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Spatiotemporal optical bullets in two-dimensional fiber arrays and their stability
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Long-lived light bullets fully localized in both space and time can be generated in novel photonic media
such as multicore optical fiber or waveguide arrays. In this paper we present detailed theoretical analysis on the
existence and stability of the discrete-continuous light bullets using a very generic model that occurs in a number
of applications.
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Structuring of light in space and time is a fascinating area of
research and technology. In space, light can be localized and
structured by using waveguides that are formed by appropriate
variations of the refractive index. Nonlinear optics gives
another practical possibility to localize and control light, both
in space and time. The combination of these two features
leads to a rich variety of interconnected methods to structure
and manipulate spatial and temporal properties of light. In
particular, advances in fiber-optics technology over the past
30 years [1,2], has had an impact not only in numerous highly
important applications, but it has also provided a laboratory to
display nonlinear phenomena such as modulation instability,
solitons formation and interactions, supercontinuum gener-
ation, parametric amplification, optical wave turbulence, and
many others. In space, even earlier, the possibility of balancing
diffraction with nonlinear self-focusing so that localized wave
packets could propagate undistorted emerged as an important
topic with broad applicability.

The theory of soliton formation and its instability in the
1+2 dimensional nonlinear Schrödinger equation (NLSE),
i∂zU (x,y,z) + �T U + γ |U |2σU = 0, proved that for the
focusing Kerr nonlinearity (γ positive and wlog equal to 1) and
σ = 1, a 2d spatial soliton is unstable in that it either collapses
(for powers above critical) or diffracts. In this equation, u

represents the envelope of the electric field; T stands for the
spatial variables (x,y) that are transverse to the direction of
propagation z. At the so-called critical case (σd = 2, d =
transverse dimension), collapse is arrested by various addi-
tional terms in the model even if they are small. Most common
examples are nonlinear losses and nonlinearity saturation.
In bulk media, localization both in space and time through
collapse under the combined effect of diffraction, anomalous
dispersion, and nonlinear refraction leads to formation of
small-scale spatiotemporal optical structures pulses, or light
bullets [3].

A mechanism of practical importance for wave collapse
stabilization and the formation of localized solutions (light
bullets) is the system discreteness. In particular, if instead of
a continuum field we have a discrete model with the corre-
sponding discrete Laplacian, our earlier pioneering work [4,5]
demonstrated in a specific rectangular geometry of waveguide
arrays that stable bullets propagate in such a model. As it
has been the case in other instances, it was years later that

this theoretical discovery was demonstrated experimentally.
At the time, we witnessed technological advances in photonic
crystals and multicore fibers. Driven by major challenges in
optical communication to provide methods and techniques
capable of offering transmission capacity above the limitations
of the single-mode-fiber communication channel [6–8], the
multicore fiber (MCF) allows one to implement spatial division
multiplexing, enabling a scale up in transmission capacity per
fiber. Recent experimental demonstration of light bullets (LBs)
in an array of optical waveguides [9,10] paves the way for
broad applications of light bullets in relatively low cost MCFs.
As the technology of multicore fibers continues to advance, so
are the possible applications of such arrays. Note that spatial
demultiplexing is also important in emerging applications of
multicore fibers in high-power fiber lasers [11,12].

Here, the use of multicore fiber allows one to split the total
high power into channels with power below any undesirable
nonlinear effects. In other words, laser beams in each core
may be transported safely, being below the threshold of
the detrimental nonlinear effects while the total coherently
combined power can be high. In this respect, our work
represents an important contribution to this application in that
it studies the stability properties of LB under more general
coupling schemes. Finally, this multicore fiber technology
opens up new perspectives for fascinating research on light
bullets (see, e.g., [13–22] and references therein) and can be
a natural laboratory to study fundamental phenomena such
as nonlinear Anderson localization [14], optical rogue wave
formation [15], slow light bullets [16], and applications such
as delivery of high-power and high-energy light [17,18], to
name some. The MCF is a specific realization of fiber arrays
with flexible mutual arrangement of cores. It is important to
understand how the mutual arrangement of fibers will affect
the existence of LBs and their stability, which is the subject of
the present work.

