32].

III. FULLY UNIDIRECTIONAL REFLECTION

One important application of PT -antisymmetric probe sus-
ceptibilities is to realize high-contrast asymmetric reflectivities
and even fully unidirectional reflection. This can be examined
either by incorporating the accurate Eq. (4) into transfer-matrix
equations or by incorporating the approximate Eq. (5b) into
coupled-mode equations. The former method allows exact full
numerical solutions with arbitrary probe detunings �p 
= 0,
while the latter method is favorable for getting physical
insights with a vanishing probe detuning �p = 0.

We start with the more general case �p 
= 0 to derive
the 2 × 2 unimodular transfer matrix Mj of a single lattice
period. To this end, we divide each period into, e.g., 100
layers, of identical thickness δz but distinct density Nj (zl)
for l ∈ {1,100} and write down the primary transfer matrix of
each ultrathin layer

mj (zl) = 1

tj (zl)

[
t2
j (zl) − r2

j (zl) +rj (zl)
−rj (zl) 1

]
, (6)

where the elementary reflection and transmission coefficients,
rj (zl) and tj (zl), are determined by the complex refractive
index npj (zl) 	 1 + χpj

(zl)/2 based on Eq. (4) [36]. With
Mj = mj (z1) · · · mj (zl) · · · mj (z100), we attain the ultimate
transfer matrix M2k+1

0 = M−k · · · M0 · · ·M+k for finite atomic
lattices of realistic length L = (2k + 1)a. Then it is straight-
forward to compute probe transmissivities and reflectivities on
both lattice ends

TL = TR = |t |2 =
∣∣∣∣∣ 1

M2k+1
0(22)

∣∣∣∣∣
2

,

RL = |rL|2 =
∣∣∣∣∣M

2k+1
0(12)

M2k+1
0(22)

∣∣∣∣∣
2

, RR = |rR|2 =
∣∣∣∣∣M

2k+1
0(21)

M2k+1
0(22)

∣∣∣∣∣
2

(7)

using relevant matrix elements of M2k+1
0 .

In Fig. 5, we plot probe reflectivities and transmissivities
as a function of maximal dynamic shift δd0 for three probe
detunings. In the left panels with d = a/5, we find that RL is
very different from RR and T is completely vanishing when
|δd0| is not too small. In the right panels with d = a/10, we find
that a larger |δd0| is required to have a completely vanishing T

but a clear difference always exists between RL and RR . We
have, in particular, RL → 0 and T → 0 but RR 	 0.26 near an
exceptional point at δd0 	 4.0 MHz in the left panels; RL → 0
and T → 0.04 but RR 	 0.58 near an exceptional point at
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FIG. 5. (Color online) Plots of RL (a, b), RR (c, d), and T

(e, f) vs maximal dynamic shift δd0 for �p = 0.0 MHz (black square),
0.1 MHz (red circle), and 0.2 MHz (blue triangle). Here we consider
a finite lattice of length L = 0.6 mm with a = 5d = 400 nm (left
panels) and a = 10d = 400 nm (right panels). Other parameters are
the same as in Fig. 2.

δd0 	 2.6 MHz in the right panels. The exceptional point shift
from δd0 	 4.0 MHz with d = a/5 to δd0 	 2.6 MHz with
d = a/10 is easily understood with the predictions in Fig. 4,
while the larger nonvanishing reflectivity RR at the exceptional
point for the sharper Gaussian distribution d is a new result. In
addition, a nonvanishing probe detuning may evidently reduce
the reflectivity contrast

CR = (RR − RL)/(RR + RL) (8)

even at the exceptional point, and it is convenient to swap the
values of reflectivities RL and RR by changing the sign of
dynamic shift δd0. Then the PT -antisymmetric susceptibility
entails strongly unbalanced probe reflectivities in the presence
of significant loss, making our atomic lattices visible upon
(light) reflection only from one side at the exceptional point.

