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Formulation of the twisted-light–matter interaction at the phase singularity: The twisted-light gauge
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Twisted light is light carrying orbital angular momentum. The profile of such a beam is a ringlike structure with
a node at the beam axis, where a phase singularity exists. Due to the strong spatial inhomogeneity the mathematical
description of twisted-light–matter interaction is nontrivial, in particular close to the phase singularity, where the
commonly used dipole-moment approximation cannot be applied. In this paper we show that, if the handedness
of circular polarization and the orbital angular momentum of the twisted-light beam have the same sign, a specific
gauge—the twisted-light gauge—can be used where the Hamiltonian takes a form similar to the dipole-moment
approximation. However, if the signs differ, no such gauge can be found. Here in general the magnetic parts
of the light beam become of significant importance and an interaction Hamiltonian which only accounts for
electric fields is inappropriate. We discuss the consequences of these findings for twisted-light excitation of a
semiconductor nanostructure, e.g., a quantum dot, placed at the phase singularity.
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I. INTRODUCTION

In recent years, there has been intense research work in the
topic of highly inhomogeneous light beams and, in particular,
in light carrying orbital angular momentum (OAM)—also
called twisted light (TL) [1–3]. The research in TL spans
several areas, such as the generation of beams [4,5], the
interaction of TL with atoms and molecules [6–13], or with
condensed matter [14–26]. TL has already proved to be useful
in applications. The most notable example is perhaps the
optical trapping and manipulation of microscopic particles
[27,28]. Applications in other fields are also sought, for
example, in quantum information technology, where the OAM
adds a new degree of freedom encoding more information
[29–32]. In addition, theoretical studies in solid-state physics
predict, for instance, that TL can induce electric currents in
quantum rings [25], and new electronic transitions (forbidden
for plane waves) in quantum dots [24]. This all suggests that
TL can be a new powerful tool to control quantum states in
nanotechnological applications.

Two features of TL are particularly striking. First, TL
exhibits a vortex or phase singularity at the beam axis. Second,
polarization and OAM are so intermixed that two beams having
the same OAM but opposite circular polarization behave in a
completely different way. This is in contrast to what happens to
plane waves, where the polarization alone does not determine
other important properties. These two features can also be
found in other inhomogeneous beams, namely the so-called
azimuthally polarized [8,33,34] fields.

The interaction between TL and matter is particularly
interesting due to the inhomogeneous nature of the TL, and
it is worth revisiting its mathematical formulation. The most
general form to describe the light-matter interaction is the
minimal coupling Hamiltonian, where the electromagnetic
(EM) fields enter through their potentials. In many cases
of interest, the Hamiltonian can be rewritten in terms of
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EM fields using gauge transformations, i.e., transformations
among potentials that preserve the EM fields [35–37]. Usually,
the transformations are accompanied by approximations. One
of the best-known among these Hamiltonians is the dipole-
moment approximation (DMA). It can be derived under the
assumption that the EM fields vary little in the region where
the matter excitation takes place, and effectively the electric
field E(t) is treated as spatially homogeneous. The DMA
Hamiltonian then takes the form H = −qr · E(t) = −d · E(t),
where d = qr is the dipole moment of the material system.

While gauge invariance is a symmetry property of the elec-
tromagnetic interaction and therefore all observable quantities
have to be independent of the special choice of a gauge,
this independence is usually lost when approximations are
performed [36]. A standard example is the 1s-2s two-photon
transition in a hydrogen atom where it has been explicitly
shown that in the case of the d · E coupling already very few
intermediate states are sufficient to obtain very accurate results,
while in the case of the p · A coupling a very large number of
intermediate states is required [38]. A similar behavior has
been found in calculations of the level width of microwave
transitions for the measurement of the Lamb shift [39]. Also
for single-photon transitions in a H+

2 ion large differences
between the two gauges have been found when variational
wave functions for the molecular orbitals are used with, e.g.,
for the 2sσ -2pπ transition, a strong preference of the d · E
coupling [40].

