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Theory of high-efficiency sum-frequency generation for single-photon waveform conversion
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The optimal properties for single photons may vary drastically between different quantum technologies. Along
with central frequency conversion, control over photonic temporal waveforms will be paramount to the effective
coupling of different quantum systems and efficient distribution of quantum information. Through the application
of pulse shaping and the nonlinear optical process of sum-frequency generation, we examine a framework for
manipulation of single-photon waveforms. We use a nonperturbative treatment to determine the parameter regime
in which both high-efficiency and high-fidelity conversion may be achieved for Gaussian waveforms and study
the effect such conversion techniques have on energy-time entanglement. Additionally, we prove that aberrations
due to time ordering are negligible when the phase matching is nonrestrictive over the input bandwidths. Our
calculations show that ideal quantum optical waveform conversion and quantum time lensing may be fully
realized using these techniques.
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I. INTRODUCTION

Single photons are the natural choice for many quantum
technologies as they are an ideal carrier of quantum informa-
tion for communication protocols and coupling quantum nodes
[1,2]. To form an effective interface between two quantum
systems, it is important that the photon properties, such as
the spectrum or spatial mode, match those of the receiver.
Ensuring compatibility will, in general, necessitate adapting
properties of the source photon to match those of the receiver
using waveform manipulation methods. Constraints imposed
by the no-cloning theorem [3] forbid direct amplification
or detect-and-resend approaches, creating a need for highly
efficient low-noise quantum waveform conversion methods.

The temporal waveforms of single photons are of particular
importance in quantum optics and quantum information
science. Photon pairs produced through spontaneous paramet-
ric down-conversion (SPDC) have controllable energy-time
entanglement dependent on the pump and crystal properties
[4–8]. Quantum information may be encoded as a super-
position of discretized time [9] or frequency [10] bins and
multiplexed in either case to increase the rate of information
transmission [11–14]. Control over this degree of freedom is
necessary for coupling to quantum memories [15,16], quan-
tum frequency conversion [17–20], temporal mode selection
[21–23], and quantum measurement [24]. In order for general
control over temporal waveforms, it is necessary that the
waveform conversion methods remain effective on the ultrafast
time scale [25–27].

Sum-frequency generation (SFG) and pulse shaping are
powerful tools for manipulating photonic temporal waveforms
[28]. In classical optics, these processes have been employed to
great success in constructing time lenses, which can compress
or stretch complex waveforms [29–35]. In the quantum regime,
SFG has been employed to convert telecom band single
photons to visible wavelengths for more efficient detection
[36–40] and dispersion-controlled SFG has been used for
shaping single photons from quantum dot [27,41,42] and
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down-conversion sources [14,24,26]. This process has been
experimentally shown to maintain energy-time entanglement
[43]. Some applications of waveform manipulation have
engineered crystals with specific phase-matching functions to
customize the output [21,44,45], while others have focused
on manipulating the spectrum of the strong laser pulse
[14,23–27,42]. We restrict our attention to the latter applica-
tions, as spectral manipulations to a laser pulse or single photon
may be performed with flexible pulse shaping techniques
[46,47] while manipulations to the phase-matching function
generally require specialized crystal engineering.

In recent experiments studying sum-frequency generation
between shaped single photons and strong classical fields, a
first-order perturbative theory was sufficient to explain the
results as the conversion efficiency was low. However, it
is important that these techniques remain effective in the
high-efficiency regime. In this work, we develop a quantum
treatment of an idealized sum-frequency generation process
between a single photon and a strong classical pulse to address
this issue. Our treatment is necessary to enable practical
bandwidth compression and time lensing for the quantum do-
main, as aberrations occurring at high efficiency could greatly
degrade the quality of the signal. The paper is structured as
follows. In Sec. II, we derive the quantum waveform resulting
from the SFG interaction. We also justify an approach based on
the Taylor series expansion of the unitary transformation by
showing that the corrections arising from a more complete
Dyson or Magnus series treatment vanish in the limiting
case where phase matching is nonrestrictive. In Sec. III, we
apply this result to a model heralded single photon waveform.
In Sec. IV, we review the special cases of time lensing,
time-to-frequency conversion, and bandwidth compression
as examples of the flexibility of dispersion-based waveform
shaping. In Sec. V, we discuss the effect of waveform
conversion on half of an energy-time entangled photon pair.

II. SUM-FREQUENCY GENERATION
WAVEFORM CONVERSION

We consider the scenario depicted in Fig. 1(a). A photon
pair is created in modes 1 and h, with the photon in mode h
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FIG. 1. (Color online) Sum-frequency generation for optical
waveform manipulation. (a) A pair of photons may be created
through, for example, spontaneous parametric down-conversion, with
a signal photon in mode 1 and its herald in mode h. The signal
photon is then mixed with a strong escort pulse in mode 2 to produce
an up-converted signal photon in mode 3. (b) Temporal waveforms
may be customized by applying dispersion (represented by the chirp
parameter Ai) to the input photon and escort pulse before SFG. A
third chirp applied to the up-converted signal allows for complete
temporal magnification. Bandwidth compression can be achieved in
this scenario as shown, with equal-and-opposite chirps applied to the
input photon and escort pulse and no third chirp required. Bold lines
represent strong pulses and thin lines represent single photons.

acting as a herald. These photons may be energy-time entan-
gled and could originate from a process such as spontaneous
parametric down-conversion. We model the state of the two
photons as [5,6,48,49]

|ψi(t)〉 = 1

2π

∫∫
dω1dωhFi(ω1,ωh)|ω1〉1|ωh〉h, (1)

where |ωj 〉 = â†
ωj

eiωj t |0〉 is a single-photon of frequency ωj

in a single spatial mode. For simplicity, we will assume that
all limits of integration extend to infinity for the remainder of
this discussion.