In Fig. 6, we further examine how the relative phase φd of
dressing field components affects reflectivity RL, reflectivity
RR , transmissivity T , and contrast CR at the exceptional
point. It is clear that we have the balanced reflectivities
RL = RR only at φd = ±π/2 with a given probe detuning,
while RL and RR change in the opposite ways when φd is
increased or decreased within the range of {−π/2,+π/2}.
In addition, we can attain fully unidirectional reflection even
with a nonzero probe detuning as long as φd is modulated
to be slightly different from ±π/4. In fact, the maximal
reflectivity contrast CR → ±1 is attained at φd = ±0.25π

FIG. 6. (Color online) Plots of RL (a), RR (b), T (c), and CR (d)
vs relative phase φd for �p = 0.0 MHz (red circle) and 0.5 MHz
(blue triangle). Other parameters are the same as in Fig. 5 except
δd0 = 2.6 MHz and a = 10d = 400 nm.

with �p = 0 but at φd 	 ±0.21π with �p = 0.5 MHz. So
the exact sine modulation corresponding to φd = ±π/4 is
not strictly necessary to realize fully unidirectional reflection
characterized by CR → ±1, as discussed at the end of Sec. IV
in terms of a NH-degeneracy line in the (�p,φd ) plane. In any
case, the reflectivity contrast CR is sensitive to probe detuning
�p and we estimate that light signals of full widths �10 μs
should be adopted in potential applications to avoid significant
pulse deformation.

Now we consider a more specific case �p = 0 to establish
the coupled-mode equations in the limit of γ12 → 0 and φd =
π/4. We stress once again that the neglected higher-order com-
ponents oscillating at exp[±2imkdz] with m ∈ {2,3,4, . . .}
will not contribute to the propagation dynamics of a probe
field decomposed into, e.g., Ep(z) = Ef (z) exp[+ikdz] +
Eb(z) exp[−ikdz] due to Bragg scattering. Substituting the
zero- and first-order components of χpj (z) in Eq. (5b) into
the 1D Helmholtz equation ∂2

z Ep(z) + k2
pn2

p(z)Ep(z) = 0,
keeping only the synchronous terms and eliminating the
second-order smaller terms, it is then straightforward to obtain
the following two coupled-mode equations:

∂zEf = −kdχp0Ef /4 − kd [χpb + χpa]Eb/4

= −η1[xEf + (1 + xη2/2)Eb],
(9)

∂zEb = +kdχp0Eb/4 − kd [χpb − χpa]Ef /4

= +η1[xEb − (1 − xη2/2)Ef ],

with kp 	 kd , χp0 = xχpb, η1 = kdχpb/4, and η2 =
(2/x)(χpa/χpb). It is easy to see from Eqs. (9) that the forward
(Ef ) and backward (Eb) field components will experience
different nonlinear feedback if we have xη2 
= 0 (χpa 
= 0);
xη2 = ±2 correspond to the exceptional points of optical PT

antisymmetry where one field component suffers only itself
linear absorption, i.e., loses all nonlinear feedback from the
other field component.
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Equations (9) have eigenvalues λ =
±η1

√
x2(1 − η2

2/4) + 1 and solutions Ef (z) =
c1e

+λz + c2e
−λz and Eb(z) = d1e

+λz + d2e
−λz. With the

boundary conditions Ef (0) = EL0 and Eb(L) = 0 as well
as Ef (0) = 0 and Eb(L) = ER0, we can determine from
Eqs. (9) the four unknown coefficients (c1,2 and d1,2) and thus
left-hand and right-hand transmissivities and reflectivities

T =
∣∣∣∣ 2λ

(λ + xη1)e+λL + (λ − xη1)e−λL

∣∣∣∣
2

,

RL =
∣∣∣∣ +η1(1 − xη2/2)(e+λL − e−λL)

(λ + xη1)e+λL + (λ − xη1)e−λL

∣∣∣∣
2

, (10)

RR =
∣∣∣∣ −η1(1 + xη2/2)(e+λL − e−λL)

(λ + xη1)e+λL + (λ − xη1)e−λL

∣∣∣∣
2

,

which shows that TL ≡ TR = T but RL will be differ-
ent from RR if we have xη2 
= 0. We have, in particu-
lar, λ = ±xη1, T = e−2xη1L, RL = 0, and RR = [e−2xη1L −
1]2/x2 at the exceptional point of x = 2/η2. For suf-
ficiently long and dense atomic lattices, we further
have T → 0 and RR → 1/x2 = [fpa(b1 − b3)]2/[2fpb(b0 −
b2)]2 	 [(b1 − b3)/(b0 − b2)]2/4 so that a smaller d/a is
desired for getting a larger RR . Modulating the dressing field
detuning from +�d to −�d , we have instead T ∼ RR → 0
and RL 	 [(b1 − b3)/(b0 − b2)]2/4. This is the controlled
unidirectional invisibility of realistic atomic lattices required
by essential devices in optical networks like photonic diodes
and transistors. Above predictions based on coupled-mode
equations are in good agreement with numerical calculations
based on transfer-matrix equations (cf. relevant curves in
Figs. 5 and 6).