In this paper we present a thorough analytical description
of localized bullets and complete analysis of their stability.
The numerical calculations support the analytical results
and demonstrate the range of applicability of the analytical
approach. Finally, we demonstrate the formation of the stable
light bullet from the a pulse launched in one fiber core. Given
the importance of LBs in nonlinear science and the applications
mentioned above and a variety of possible implementations of
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MCFs, the main objective of this work is to analyze the optical
bullet features in continuous-discrete optical media, including
their stability under the most general coupling schemes. Our
focus is on the generic models that may be applied in various
applications. This theoretical work we believe will provide
a framework in the design of multicore elements aimed at
optimizing desirable and specific applications such as routing,
switching, and coherent beam combination.

For arrays of waveguides where light propagates mainly
in the central (core) region of the individual elements and
for which transverse exchange of energy is due to tails of
the field overlapping neighbor waveguides, the field is well
approximated by a superposition

E(x,y,z,t) =
∑
nm

Unm(z)F (x − xm,y − ym)ei(kz−ωt) + c.c.,

where we assume each waveguide is identical and supports a
single mode F . The center of each waveguide is at location
(xm,ym). In this case the equations, in the weak-coupling
approximation, describing the propagation of the envelopes
propagating in the fiber at site (n,m) read

i∂zUnm + (C U )n,m + βnm
2

2
∂2
t Unm + 2γnm|Unm|2Unm = 0,

(1)

where (C U )nm represents the linear coupling functional form
at site (n,m), βnm

2 (k) is the group velocity dispersion, and γnm

the Kerr parameter of each individual core. Here we assume
the cores to be identical, thus βnm

2 = β2,γnm = γ . Introducing
dimensionless variables by the transformations cz → z,tT →
t,

√
γ

c
U → U ; T =

√
β2

2c
leads to the dimensionless equation

to be studied in the rest of the paper:

i∂zUnm +
(

1

c
C U

)
n,m

+ ∂2
t Unm + |Unm|2Unm = 0. (2)

We should point out that the effective nonlinearity depends
not only on material nonlinearity but on the coupling coef-
ficient, which can be changed by variations in the distance
between the cores. The amplitude of the radiation in the cores
is limited by the variety of the nonlinear effects (SBS, SRS,
optical damage). The coupling dependence of the effective
nonlinearity gives a possibility always to find regimes where
our results will be applicable by a suitable change in the
effective coefficient. To emphasize how the specific scalings
differ from application to application, consider, for example,
the recent work in [23] which considers self-focusing for
fibers with six or seven cores, each of 6 μm diameter, 15 μm
core-to-core distance, a nonlinear index of refraction of n2 =
2.2 × 10−20 m2/W, a signal at a wavelength of 1064 nm, and
the simulations extend to 8 cm. If instead the application of
multicore fibers is to build a passive optical network [7], the
characteristics of the individual cores, core-to-core separation,
propagation distances, powers, and wavelength used are quite
differently, yet the physical principles are the same; thus
both cases after proper scaling can be modeled to first
approximation by the the equation above.

Two cases of interest are (see Fig. 1) the uniform square and
the hexagonal geometries, for which the respective coupling

FIG. 1. Square and hexagonal waveguide structures.

operators are as follows:

(C U )square
nm = c(Un−1,m + Un+1,m + Un,m−1 + Un,m+1)

(C U )hexagon
nm = c(Un−1,m−1 + Un−1,m+1 + Un,m−2

+Un,m+2 + Un+1,m−1 + Un+1,m+1).

This system has two known conserved quantities: the Hamil-
tonian H = ∑

nm

∫
(N (U ; U )nm − |∂tUnm|2 + |Unm|4)dt and

the total power P = ∑
nm

∫ |Unm|2dt .
The waveform of the discrete-continuous light bullets (that

are extrema of the Hamiltonian under fixed total power P )
Unm(z,t) = Anm(t)eiλz is given by the equation

−δ(H + λP )

δA∗
nm

= −λAnm + (C A)nm

+ ∂2
t2Anm + 2|Anm|2Anm = 0.