The single photon in mode 1 then interacts with a strong
escort pulse in mode 2 through sum-frequency generation
to produce up-converted light in mode 3. We model this
interaction using a unitary transformation, which we will
discuss briefly here (see Appendix A for details). The SFG
material is assumed to be a χ (2) medium with a fast nonlinearity
and phase-matching function �(ω1,ω2,ω3) and the input fields
are assumed to be plane waves. We treat the escort pulse
in mode 2 as a classical nondepleted field with normalized
spectrum G(ω2). The strength of the interaction is defined by
the absolute coupling constant γ , which is proportional to the
electric-field amplitude of the escort pulse, the crystal length,
and the strength of the nonlinearity of the material, with units
such that

∫
dω2γ

2|G(ω2)|2 is dimensionless. In this limit, the
interaction Hamiltonian may be expressed as [4,50,51]

ĤI (t) = �γ

2π

∫∫∫
dω1dω2dω3[�(ω1,ω2,ω3)

×G(ω2)e−i(ω1+ω2−ω3)t âω1 ĉ
†
ω3

+ H.c.], (2)

where the operators â and ĉ correspond to modes 1 and 3,
respectively.

The unitary transformation describing time evolution is
written as

Û = T exp

[
− i

�

∫ tf

t0

dtĤI (t)

]
, (3)

where T is the time-ordering operator that ensures proper
ordering of events for Hamiltonians that do not commute
with themselves at different times. This operator prevents a
straightforward Taylor expansion of the unitary transforma-
tion, necessitating a treatment through the Dyson or Magnus
expansion, as has been shown in previous work in quantum
optics [49,52–55]. Here we simplify calculations by assuming
that the phase-matching function �(ω1,ω2,ω3) has a wide
acceptance bandwidth and set it to one across the frequencies
of interest. In this limit, which corresponds to a process where
the fields in each of the three modes copropagate without
temporal walkoff or spread, we find that the time-ordering
corrections to the Taylor expansion vanish. We prove this by
showing that, in this limit, the commutator of the Hamiltonian
with itself at different times is zero, i.e.,

[ĤI (t2),ĤI (t1)] = 0. (4)

This approximation is expected to be valid for thin nonlinear
crystals; it could also be achieved using nonlinear materials
with a flat (top-hat) phase-matching function much broader
than the escort bandwidth [56,57].

To show the commutativity given by Eq. (4), we define the
following:

�(t) = �γ

∫
dω2G(ω2)e−iω2t , (5)

â(t) = 1√
2π

∫
dω1âω1e

−iω1t , (6)

ĉ(t) = 1√
2π

∫
dω3ĉω3e

−iω3t . (7)

We then substitute these functions and operators into
the Hamiltonian of Eq. (2) along with the assumption
�(ω1,ω2,ω3) = 1 to find the simplified Hamiltonian of

ĤI (t) = �(t)â(t)ĉ†(t) + �∗(t)â†(t)ĉ(t). (8)

Note that this factorization of the Hamiltonian is not generally
possible for a nonconstant phase-matching function. It is an
interesting question whether there exist other symmetries in
the phase-matching function that also lead to the relation of
Eq. (4). The operators â(t) and ĉ(t) as defined in Eqs. (6)
and (7) can be shown to obey the commutation relation
[â(t2),â†(t1)] = δ(t2 − t1) from the frequency-domain relation
[âω2 ,â

†
ω1

] = δ(ω2 − ω1). Using these commutation relations to
normal order ĤI (t2)ĤI (t1) and ĤI (t1)ĤI (t2), it can be seen that
Eq. (4) is satisfied and thus the Taylor series is sufficient to
obtain the SFG unitary transformation. This statement holds
independently of the input state |ψi(t)〉 and escort spectrum
G(ω2). Recently, Quesada and Sipe proved from the Magnus
expansion that the second- and third-order corrections to
the Taylor expansion vanished for broadly phase-matched
processes in both SPDC and SFG [54]; based on our result, we
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conclude that the corrections to the Taylor series vanish for all
orders for both the Magnus and Dyson expansion.

We rewrite the sum-frequency generation unitary transfor-
mation as Û = ∑∞

k=0
(iγ )k

k! Ûk , where

Ûk =
∫∫

dω1dω3
[
âω1 ĉ

†
ω3

G(ω3 − ω1) + H.c.
]k

. (9)

Applying this unitary transformation to our initial state from
Eq. (1) gives a final state with even-order terms in the input
mode 1 and odd-order terms in the up-converted mode 3. Each
term in the series may be found through a recursion relation.
The representation of the state has a closed-form solution in the
time domain that can be found using the convolution theorem.
Details on this calculation can be found in Appendix B;
we will state the result here. The full spectral waveforms
of the remaining photon amplitude in mode 1 is given by
F1f (ω1,ωh) = ∑∞

k=0 F (2k)(ω1,ωh) and the up-converted signal
in mode 3 is F3f (ω3,ωh) = ∑∞

k=0 F (2k+1)(ω3,ωh). The initial
joint spectral amplitude and escort spectrum can be expressed
in the time domain as fi(t,th) and g(t), respectively, using
the Fourier transform f (t) = 1√

2π

∫
dω F (ω)eiωt . The final

two-photon temporal waveforms for the photons in modes h

and either 1 or 3 can be written in the time domain as a

f1f (t,th) = fi(t,th) cos[
√

2πγ |g(t)|], (10)

f3f (t,th) = fi(t,th)
g(t)

|g(t)| sin[
√

2πγ |g(t)|]. (11)

These equations are consistent with the result for the exactly
copropagating signals regime in [22].