IV. PT -ANTISYMMETRIC SCATTERING

The PT -antisymmetric optical lattices discussed in the
previous sections can be probed in experiment via light
scattering [1], which delivers comprehensive insights into their
spectral properties and illuminates relevant consequences of
the underlying physical symmetries which we now address.
These properties can be encoded into the scattering matrix
S, which relates the outgoing (electric-) field amplitudes
{E−

L ,E+
R } to the incoming (electric-) field amplitudes {E−

R ,E+
L }

(see Fig. 1) as [37,38](
E−

L

E+
R

)
= S

(
E−

R

E+
L

)
≡

(
tR rL

rR tL

) (
E−

R

E+
L

)
. (11)

This relation is generally obtained by solving the coupled
wave equations under appropriate boundary conditions in the
scattering region, whose transmission and reflection properties
are described by the complex amplitudes {tL,tR} and {rL,rR}
respectively for transmission and reflection upon incidence
from the left and from the right. For stationary optical lattices
made of linear dielectric media with a symmetric susceptibility
tensor, left to right transmission should always be equal to right
to left transmission, i.e., tL = tR = t (reciprocity), whereas
only reflection shows handedness.

In general, the scattering matrix S is non-Hermitian, its two
eigenvalues

λ±
s = t ± √

rLrR (12)

are complex, and the (unnormalized) eigenvectors |ϕ±〉 =
(±√

rL/rR,1)T are not orthogonal. In particular, the two
eigenvalues may merge into one another and the eigenvectors
coalesce into a single one to yield a non-Hermitian (NH)
degeneracy [39,40], with the S matrix being no longer
diagonalizable. Such degeneracies occur either when rL = 0
or when rR = 0, and thus they are directly associated both
with phase singularities in the geometric mean of reflection
amplitudes (rL, rR) and with unidirectional reflectionless
propagation.

The phase-singular behavior of
√

rLrR can be assessed by
suitably rewriting λ±

s − t in Eq. (12) in terms of the magnitude

|√rLrR| = [(Re λ±
s − Re t)2 + (Im λ±

s − Im t)2]1/2 (13)

and the phase

arg
√

rLrR = tg−1

[
Im λ+

s − Im t

Re λ+
s − Re t

]
. (14)

The phase expression for the other eigenvalue is obtained upon
replacing λ+

s → λ−
s and adding an extra π term on the right-

hand side of Eq. (14).
Typical patterns for Im λ±

s and Re λ±
s in our PT -

antisymmetric optical lattices are plotted as a function of
maximal dynamic shift δd0 in Figs. 7(a) and 7(b). The transition
at δd0 	 2.6 MHz → δNH

0 corresponds to a NH degeneracy
[39,40], where a pair of real eigenvalues degenerate and turn
into complex conjugate pairs. This occurs when Re λ±

s =
Re t 	 |t | and Im λ±

s vanishes [41]. More specifically, below
degeneracy Eq. (13) reduces to

|√rLrR| 	 [(Re λ±
s − |t |)2 + Im2 λ±

s ]1/2, (15)

with a similar expression holding above degeneracy provided
Im λ±

s → Im t Re λ+
s / Re t , showing that |√rLrR| vanishes

almost continuously across degeneracy. Conversely, the reflec-
tion amplitudes rL and rR are in phase with the transmission
amplitude t for detunings above degeneracy but out of phase
below degeneracy, i.e.,

φR + φL

2
− φt 	 0

[
δd0 > δNH

0

]
, (16)