Highly localized bullet solutions in some limits can be
derived using an asymptotic approach. The consideration
is that spatially most of the energy is concentrated in one
site, (0,0), and small satellite pulses of decreasing amplitude
propagate in subsequent layers. Mathematically, this means we
seek solutions of the form Unm(z,t) = Anm(t)eiλz + c.c. with
λ � 1, where each envelope has an expansion of the form
Anm(t) = A(0)

nm(t ; λ) + A(1)
nm(t ; λ) + A(2)

nm(t ; λ) + · · · .
The analytical derivation of the asymptotic solutions is

straightforward [4] and we only present here the expressions
for the central core and the first layer for the square and hexag-
onal arrays (see corresponding indices and notations below):

A
square
0,0 (t) = a0(t) + O

(
1

λ5/2

)
=

√
λ

cosh(
√

λt)
+ O

(
1

λ5/2

)
,

A
square
±1,0 (t) = A

square
0,±1 = a1(t) + O

(
1

λ5/2

)

= c

2
√

λ
[e

√
λt ln(1 + e−2

√
λt ) + e−√

λt ln(1 + e2
√

λt )]

+O

(
1

λ5/2

)
,

Ahex
0,0 (t) = a0(t) + O

(
1

λ3/2

)
,

Ahex
0,±2(t) = Ahex

1,±1 = Ahex
−1,±1 = a1(t) + O

(
1

λ3/2

)
.
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FIG. 2. (Color online) Peak power [numerical (color) and theory
(black solid)] vs the parameter λ in central (a) and closer neighbor
waveguides (b) for 33×33 square and 33×65 hexagonal waveguide
structures.

These solutions, whose leading-order terms a0,a1 are obtained
in as similar way as in [4], fail to be uniformly valid beyond
|t | � O(

√
λ). In fact, at the pulse tails, all waveguides have

solutions of the same order Anm = O(te−√
λ|t |),t �

√
λ.

In what follows, we compare these analytical results with
numerically computed general localized LB solutions.

Our numerical studies present solutions describing con-
tinuous discrete light bullets of Eq. (2), where we varied
the number of elements in the array, which is an important
consideration for practical systems where the number of cores
is finite.

We find that the asymptotic expressions a0(t),a1(t) fit the
numerically found solutions of the system (3) up to the order
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FIG. 3. (Color online) Comparison of numerical solutions
(color) with their analytical approximations (black solid) for different
λ in the central waveguide (top) and closer neighbor waveguide
(bottom) for 33×33 square (green dashed dotted) and 33×65
hexagonal (red dashed) waveguide structures.

FIG. 4. (Color online) 3D power and phase time distributions vs
parameter λ for the central (left) and closer neighbor waveguide
(right) for a square waveguide structure.

O( 1
λ3/2 ). In Figs. 2 and 3 analytical asymptotic and numerical

solutions are compared for c = 1 for the rectangular structure
with N × N crossed and the hexagonal structure with N × 2N

crossed. Figure 2 depicts the dependence of the amplitude
of the solution in the central and neighboring cores on the
parameter λ. Figure 3 shows a comparison of the time-domain
structure of the light bullets for two different values of λ. A few
observations can be made from Figs. 2 and 3. First, the asymp-
totic mode fits well with the LBs for large values of λ > 14
and it is an even better approximation for the square geometry.
The second observation is that the theoretical leading-order
approximation overshoots the numerical outcome for the
central core and underestimates that of the neighbor sites.
This can be corrected by computing higher-order terms in
more detail, but perhaps more important is that even for values
of λ where the approximation is not as good (e.g., λ = 7),
the theoretical approximation represents a good guess for the
initial state that will adjust to the LB in propagation. Figure 4
summarizes the spatiotemporal amplitude and phase features
of the light bullet, and Fig. 5 shows global characteristics of the
LB such as power and the Hamiltonian. We observed that the
functional dependence shown here is universal independent
of the number of fiber elements (assumed to be large), and is
consistent with Fig. 2(a) in [9].
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FIG. 5. (Color online) From left to right: (a) dependence of the
total power on the parameter λ, (b) dependence of the Hamiltonian
on the parameter λ, and (c) the Hamiltonian vs the total power, all
for 33×33 square (green dashed dotted) and 33×65 hexagonal (red
dashed) waveguide structures.
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Next we investigate the stability of solutions of the form Unm(z,t) = Anm(t)eiλz by linearization, Unm(z,t) = [Anm(t) + fnm +
ignm]eiλz, leading to the following system of linear equations:

−∂zgnm = −(Cf )nm − ∂2
t2fnm + λfnm − 6|Anm|2fnm = (H−f )nm,

∂zfnm = −(Cg)nm − ∂2
t2gnm + λfnm − 2|Anm|2gnm = (H+g)nm,

or −∂2
z fnm = [H+(H−f )]nm. We define the inner products for square arrays as follows:

〈f ,H+f 〉 =
∑
nm

∫
fnm(H+fnm)dt =

∑
nm

∫ [
|Anm|2

[
∂t

(
fnm

Anm

)]2]
dt

+
∑
nm

∫ [(√
An,m−1

Anm

fnm −
√

An,m

An,m−1
fn,m−1

)2]
dt +

∑
nm

∫ [(√
An−1,m

Anm

fnm −
√

An,m

An−1,m−
fn−1,m

)2]
dt,

and for the hexagonal arrays as follows:

〈f ,H+f 〉 =
∑
nm

∫
fnm(H+fnm)dt =

∑
nm

∫ {
|Anm|2

[
∂t

(
fnm

Anm

)]2}
dt +

∑
nm

∫ [(√
An,m−1

Anm

fnm −
√

An,m

An,m−1
fn,m−1

)2]
dt

+
∑
nm

∫ [(√
An−1,m

Anm

fnm −
√

An,m

An−1,m−
fn−1,m

)2]
dt +

∑
nm

∫ [(√
An+1,m+1

Anm

fnm −
√

An,m

An+1,m+1
fn+1,m+1

)2]
dt

+
∑
nm

∫ [(√
An+1,m−1

Anm

fnm −
√

An,m

An+1,m−1
fn+1,m−1

)2]
dt.

In both cases and similar to the 1 + 1 + 1 case [24–26], the
following properties of the linear operators hold:

(i) 〈f,H+f 〉 � 0 and it is equal to 0 if fnm = 0 or fnm =
Anm.

(ii) There exist some F for which 〈−F,H+F 〉 is negative
and 〈F,A〉 = 0.

We should point out that while we only discussed two
specific geometries, (i) and (ii) will be generally true for a
large class of coupling schemes. Properties (i) and (ii) allow
us to conclude that the existence of negative eigenvalues of
the operator H− is a sufficient condition for instability of the
nonlinear state. Furthermore, one can show this condition is
equivalent to the Vakhitov-Kolokolov criterion on the sign of
d
dλ

P = d
dλ

〈A,A〉. Either way, this proves instability of the left
branch of solutions in Fig. 5 (left).

For the highly localized solutions of the previous section,
one finds that the power P (λ) = 2λ1/2 + K/λ3/2, where the
constant K depends on the coupling coefficient and the
geometry, for the square array K = 5.69 and for the hexagonal
array K = 8.54. Observe that a minimum is achieved at
λc = (3K/2)1/2, so that stability of the localized (λ > 1) bullet
is assured for coupling strengths below some critical value.
This stability criteria is also in agreement with the known
stability of one-dimensional solitons, which in this model
corresponds to the limit K → 0.

So far, we have demonstrated the existence and stability of
the LB localized in several fibers. Now we will demonstrate
that the LB can be formed during the propagation of an initial
pulse launched from the input faces of the array. Specifically,
we simulate the propagation of a Gaussian pulse lunched
in one fiber for the hexagonal geometry U0,0(z = 0,t) =√

P/(τ
√

π ) exp[−t2/(2τ 2)], where P = 7.48 in both cases,
and τ = 0.72 (a), τ = 0.6 (b).