III. WAVEFORM CONVERSION OF A SINGLE PHOTON
FROM A MODEL ENERGY-TIME ENTANGLED PAIR

In order to characterize the effectiveness and efficiency of
these processes, we model our input state as part of a photon
pair produced through SPDC in a broadly phase-matched
crystal followed by bandpass filters, which we write as

Fi(ω1,ωh) =
(
S2 + σ 2

1 + σ 2
h

)1/4

√
2πSσ1σh

eiA1(ω1−ω01)2

× exp

(
− (ω1 − ω01)2

4σ 2
1

− (ωh − ω0h)2

4σ 2
h

− (ω1 + ωh − ω01 − ω0h)2

4S2

)
, (12)

where σ1 and σh are the bandwidths of spectral filters
centered at frequencies ω01 and ω0h, respectively, and S is the
bandwidth of the pump beam [6,48,58]. The chirp parameter
A1 determines the strength of the group-velocity dispersion
applied to the signal photon.

Our escort beam is described by a normalized Gaussian
spectrum with group-velocity dispersion as

G(ω2) = 1(
2πσ 2

2

)1/4 e−[(ω2−ω02)2/4σ 2
2 ]eiω2τ eiA2(ω2−ω02)2

, (13)

where σ2 is the bandwidth of the escort about central frequency
ω02, A2 applied dispersion, and τ a time delay relative to the
signal photon.

We may now calculate the probability of successfully
converting the single photon from mode 1 to mode 3, by finding
the expectation value of the number of photons in mode 3, 〈n̂3〉.
We Fourier transform the spectra described by Eqs. (12) and
(13) and substitute them into Eq. (11) to find the two-photon
waveform in modes 3 and h. We can then calculate 〈n̂3〉 by
integrating the square of this amplitude over all time,

〈n̂3〉 =
∫

dt dth|f3f (t,th)|2

= 1

2

∞∑
k=1

(−1)k−1

(2k)!

e−kT 2/(1+qk)

√
1 + qk

p2k (14)

where we have made the following substitutions:

p = 2(8π )1/4

(
σ 2

2

1 + 16A2
2σ

4
2

)1/4

γ, (15)

T =
√

2σ2τ√
1 + 16A2

2σ
4
2

, (16)

q = σ 2
2

σ 2
1

[(
1 + σ 2

1

S2
+ 16A2

1σ
4
1

(
S2 + σ 2

h

)
S2 + σ 2

1 + σ 2
h

)/(
1 + 16A2

2σ
4
2

)]
.

(17)

The scaled coupling constant p is defined such that p2 is
proportional to the peak power of the escort pulse, which
may be seen by noting that γ 2 is proportional to the number
of photons in the pulse and its stretched temporal duration

is given by �t2 ∝ 1+16A2
2σ

4
2

σ 2
2

. The dimensionless time delay
T corresponds to a relative time delay between the escort
pulse and the photon normalized to the temporal width of the
escort pulse. Finally, the pulse length ratio q is the ratio of
temporal widths for the escort pulse and the input photon,
with a low value implying that the single photon is much
shorter in duration than the escort pulse. This series is provably
convergent for any value of p, q, or T through the Cauchy-
Hadamard theorem [59].

The three parameters of Eqs. (15)–(17) characterize the
important figures of merit for the conversion process. In
particular, the pulse length ratio q describes the potential
efficiency of a given sum-frequency process. In the low-q limit,
where 1 + qk ≈ 1 for all k with appreciable contributions to
Eq. (14), it is seen that

lim
q→0

〈n̂3〉 = sin2
(

1
2e−T 2/2p

)
, (18)

as one would find by treating the escort pulse as monochro-
matic [60]. In this limit, perfect up-conversion efficiency
(〈n̂3〉 = 1) is achievable with sufficient escort power. In the
high-q limit, Eq. (14) does not readily present a closed-form
solution and must be studied numerically. Figure 2(a) shows
numerical calculations of 〈n̂3〉 as a function of the scaled
coupling constant p for a wide range of q values with zero
time delay (T = 0). It is apparent that high SFG efficiency may
only be achieved for low values of the pulse length ratio q � 1.
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FIG. 2. (Color online) Single-photon up-conversion efficiency and fidelity. (a) The probability of successful up-conversion 〈n̂3〉 is shown as
a function of the scaled coupling constant p for various pulse width ratios q, with the dimensionless time delay T held constant. As p increases
in the regime where the escort is much broader in time than the input photon (low q), the efficiency of up-conversion follows a sine pattern,
reaching unit efficiency at p = π . In the regime where the escort is much narrower in time than the photon, high up-conversion efficiency is
not achievable. (b) Here we show the probability as a function of p for various dimensionless time delays T , with the pulse width ratio q held
at one. As the time delay is increased, the pulses cease to overlap well and the maximum efficiency is seen to drop. Notably, the peak efficiency
is no longer well defined past |T | ≈ 1.5, as the first local maximum in efficiency is no longer the global maximum. (c) The maximum possible
efficiency is numerically calculated as a function of q and T , with the optimal p estimated as the first peak of a fourth-order expansion of
Eq. (14). In the low-q regime, the efficiency is also robust against time delays T . (d) By numerically calculating the fidelity of the temporal
waveform at the estimated optimal efficiency with that expected from first-order perturbation theory via Eq. (19), we see that the first-order
approximation is an excellent description in the low-q regime. Time delays disturb the symmetry of the system and further reduce the fidelity.