φR + φL

2
− φt 	 −π

2

[
δd0 < δNH

0

]
, (17)

where φt = arg t . This clearly arises from the behavior of the
inverse tangent in Eq. (14) across degeneracy. Moving, e.g.,
along the λ+

s (red circles) eigenvalue branch for values of
detunings below δNH

0 where Im t � Im λ+
s [see Figs. 7(a) and

7(g)], we can suitably rewrite Eq. (14) as

arg
√

rLrR 	 φt + tg−1

[
Im λ+

s

Re λ+
s − |t |

]
, (18)

while a similar expression holds above δNH
0 where Im t >

Im λ+
s ∼ 0 instead [see Figs. 7(a) and 7(g)] provided Im λ+

s →
Im t Re λ+

s / Re t . In this case, however, the inverse-tangent
term in Eq. (18) is very small. Right at degeneracy the inverse-
tangent term becomes undefined giving rise to the singular
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FIG. 7. (Color online) Im(λ±
s ) (a) and Re(λ±

s ) (b) of the scattering
matrix eigenvalues vs maximal dynamic shift δd0. The red-circle
and blue-triangle curves identify respectively λ+

s and λ−
s , showing

a NH-degeneracy point at their crossing δNH
0 	 2.6 MHz. (c) The

phase singularity of
√

rLrR at δNH
0 with (d) relevant phases φL

(blue triangle) and φR (red circle) of the reflection amplitudes rL

and rR . (e) The red-dashed arrow (phasor) represents the jump
of the inverse tangent in Eq. (18) while crossing degeneracy from
below along the λ+

s eigenvalue path. The blue-dotted arrow (phasor)
shows a similar jump while crossing degeneracy along the λ−

s

eigenvalue path. (f) Schematic of the phase jump at δNH
0 along the

two eigenvalue paths. (g) Magnitude (blue triangle) and phase (red
circle) of the transmission amplitude t as well as (h) the unitarity
condition in Eq. (19) where unity (black dotted) represents unitarity.
Relevant parameters are the same as in Fig. 5 except �p = 0 and
a = 10d = 400 nm.

pattern of the arg
√

rLrR shown in Fig. 7(c). The corresponding
π/2 jump of the inverse tangent in Eq. (18) at degeneracy is
further illustrated in Fig. 7(e). A similar discussion holds when
crossing degeneracy along the λ−

s (blue triangles) eigenvalue
branch, yet yielding the same overall π/2 shift in the phase of√

rLrR [see Fig. 7(f)] and hence the same phase relations in
Eqs. (16) and (17). We also show in Fig. 7(d) the individual
phases φL and φR of reflection amplitudes rL and rR . It is clear

that only φL is responsible for the π jump across degeneracy
while the latter remains there steady around φR 	 −0.01 × π .

It is further worth noticing that Eqs. (16) and (17) are
reminiscent of the phase relations in PT -symmetric photonic
heterostructures with balanced gain and loss [42] where the
phase jump corresponds to a phase singularity appearing at
|t |2 = 1, i.e., at the transition between loss and gain. In our
purely lossy system, clearly not PT symmetric, the phase
jump is instead associated with a phase singularity appearing
where |t |2 � 1, i.e., in a regime of remarkable loss. The
phase relations in Eqs. (16) and (17) are also at variance
with the corresponding phase relations in PT -antisymmetric
heterostructures with balanced positive and negative index
materials [29], whose amplitudes are subject to the restriction
Im t = 0 and rL = r∗

R . Our complex refractive index is not even
PT antisymmetric, with its real part always being positive.

Unitary conditions for our lossy system also bear some
resemblance with those for PT -symmetric heterostructures.
From Eq. (12), in fact, unitarity requires [43]

|rL||rR| = (|t |2 − 1) e2i[φt−(φR+φL)/2], (19)

which is exactly the same generalized unitary relationship as
given in Eq. (8) of Ref. [42]. Unitarity, clearly intrinsic to PT -
symmetric systems [42], may instead be only observed below
degeneracy, since |t |2 < 1, in our passivePT -antisymmetric
optical lattice. Departures from unitarity are in our case quan-
tified in Fig. 7(h) where we have plotted |t |2 + |rL||rR|. Notice,
on the other hand, that for the case of PT -antisymmetric
heterostructure with balanced positive and negative index
materials [29] no phase relations come into play and the
corresponding unitarity condition |rL||rR| = |rL|2 = |t |2 − 1
is never satisfied in the passive regimes (|t |2 < 1). It should
finally be emphasized at this stage that our passive half-mm-
long PT -antisymmetric atomic lattice exhibits a rather sizable
transmission with |t | 	 0.2 at degeneracy.