The DMA form of light-matter coupling is advantageous for
several additional reasons. Because the DMA only contains the
electric field, it is manifestly gauge invariant. The momentum
operator has a clear physical meaning and can be used directly
for the calculation of quantities like current densities. In con-
trast, in the case of the minimal coupling there is an additional,
gauge-dependent contribution, usually called the diamagnetic
current [41]. The difference between the canonical and the
mechanical (or kinetic) momentum may also lead to an
apparent ambiguity in the definition of the photon momentum,
as has been discussed in detail in a recent review by Barnett
et al. [42]. Finally, since the DMA interaction Hamiltonian is
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linear in the field it can be easily treated perturbatively while
the minimal coupling Hamiltonian contains terms linear and
quadratic in the potential which therefore have to be combined
in a proper way when calculating optical nonlinearities. All
these arguments show that a coupling in terms of the electric
field has clear advantages. In fact, when the light field is
sufficiently homogeneous over the size of the matter system
the DMA is perfectly applicable. This holds for example in
atomic and molecular physics and also in the case of nanoscale
systems such as quantum dots, where the matter states are
highly localized.

When the inhomogeneous nature of the field becomes im-
portant the DMA cannot be used anymore. One could perform
calculations with the minimal coupling Hamiltonian, which
contains the vector potential. Still, it is appealing to work with
a Hamiltonian which contains the electric and magnetic fields
only, because then the theory is manifestly gauge invariant.
Of course, using the so-called Poincaré gauge [36,37] one can
formally rewrite the Hamiltonian in terms of fields; however,
it is not always possible to express the fields explicitly. A
desirable expression would be one resembling the electric
dipole-moment Hamiltonian, but retaining the spatial depen-
dence: H = −qr · E(r,t). We will call this the electric-field
coupling (EFC) Hamiltonian. In addition to the dipole-moment
coupling, the EFC Hamiltonian also contains higher-order
couplings in the electric field, e.g., quadrupole moments.

In some situations the spatial inhomogeneity of the field can
be kept in an EFC Hamiltonian in a parametric way, while the
transition matrix elements are determined by the coupling via
the electric dipole term only [43–47], which has been used to
describe, for instance, four-wave-mixing phenomena [48–50].
Because for TL new transitions are induced by its OAM [24],
such an approach would not describe the main feature of TL
and, thus, it is crucial to include the spatial dependence also in
the transition matrix elements. Under certain assumptions, e.g.,
for the interaction with localized structures placed at the beam
maximum, it is possible to cast the Hamiltonian in an EFC-like
form to describe the selection rules [10,11]. Another strategy
is to use the electric polarization in a Power-Zienau-Woolley
scheme [7]. However, in this paper we show that for TL-matter
interaction in the vicinity of the beam axis an EFC Hamiltonian
cannot in general be used.

The TL-matter interaction at the phase singularity for highly
focused beams has been analyzed using a multipolar expansion
for electric and magnetic fields [8,9,12,13], which already
revealed that higher-order electric and magnetic terms can
be of significant importance. Nevertheless, for a subgroup of
TL beams we will show that it is possible to derive an electric
multipolar Hamiltonian for the TL-matter interaction close to
the phase singularity, which offers the advantages of a DMA
Hamiltonian.

We organize the article as follows. As a next step we
briefly revisit the concepts of gauge transformation and DMA
Hamiltonian necessary to understand the discussion ahead.
In Sec. III we introduce the mathematical representations of
TL. In Sec. IV, using a heuristic derivation much like the
one found in the literature for the DMA, we arrive at the
new expression for the TL-matter Hamiltonian. Section V
shows that the atypical behavior of the electric and magnetic
fields of TL is in part responsible for the need to modify the

Hamiltonian. Section VI is devoted to a careful derivation of
the new Hamiltonian. We wrap up with the conclusions in
Sec. VII. In the Appendix we discuss why the EFC gauge,
which seems to be the natural extension of the DMA, is not
useful for TL.

II. LIGHT-MATTER INTERACTION REVISITED

The starting point for a mathematical description of the
effect of light on matter is the minimal coupling Hamiltonian,
that expresses the external EM fields in terms of a scalar
U (r,t) and a vector A(r,t) potential. For a single particle
of mass m and charge q under a static potential V (r), the
Hamiltonian reads

H = 1

2m
[p − q A(r,t)]2 + V (r) + q U (r,t) . (1)

It is obtained from the Lagrangian

L = 1
2mṙ2 − V (r) + q ṙ · A(r,t) − q U (r,t) (2)

via the canonical momentum

p = ∂L

∂ ṙ
= mṙ + q A(r,t) (3)

and the Legendre transformation H = p · ṙ − L.
The relationship between potentials and the electric E(r,t)

and magnetic B(r,t) fields are

E(r,t) = −∂tA(r,t) − ∇U (r,t), (4a)

B(r,t) = ∇ × A(r,t). (4b)

Gauge transformations are defined such that they preserve
the electric and magnetic fields,

A′(r,t) = A(r,t) + ∇χ (r,t), (5a)

U ′(r,t) = U (r,t) − ∂

∂t
χ (r,t) , (5b)

where χ (r,t) is the scalar gauge transformation function.
Since the canonical momentum (3) depends on the vector
potential it is obviously gauge dependent. We want to remark
that also the solution of the time-dependent Schrödinger
equation is gauge dependent; the transformation according
to Eqs. (5) implies a phase change of the wave function
ψ ′(r,t) = ψ(r,t) exp[iqχ (r,t)/�].