Figure 2(b) shows 〈n̂3〉 as a function of p as the dimensionless
time delay T is varied, for equal escort and photon pulse
lengths (q = 1). These calculations show that adding a time
delay will also reduce the peak efficiency, as expected due to
the decrease in overlap between the escort pulse and single
photon.

To find the optimal conversion efficiency, we aim to find the
maximal 〈n̂3〉 for any given q and T . We estimate the optimum
p value as the first zero of the derivative of Eq. (14) with respect
to p, corresponding to the first efficiency peak in Figs. 2(a)
and 2(b). As this derivative is not in closed form, we truncate
the sum of Eq. (14) after four terms to obtain an approximate
maximum; this works well for oscillatory solutions, but may
underestimate the optimal p for large values of |T | as no
well-defined peak efficiencies are present. In Fig. 2(c), we
show the optimal efficiency using this method as a function
of q and T . This optimal efficiency is nearly unity for small
pulse length ratios q � 1 and very robust against time delays
for q 
 1. However, note that higher escort power is required
to reach the optimal efficiency as the time delay moves away
from zero.

A first-order perturbative approach, as used in previous
works, always predicts a Gaussian sum-frequency photon

given a Gaussian input photon and escort pulse. This is an
ideal target photon for many applications and it is important
to determine how well this relatively simple prediction
describes the result expected at high efficiency. By defining
|ψ (1)〉 to be the photonic waveform found through first-order
perturbation theory, with a temporal waveform f

(1)
3f (t,th) found

by expanding Eq. (11) to first order in γ , we can calculate
how well our total photonic waveform overlaps with the
first-order description through the quantum state fidelity and
thus determine the validity of first-order approximations. The
fidelity is defined for pure states as

|〈ψ (1)|ψ〉|2 =
∣∣∣∣
∫∫

dtdthf
∗
3f (t,th)f (1)

3f (t,th)

∣∣∣∣
2 /〈

n̂
(1)
3

〉〈n̂3
〉
,

(19)
where we normalize by dividing by both 〈n̂3〉 and
〈n̂(1)

3 〉 = ∫∫
dt dth|f (1)

3f (t,th)|2 as we are primarily concerned
with the shape of the temporal waveforms. We numerically
calculate this fidelity at the optimal efficiency as a function
of q and T , with the results shown in Fig. 2(d). It is seen
that the first-order approximation describes the high-efficiency
waveform well in the low-q regime, but is less accurate when q

is large; however, the fidelity is numerically always above 0.95
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as long as there is no relative time delay between the photon
and the escort (T = 0). When a time delay is introduced, the
fidelity dips as a function of T for moderate values of q, as
considerable pulse reshaping occurs.

IV. APPLICATIONS OF QUANTUM OPTICAL
WAVEFORM MANIPULATION

A. Time lensing

The space-momentum and energy-time properties of light
can be described by similar mathematical structures, allowing
analogous techniques for controlling these properties [30]. For
example, in the paraxial and relatively narrowband limits,
respectively, beam diffraction in free space, the action of
a lens, and group-velocity dispersion are mathematically
described by quadratic phases in transverse momentum,
space, and frequency, respectively. The additional ability to
produce quadratic temporal phases, known as time lenses, in
conjunction with group-velocity dispersion enables temporal
magnification of optical pulses in the same way that the
combination of lenses and free-space propagation provide the
ingredients for spatial magnification [29,30]. Group-velocity
dispersion may be applied to single photons using pulse
shapers and dispersive waveguides in the same fashion as
strong laser pulses [26,47], but the quadratic temporal phase
needed for the time lens is more challenging. The nonlinear
optical process of self-phase modulation can serve as a time
lens for strong laser pulses, but is ineffective for single photons
[61]. Microwave electronic phase modulators have also been
used as time lenses [30], but are only effective for limited pulse
bandwidths [35].

Instead of applying the temporal phase directly, it is possible
to apply dispersion to a strong escort pulse and induce a
temporal phase through SFG [31,32]. To see how the temporal
phase is imparted to the single photon in SFG, we examine
Eq. (11) in the limit where the overall temporal width of the
strong escort pulse is much greater than the temporal width
of the input single photon (q 
 1); in this limit, we make
the approximation that sin[

√
2πγ |g(t)|] ≈ sin[

√
2πγ ]. This

limit is fortuitously identical to the required limit for high
conversion efficiency, as seen in the previous section. The
output temporal waveform of Eq. (11) is then modified relative
to the input fi(t,th) by the chirped escort pulse g(t) given by
the Fourier transform of Eq. (13), with an imparted quadratic
temporal phase φ(t) = Bt2, where the coefficient is

B = −4A2σ
4
2

1 + 16A2
2σ

4
2

. (20)

With the addition of a third dispersive element imparting
chirp A3 on the output, as shown in Fig. 1(b), a temporal
waveform may be imaged with magnification M = −(A1/A3)
so long as the condition

1

2A1
+ 1

2A3
= 2B = −8A2σ

4
2

1 + 16A2
2σ

4
2

LCL≈ − 1

2A2
(21)

is met [29,35]. The limit for the approximation in Eq. (21) is
the large-chirp limit (LCL) for the strong escort pulse such
that A2

2σ
4
2 � 1. This leads to a convenient representation of

temporal imaging that has a form identical to the familiar

thin lens equation from ray optics, with the chirps A1 and A3

applied to the signal acting as object and image distance and
−A2 acting as the focal length.