Non-Hermitian degeneracies are commonly described in
terms of a two-dimensional parameter space where two
eigenvalues pass through a branch-point singularity [30,39]
showing a typical permutation of the eigenvalues if one
encircles the singularity in this parameter space. The two
eigenvalues represent the two branches of one analytic function
exhibiting the singularity and are interchanged after one loop
around the singularity, while away from the degeneracy the
branching eigenvalues are different and each of them belongs
to a distinct eigenvector. In matrix terms, at a NH-degeneracy
point both eigenvalues belong to the same Jordan block and
the S matrix is not diagonalizable. Now, the permutation of
the eigenvalues can be seen by computing them along a closed
loop in the complex-parameter plane which in our case can
be characterized by the two detunings �p and δd0 combined
into the complex parameter z ≡ �p + iδd0. Encircling the
degeneracy at �p = �NH

p = 0 and δd0 = δNH
0 	 2.6 MHz

is achieved by letting z → �NH
p + iδNH

0 + βeiθ , where the
angle θ varies from 0 to 2π while z sweeps a circle of radius
β. The situation is examined in Fig. 8 where phases of both
reflection amplitudes and eigenvalues of the scattering matrix
are plotted in the typical topology over one full encircling
around the NH-degeneracy point.
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FIG. 8. (Color online) Plots of φL (a), φR (b), Im(λ±
s ) (c), and

Re(λ±
s ) (d) vs angle θ in the {�p,δd0 } space. Encircling occurs around

the point {�NH
p = 0,δNH

0 = 2.6 MHz} with a radius β = 0.1 MHz.
The red-circle and blue-triangle curves in panels (c, d) correspond,
respectively, to λ+

s and λ−
s . Parameters are otherwise the same as in

Fig. 6.

So far we have discussed NH degeneracies occurring at
isolated points. As shown in Fig. 6, however, it may also be
relevant to study the behavior of these degeneracies in the
(�p,φd ) parameter space where fully unidirectional reflection
can be made to occur along continuous lines [44]. Figure 9
shows two lines of NH degeneracies in the (�p,φd ) plane for
δd0 = 2.6 MHz. In a generic point in the (�p,φd ) plane, the
spatially dependent part of probe susceptibility to be used to
set up the minimal coupled-mode model of Eqs. (9) converts to

χpj (z) → (χcr + iχci) cos(2kdz)

+ (χsr + iχsi) sin(2kdz) + · · · ;

FIG. 9. (Color online) Lines of NH degeneracies in the (�p,φd )
plane for a vanishing RL (a) and RR (b), with a reflectivity contrast
CR → +1.0 (c) and −1.0 (d), respectively. Parameters are otherwise
the same as in Fig. 6.

FIG. 10. (Color online) Conditions χcr = χsi (symmetry) and
χci = −χsr (antisymmetry) are satisfied accurately in panels (a, b) for
{�p,φd} = {0.68 MHz,0.2π} but approximately in panels (c, d) for
{�p,φd} = {1.30 MHz,0.15π}. Parameters are otherwise the same
as in Fig. 9.

along a NH-degeneracy line, however, the following
two conditions χcr = χsi (symmetry) and χci = −χsr

(antisymmetry) are simultaneously satisfied, as plotted in
Fig. 10 for two points (green circles) chosen from the
degeneracy line in Fig. 9(b). Defining χcr = χsi ≡ −χ̄ sin α

and χci = −χsr ≡ χ̄ cos α, we further attain

χpj (z) → iχ̄ cos(2kdz + α) − χ̄ sin(2kdz + α) + · · · . (20)

Obviously, in this case, the susceptibility profile is simply
shifted along the lattice axis as compared to the case of
Eq. (5b) (�p = 0) with χpa = χpb, which we recover
for α → 0 and χ̄ → χpa = χpb, thus preserving fully
unidirectional reflection. Note that for any values of α the real
and imaginary parts of the spatially dependent susceptibility
are out of phase with respect to one another. This is precisely
what is required to ensure fully unidirectional reflection as
recently discussed elsewhere.