Figure 6 summarizes the general picture for an incident
pulse in a single fiber. The left panel highlights the propagation
for τ = 0.72 (smaller input peak power and broader pulse),
where according to our analysis, stable LB do not exist.
One can observe fast diffraction (in space) and dispersion (in
time) of the pulse. The energy in the central core vanishes
after z = 2, being spread through the surrounding layers. For
slightly higher peak power τ = 0.6 (right panel) we observe
the formation of LB localized in the center fiber and the
surrounding layer. The temporal oscillation can be explained
in the following way. The Hamiltonian is conserved in our
system and in general, the initial value of H and that of the LB

FIG. 6. (Color online) Illustrative depiction of the power spa-
tiotemporal isosurfaces for the propagation of an input Gaussian
pulse U0,0(z = 0,t) =

√
P/(τ

√
π) exp[−t2/(2τ 2)], with P = 7.48

and τ = 0.72 (a), τ = 0.6 (b) along the array with the hexago-
nal geometry. Red isosurfaces of the central core correspond to
|U0,0(z,t)|2 = 8 and blue, for the similar power isosurfaces at level
0.16 in the first neighboring cores around the central core. Labeling
of core indices as in Fig. 1(b).
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FIG. 7. (Color online) A sample of dynamic scenarios for input
pulses in single (a) and multiple (b–h) ports. In (a)–(e) bullets
emerge, showing recurrence (a) and symmetry breaking (b–d). Above
critical separation between cores and/or below critical power, light
propagates in dispersive mode (f–h). Labeling of core indices as in
Fig. 1(b).

are different. The adjustment of the Hamiltonian takes place by
the radiation in the outside cores carrying out the Hamiltonian
difference. Oscillations indicate the residual differences. For
reference, red spatiotemporal isosurfaces correspond to the
central core, and the blue ones, to the first circle of neighboring
cores (with peak power values 50 times less than in the central
core). Not shown here is the highly nonlinear regime (τ � 0.6)
where a localized state propagates in stable fashion. However,
one has to consider that at kilowatt power levels, thermal
instabilities arise and for short pulses, higher-order linear and
nonlinear dispersion effects become relevant and the model
has to be adjusted to account for these effects. Finally, Fig. 7
illustrates some of the rich dynamics and fascinating scenarios

that can emerge when light propagates in multicore fibers. The
figure shows recurrence (a), symmetry breaking (b,c,d), which
is also discussed in [13], and transitions from bullet formation
(e) to dispersive dynamics (f,g) depending on input power
and separation distances when multiple pulses are incident at
different cores.

In this work we have studied spatiotemporal light bullet
propagation in an optical medium consisting of a multicore
fiber or a general array of waveguides, which as this and
other recent work indicates, can be used in a variety of
applications. We have put forward a comprehensive theoretical
framework based on asymptotic and stability analysis that not
only validates the existence of stable light bullets, representing
light localization in space and time, but it demonstrates they are
generic and stable for a multitude of multicore geometries. We
also found that they can be formed as a result of the evolution
of a sufficiently intense initial pulse launched into the array.
We anticipate our results present an opportunity to design
array configurations whose topology is suitable for a particular
application, including preparing a LB for propagation in bulk
Kerr media [27] or in the atmosphere. Our theoretical approach
should explain recent work in nonlinear arrays when the
model is extended by incorporating higher-order temporal
effects [28], or in particular, provide an explanation of the
observed additional (large) λ-dependent time shifts, shown
in Fig. 7 of Ref. [9]. Clearly such dependence would be
quite useful for time delay lines and for efficient coherent
pulse combining [29]. The second extension that comes to
mind is coupling active fibers, where at first approximation
we can add to the model linear gain and saturation. Finally,
we concentrated our work to the study of light bullets in the
anomalous regime. A natural extension is to perform similar
studies to discrete spatiotemporal vortices and other nonlinear
modes. With respect to the normal regime, recent experimental
results [30] demonstrate the existence of X waves in 1d

semiconductor waveguide arrays. Theoretically, X waves carry
infinite energy, so once a proper renormalization of power
and the Hamiltonian is done to the work presented here, an
improved existence and stability analysis to 1d and 2d arrays
in the normal dispersion regime can be implemented.
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