Under slightly different conditions, the same configuration
may be used as a time-to-frequency converter [35,62,63],
where the time profile is mapped to the spectrum and vice
versa in direct analogy to a spatial Fourier transform. Once
again, a chirp on both the input and output photon is required,
this time with equal chirp parameters A1 = A3. The time lens
required should impart a quadratic phase Bt2 such that

1

4A1
= B

LCL≈ − 1

4A2
(22)

or A1 = −A2 = A3 in the large-chirp limit.

B. Bandwidth compression

In many photonic applications, it is advantageous to have
control over the spectral bandwidth of a single photon.
Chirped-pulse up-conversion may be used for bandwidth
compression with equal-and-opposite dispersion on the single
photon and escort pulse (A1 = −A2), as has been demon-
strated experimentally for single photons in the q ≈ 1 and low-
efficiency regime [24,26]. Similar schemes have seen classical
applications in dispersion-canceled imaging [64–66]. It has
been theoretically shown that entanglement is detrimental to
the compression effect [26] and because of this we will work in
the separable limit here where the parameter S → ∞. In the
first-order approximation, the bandwidth of the compressed
pulse σ

(1)
3 is given by

(
σ

(1)
3

)2 = σ 2
1 + σ 2

2

1 + 16A2σ 2
1 σ 2

2

LCL≈ 1

16A2

(
1

σ 2
1

+ 1

σ 2
2

)
. (23)

For this discussion, we focus on the q = 1 (σ1 = σ2 = σ )
case to gain insights into the regime experimentally explored
in recent work by extrapolating to high-efficiency SFG. In
Fig. 3(a), we show numerical calculations of the up-conversion
probability as a function of the absolute coupling constant γ for
various chirps (and hence compression factors). We see that the
maximum possible efficiency is 88.7%, regardless of the value
of compression. This represents a great potential improvement
over lossy filtering techniques, but it is important to note
that much higher coupling strengths require commensurate
increases in escort power or material nonlinearity.

By Taylor expanding the output temporal waveform
f3f (t,th) about γ and Fourier transforming the result, we may
express the spectrum as a summation. We numerically evaluate
the effective width σ3 =

√
〈ω2

3〉 − 〈ω3〉2 of the up-converted
signal with no time delay (τ = 0) for various chirps A and input
bandwidths σ1 and σ2. In Fig. 3(b), we show the ratio of this
effective width to the first-order prediction as a function of the
q parameter and of the initial pulse length ratio q0 = (σ 2

2 /σ 2
1 ),

representing the q value before applying chirps. In the low-q
limit, the high-order spectral width is identical to the expected
value from a first-order calculation. In the case where the two
temporal widths are exactly equal (σ1 = σ2), the full-order
spectrum after bandwidth compression is actually narrower
than first-order calculations predict. This is because in this
case the temporal waveform is flattened and thus has a larger
full width at half maximum. This effect is seen to persist near
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FIG. 3. (Color online) Effectiveness and efficiency of bandwidth
compression. (a) The success probability 〈n̂3〉 of bandwidth com-
pression is shown as a function of the absolute coupling constant
γ , with τ = 0, σ1 = σ2 = σ , A1 = −A2 = A, and A3 = 0. As the
chirp applied is increased, the compression achieved is stronger at
the expense of peak power in the escort pulse; however, while more
power is required to achieve optimal efficiency, the potential peak
efficiency is constant. (b) In the regime where the pulse length ratio
q is low, the spectral width of the up-converted signal σ3 is seen to be
identical to the width σ

(1)
3 expected from a first-order approximation

regardless of the input bandwidths. However, as q grows, the ratio
of the two widths is seen to depend on the pulse length ratio before
chirp q0. The lined region is algebraically inaccessible for real-valued
chirp parameters A1 = −A2, with the q = q0 line corresponding to
zero applied chirp and the q = 1

q0
line corresponding to the large-chirp

limit.

the diagonals of Fig. 3(b). One can also see that the bandwidth
is increased relative to the first-order calculation in the high-q
regime far from the diagonals; however, the relative increase
in bandwidth is fairly small.

V. EFFECTIVENESS WITH ENTANGLEMENT

Entangled photons are critical to quantum technologies.
Photon pairs with separable joint spectral amplitudes are de-
sirable for numerous applications [6,58,67], and applications
such as multiplexing [11–13] require photon pairs with a
multimode entangled structure. To retain these advantages, it
is essential that the waveform manipulation process maintains
entanglement. In this section, we study the change in the
degree of entanglement between the photons before and after
up-conversion.