V. CONCLUSIONS

In summary, we have designed a 1D optical lattice of cold
atoms driven into a four-level N configuration that exhibits
perfect PT -antisymmetry in terms of probe susceptibility.
This occurs when (i) 87Rb atoms trapped in each dipole
trap have a density distribution characterized by a cosine
spatial modulation and when (ii) the dressing field is designed
to generate a dynamic level shift exhibiting a sine spatial
modulation [see Fig. 1(a)]. Such a PT -antisymmetric sus-
ceptibility yields high-contrast unbalanced reflectivities and
unidirectional light invisibility at exceptional points where
real and imaginary parts of the first-order susceptibility
components have equal amplitudes and are out of phase. A
detailed scattering matrix analysis shows that these points
are NH degeneracies separating complex and real eigenvalues
of the scattering matrix [45–48]. Unidirectional reflection
corresponding to a reflection contrast CR → ±1 can be
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attained even when the dynamic level shift deviates from
the (exact) sine modulation, that is, for a series of NH
degeneracies lying on a line in the (�p,φd ) plane. Measuring
unidirectional light reflection from our PT -antisymmetric
lattice provides a more viable tack to observing degeneracies
of a non-Hermitian scattering matrix [13] and is clearly at
variance with the more demanding techniques used, e.g., in
coupled resonant cavities [49–51] where (eigen)frequencies
rather than (reflected) intensities are in fact to be measured.
The main advantage in terms of photonic applications is
that in suitable media PT -antisymmetric susceptibility can
be dynamically controlled, i.e., can be generated, tuned, and
removed on demand. This is clearly a significant step forward
as compared to the fixed PT symmetry or antisymmetry of
solid-state samples.
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APPENDIX

The T W and SW dressing components interact also with
the |1〉 ↔ |3〉 transition with relevant detunings (squared
dipoles) being approximately 20 times (a half) of those on the
|2〉 ↔ |4〉 transition. Then corresponding level shifts amount
to about δd0/40, much smaller than the decay rate γ and the
trap depth Uo ∼ 2γ (about 2000 times the recoil energy ER

[52]). So we can safely neglect the spatial modulations of
both atomic density N0 and coupling detuning �c due to
this tiny level shift. In addition, the T W dressing component

traveling in the x direction must have a linear polarization
in the y direction and is thus a superposition of plus and
minus circular polarizations. The plus circular polarization
couples the |2〉 ↔ |4〉 transition as desired while the minus
circular polarization couples wrongly the |2〉 ↔ |3〉 transition.
Fortunately, the level shift due to this wrong coupling is
immaterial for our discussion because it is uniform in the z

direction and can be included into �c.
The light-shift difference δωeg of ground 5S and excited

5P1/2 states does matter in our scheme. But it can be reduced
down to a negligible level by choosing for the lattice beams
a suitable wavelength between the D1 and D2 lines. In fact,
there is a magic wavelength ∼788 nm at which the 87Rb atoms
experience a vanishing δωeg on the D1 line [53]. Yet, we should
also consider the light-shift difference δω12 of ground F = 1
and F = 2 states. It is suppressed with respect to the trap
depth Uo by the ratio between the splitting of ground states
and the detuning of lattice beams, i.e., about 1/400 leading to
δω12 ∼ 20 kHz negligible relative to δd0 ∼ 2 MHz. But rather
than δω12 itself, its nonuniformity over the atomic distribution
in a dipole trap should be considered. This amounts to an
inhomogeneous contribution to the dephasing rate γ12 on the
Raman transition |1〉 ↔ |2〉, which however does not alter our
numerical results evidently.

The relative phase between TW and SW dressing compo-
nents and the relative phase between lattice beams and dressing
components should be accurately controlled. This is a very
challenging task, but state-of-the-art techniques in cold atom
physics [54] allow the accurate creation and manipulation of
1D, 2D, and even 3D atomic lattices, which require indeed a
good stabilization of the relative phases [55] between distinct
counterpropagating lattice beams. For instance, in Ref. [56]
a dichromatic optical lattice is obtained by superposing two
periodic potentials of controllable intensities and phases, while
in Ref. [57] a 2D optical lattice is realized by adjusting
independently two relative phases θ and φ.
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