We quantify the entanglement in the system through the
Rényi 2-entropy ϒ(ρ) [68], defined for the density operator of
a subsystem ρS belonging to a bipartite pure state as

ϒ(ρ) = − ln tr ρ2
S. (24)

This measure quantifies the purity of the subsystem of a pure
state; a high value indicates a high degree of entanglement and
a correspondingly low purity for the individual subsystems.
Given a pure bipartite state ρ with a joint spectrum given by
F (ω,ωh), the purity of the subsystem may be calculated based
on either subsystem as

tr ρ2
S =

∫
d �ω F (ω,ωh)F ∗(ω′,ωh)F (ω′,ω′

h)F ∗(ω′,ωh), (25)

where d �ω implies integration over all frequency variables.
This expression may be adapted to a temporal representation
through straightforward substitution. For the joint spectrum of
the input waveform given by Eq. (12), the purity is found to be

tr ρ2
S,in =

S

√
S2 + σ 2

1 + σ 2
h√

S2 + σ 2
1

√
S2 + σ 2

h

, (26)

which tends toward zero as S approaches zero (maximal
entanglement) and one as S approaches infinity (separable).

Following the same method for the entanglement between
the up-converted photon and the herald with τ = 0, we find

tr ρ2
S,up = 1

〈n̂3〉2

1

2
√

2

∞∑
m,n=1

(−1)m+nS

√(
S2 + σ 2

1 + σ 2
h

)/[
2(1 + mq)(1 + nq)S2

(
S2 + σ 2

1 + σ 2
h

)+ (2 + mq + nq)σ 2
1 σ 2

h

]
(2m)!(2n)!

p2(m+n),

(27)

where 〈n̂3〉, p, and q are as defined in Eqs. (14) and (15).
Examining this expression shows that the entanglement in the
output is the same as that of the input in the limits of S going
to 0 or infinity (i.e., maximally entangled or fully separable).
In general, however, this is not the case.

Figure 4 compares the Rényi entropy of the input photon
pair to the Rényi entropy between the up-converted photon
and the herald with p set to the optimal conversion efficiency,
for a range of q values, holding τ = 0. It is seen that in the

low-q regime the Rényi entropy, and hence entanglement, is
effectively conserved through the SFG process, but not for
high q. Note that our calculation applies for analysis of the up-
converted pulse assuming Gaussian spectra and no time delay.
For the calculations presented here, the entanglement of the
final state is always lower than the initial. However, for other
spectral shapes, it could be that the up-converted subsystem
actually has a higher degree of entanglement than the initial
state if the up-conversion process increases the number of
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FIG. 4. (Color online) Rényi 2-entropy after up-conversion at
peak efficiency. The Renyi 2-entropy, a measure of entanglement,
is shown for the up-converted subsystem as a function of the initial
Renyi 2-entropy for various values of q. The bipartite energy-time
entanglement is unaltered after postselecting on successful up-
conversion if the pulse length ratio q is small, i.e., in the time-lensing
limit. However, if the input photon is of temporal length comparable
to or longer than the strong escort pulse (high q), the postselection
results in an effective loss of entanglement in addition to imperfect
efficiency.

significant Schmidt modes, akin to the Procrustean method of
entanglement concentration [69].

VI. CONCLUSION

We have developed a theoretical treatment for high-
efficiency sum-frequency generation between a single photon
and a strong escort beam. We have identified the parameter
regime required for high-efficiency up-conversion of the single
photon for waveform manipulation. This regime also coincides
with the case where the photons remain Gaussian through up-
conversion and the first-order perturbative calculation provides
an accurate description of the sum-frequency process. We
have found the conditions required to use SFG to implement
a single-photon time lens and for bandwidth compression.
Finally, we have examined the effect of this process on two-
photon energy-time entanglement, finding the regime where
entanglement is conserved. Nonlinear interactions mediated
by shaped strong classical laser pulses provide a powerful plat-
form for controlling the properties of quantum states of light.
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APPENDIX A: DERIVATION OF THE SUM-FREQUENCY
GENERATION UNITARY TRANSFORMATION

We lay the groundwork for the various photon shaping
techniques by following [51] and defining our quantized
electric field as propagating in the ẑ direction, simplifying
our operator representation to

Ê(z,t) = i√
2π

∫
dk

√
�ωk

2
E0âωk

eikz−iωkt + H.c. (A1)

We approximate the transverse profile of the electric field to
be uniform within an area A (effectively the active area in
the nonlinear medium) and zero elsewhere. We determine the
constant E0 by demanding that the energy in a single mode
k is �ωk with the approximations that the permittivity is ε ≈
ε0n(ω) and that the group and phase velocities are equal ( dn

dω



n
ω

), finding that

∫∫
A

dx dy
ε0n

2(ωk)E2
0

2
�ωk = ε0n

2(ωk)E2
0

2
A�ωk = �ωk.

(A2)

We reexpress the integral in terms of frequency rather than
wave number, as in Sec. V of [51] with the additional
approximation dn

dω

 n

ω
, as

∫
dk âωk

=
∫

dω

√
dk

dω
âω ≈

∫
dω

√
n(ω)

c
âω. (A3)

We split our field operator into its positive- and negative-
frequency components Ê(z,t) = Ê(+)(z,t) + Ê(−)(z,t), where

E(+)(z,t) = i

∫
dω

√
�k(ω)

4πε0A
âωe−iωt+ikz, (A4)

E(−)(z,t) = −i

∫
dω

√
�k(ω)

4πε0A
â†

ωeiωt−ikz, (A5)

where k(ω) = n(ω)ω/c.
We assume that the three fields involved in the up-

conversion process (input signal, strong escort, and generated
signal) are completely nondegenerate and thus may be viewed
as occupying three independent modes, numbered 1–3 and
with annihilation operators defined as â, ĝ, and ĉ respectively.
We then define the interaction Hamiltonian ĤI (t) for the
up-conversion process as [17]

ĤI (t) = −ε0

3
χ (2)

∫
V

d�r(E(−)
1 E

(−)
2 E

(+)
3 + H.c.). (A6)

After integrating over the transverse profile, we rewrite the
Hamiltonian as

ĤI (t) = −ε0

3
χ (2)

(
�

4πε0A

)3/2

A
∫∫∫∫

dω1dω2dω3dz

×
√

k1k2k3
[
iâω1 ĝω2 ĉ

†
ω3

e−i(ω1+ω2−ω3)t ei(k1+k2−k3)z

+ H.c.
]
, (A7)

where ki is a function of ωi .
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The initial state evolves according the unitary transforma-
tion Û ≡ T exp[− i

�

∫ tf
t0

dtĤI (t)], where T is the time order-
ing operator [49,52–55]. In general, time ordering necessitates
corrections to the Taylor expansion of this transformation.
However, in Sec. II we showed that these corrections vanish
in the limit of perfect phase matching; we neglect these cor-
rections for the remainder of the discussion. We additionally
assume that the interaction Hamiltonian is zero at before t0
and after tf , allowing us to extend the limits of integration
in the unitary transformation to infinity and obtain the delta
function 2πδ(ω3 − ω1 − ω2). While we aim to study spectral
waveforms that are not strictly monochromatic, we make the
assumption that our waveforms are relatively narrowband,
such that

√
k1k2k3 is approximately the constant

√
k01k02k03

[where k0i = k(ω0i)] and may be taken out of the integral. We
then take the z integral over the crystal length L to find

∫ L/2

−L/2
dz ei(k1+k2−k3)z = L sinc

[
1

2
L(k1 + k2 − k3)

]

= L�(ω1,ω2,ω3), (A8)

where �(ω1,ω2,ω3) is the phase-matching function.
We can rewrite the evolution of the system as defined by

the simplified unitary transformation

Ûwm = exp

[
i

(
�k01k02k03

64π3ε0A

)1/2 2πχ (2)L

3

∫∫∫
dω1dω2dω3

× [
iâω1 ĝω2 ĉ

†
ω3

�(ω1,ω2,ω3) + H.c.
]
δ(ω1 + ω2 − ω3)

]
.

(A9)

Since the second mode is a strong coherent state, we may make
the approximation such that the operators may be treated as
constant (the nondepleted pump approximation), where we
define ĝω2 ≈ √

NeG(ω2) where Ne represents the number
of photons in the escort pulse and G(ω2) is its complex
normalized spectrum. We also absorb the factor of i into G(ω2).
We reexpress the transformation of Eq. (A9) as

ÛSFG = exp

[
i

(
�k01k02k03

16πε0A

)1/2
χ (2)L

√
Ne

3

∫∫
dω1dω3

× [
âω1 ĉ

†
ω3

G(ω3 − ω1)�(ω1,ω3 − ω1,ω3) + H.c.
]]

.

(A10)

By collecting all constant terms, we define the absolute
coupling constant

γ =
(

�k01k02k03

16πε0A

)1/2
χ (2)L

√
Ne

3
, (A11)

which has dimensions of square-root time, such that∫
dω γ 2|G(ω)|2 is dimensionless. By taking the Taylor expan-

sion about γ = 0, we find the unitary transformation defined
in Eq. (9).

APPENDIX B: TIME-DOMAIN EXPRESSION FOR
SUM-FREQUENCY GENERATION

With an input state and evolution unitary transformation
written as in Eqs. (1) and (9), respectively, the final state is
given as an infinite sum of terms in the frequency domain. In
this section, we show the transformations from the frequency
to the time domain necessary to obtain a general solution,
starting from Eq. (9) and ending with Eqs. (10) and (11). To
do so, we use the Fourier transform to switch between time
and angular frequency representations, in a form designed to
maintain the normalization of the integrated photon number,

f (t) = F−1[F (ω)] = 1√
2π

∫ ∞

−∞
dω F (ω)eiωt , (B1)

and define the escort pulse temporal representation
g(t) = F−1[G(ω2)] and the input joint temporal wave-
form fi(t,th) = F−1[Fi(ω1,ωh)] via a straightforward two-
dimensional generalization of Eq. (B1).

As the photon number must be conserved, the action of
SFG will be to couple modes 1 and 3 [see Fig. 1(a)] as

|ψf (t)〉 = 1

2π

∞∑
k=0

∫
dωh

(∫
dω1F

(2k)(ω1,ωh)|ω1〉1|0〉3|ωh〉h

+
∫

dω3F
(2k+1)(ω3,ωh)|0〉1|ω3〉3|ωh〉h

)
, (B2)

with odd-order terms representing sum-frequency conversion
from mode 1 to mode 3 and even-order terms representing
difference-frequency conversion from mode 3 back to mode
1. Noting that F (0)(ω1,ωh) = Fi(ω1,ωh), the first-order term
may be directly calculated as

F (1)(ω′
3,ωh) = iγ

∫
dω1F

(0)(ω1,ωh)G(ω′
3 − ω1) (B3)

and the convolution theorem may be used to express
this term in the time domain as simply f (1)(t,th) =
i
√

2πγf (0)(t,th)g(t).
Higher-order contributions may be found recursively

through repeated convolutionlike integrals over the signal
frequency with the escort beam, as

F (k+2)
even (ω′′

1,ωh) = −γ 2

(k + 2)(k + 1)

∫∫ ∞

−∞
dω1dω′

3F
(k)

× (ω1,ωh)G(ω′
3 − ω1)G∗(ω′

3 − ω′′
1),

(B4)

F
(k+2)
odd (ω′′

3,ωh) = −γ 2

(k + 2)(k + 1)

∫∫ ∞

−∞
dω′

1dω3F
(k)

× (ω3,ωh)G∗(ω3 − ω′
1)G(ω′′

3 − ω′
1).

These integrals are highly similar to convolution, but differ
in a subtle fashion, as the term G∗ appears as the function
G∗(ω3 − ω1) rather than G∗(ω1 − ω3). The double conversion
in question for the up-converted mode is of the form

F (k+2)(ω′′) =
∫∫ ∞

−∞
dω dω′F (k)(ω)G∗(ω − ω′)G(ω′′ − ω′),

(B5)
where we have neglected the herald frequency for clarity. Were
this describing the third-order up-conversion, for example,
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F (1)(ω) would represent the first-order up-conversion, ω

the frequency of the first-order blue photon created, and
ω′ the frequency of the second-order red photon created.

Letting F−1[G(ω)] = g(t) and F−1[F (k)(ω)] = f (k)(t) and
assuming that all integrals extend to infinity implicitly, we find
that

F (k+2)(ω′′) =
∫∫

dω dω′F (k)(ω)

[
1√
2π

∫
dtg(t)e−i(ω−ω′)t

]∗
G(ω′′ − ω′)

=
∫∫

dω dω′F (k)(ω)

[
1√
2π

∫
dtg∗(t)ei(ω−ω′)t

]
G(ω′′ − ω′)

= 1√
2π

∫
dt

[∫
dωF (k)(ω)eiωt

]
g∗(t)

[∫
dω′G(ω′′ − ω′)e−iω′t

]

=
√

2π

∫
dt

[
1√
2π

∫
dωF (k)(ω)eiωt

]
g∗(t)

[
1√
2π

∫
dω′G(ω′′ − ω′)ei(ω′′−ω′)t

]
e−iω′′t

=
√

2π

∫
dtf (k)(t)g∗(t)g(t)e−iω′′t

= 2πF−1[f (k)(t)g∗(t)g(t)]. (B6)

By also transforming the herald to the time domain, we may reexpress the recursion relation in the time domain as

f (k+2)(t,th) = −2πγ 2

(k + 1)(k + 2)
f (k)(t,th)|g(t)|2. (B7)

Using the previously defined f (0)(t,th) and f (1)(t,th) as base cases, the final temporal waveforms are found to be

f1f (t,th) =
∞∑

even k

(i
√

2πγ )k

k!
fi(t,th)|g(t)|k = fi(t,th) cos[

√
2πγ |g(t)|], (B8)

f3f (t,th) =
∞∑

odd k

(i
√

2πγ )k

k!
fi(t,th)

g(t)

|g(t)| |g(t)|k = fi(t,th)
g(t)

|g(t)| sin[
√

2πγ |g(t)|]. (B9)

For the specific state and escort profile defined in Eqs. (12) and (13), respectively, the final temporal waveforms are found from
Eqs. (10) and (11) with σ 2

in = S2 + σ 2
1 + σ 2

h and ζj = 1 − 4iAjσ
2
j as

f1f (t,th) =
(

2Sσ1σhσin

π
[
ζ1

(
S2 + σ 2

h

) + σ 2
1

]
)1/2

exp

(
−σ 2

in

[
σ 2

1 σ 2
h (t − th)2 + S2

(
σ 2

1 t2 + σ 2
h t2

h

)] − 16A2
1σ

4
1 σ 2

h S2
(
S2 + σ 2

h

)
t2
h

σ 4
in + 16A2

1σ
4
1

(
S2 + σ 2

h

)2

)

× exp

[
−4i

(
A1σ

4
1

(
S2t + σh(t − th)

)2

σ 4
in + 16A2

1σ
4
1

(
S2 + σ 2

h

)2

)]
eiω01t eiω0hth cos

[(
8πσ 2

2

|ζ2|2
)1/4

γ exp

(
−σ 2

2 (t + τ )2

|ζ2|2
)]

, (B10)

f3f (t,th) = i

(
2Sσ1σhσin

π
[
ζ1

(
S2 + σ 2

h

) + σ 2
1

] ζ ∗
2

|ζ2|

)1/2

exp

(
−σ 2

in

[
σ 2

1 σ 2
h (t − th)2 + S2

(
σ 2

1 t2 + σ 2
h t2

h

)] − 16A2
1σ

4
1 σ 2

h S2
(
S2 + σ 2

h

)
t2
h

σ 4
in + 16A2

1σ
4
1

(
S2 + σ 2

h

)2

)

× exp

[
−4i

(
A1σ

4
1 [S2t + σh(t − th)]2

σ 4
in + 16A2

1σ
4
1

(
S2 + σ 2

h

)2 + A2σ
4
2 (t + τ )2

|ζ2|2
)]

ei(ω01+ω02)t

× eiω0hth sin

[(
8πσ 2

2

|ζ2|2
)1/4

γ exp

(
−σ 2

2 (t + τ )2

|ζ2|2
)]

. (B11)
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