In cases where the EM fields vary little on the scale
of the system, taken to be centered around r = 0, a gauge
transformation is sought that would render A′(r,t) = 0 in the
region around r = 0. Assuming that for external radiation,
U (r,t) = 0, this is achieved by the Göppert-Mayer gauge
transformation χ = −r · A(0,t) [36] leading to the new po-
tentials

A′(r,t) = A(r,t) − A(0,t)

= (r · ∇)A(r,t)|r=0 + · · · , (6a)

U ′(r,t) = −r · E(0,t). (6b)

By neglecting the derivatives of the old vector potential in the
relevant region of space we can obtain A′(r,t) = 0. This leads
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to the well-known DMA Hamiltonian

H = p2

2m
+ V (r) − qr · E(0,t), (7)

which is evidently gauge invariant. It should be understood that
the requirement A′(r,t) = 0 in an extended region of space is
a very stringent one, for it demands the magnetic field to be
zero in that region, in violation to Maxwell’s equations for a
propagating field.

A striking feature of the DMA is that operators retain
their physical meaning. As an important example, we look
at the momentum. Due to the fact that A′(r,t) = 0, the
canonical momentum in the new gauge is equal to the
mechanical momentum mṙ. The mechanical momentum is
indeed important, since it is a form-invariant operator [35,51].
As such, its eigenvalues are independent of the gauge and
are therefore representing physical quantities. The canonical
momentum, on the other hand, is not form invariant. This is
a drawback, because the quantized version of the canonical
momentum, i.e., the operator −i�∇, is typically used to
perform calculations (see Sec. IVA2b of Ref. [36]). In order
to obtain measurable quantities such as current densities, the
correction due to the vector potential has to be taken into
account, e.g., in terms of a diamagnetic current [41]. The
physical (i.e., gauge-independent) current is then given by the
sum of two gauge-dependent contributions.

It is obvious that the DMA cannot be used to describe
the interaction of TL with objects placed close to the beam
center because there the electric field and thus the whole
light-matter coupling vanishes. In analogy with the DMA, a
transformation function χ = −r · A(r,t) could be used [52]
which keeps the spatial dependence of the vector potential,
yielding new potentials

A′(r,t) = −(r · ∇)A(r,t) − r × B(r,t), (8a)

U ′(r,t) = −r · E(r,t). (8b)

As expected, the new scalar potential has the dipolelike form
as that resulting from the Göppert-Mayer transformation,
but now with a position-dependent electric field. Like in
the case of the DMA the new vector potential does not
vanish, but it contains spatial derivatives of the old one.
Again, for sufficiently localized charges and a sufficiently
smooth vector potential it may be permissible to disregard
these terms resulting in new potentials A′(r,t) � 0 and
U ′(r,t) = −r · E(r,t), with the concomitant benefits of
equality of momenta. We call this the electric-field coupling
(EFC) approximation. However, we will show below that for
TL in the region close the the beam axis this gauge is not useful.

III. VECTOR POTENTIAL OF TWISTED LIGHT

Let us now come to the case of TL. A TL beam can
have different radial profiles such as Laguerre-Gaussian or
Bessel type beams. Here we will consider the case of a
Bessel beam, which has the advantage of being an exact
solution of Maxwell’s equations [53]. In mathematical terms,
the vector potential of a monochromatic TL beam in cylindrical
coordinates {r,ϕ,z} can be described by A = Ar r̂ + Aϕϕ̂ + Azẑ

1 2 3 4 5 qrr

0.5

1
F qr r

0
1 2

FIG. 1. (Color online) Beam profiles Fqr �(r) of the in-plane com-
ponents of the vector potential (and thus of the in-plane components
of the electric field) for a nonvortex beam (� = 0) and TL beams
(� = 1,2).

with components [14,54]

Ar (r,t) = Fqr�(r) cos[(ωt − qzz) − (� + σ )ϕ], (9a)

Aϕ(r,t) = σFqr�(r) sin[(ωt − qzz) − (� + σ )ϕ], (9b)

Az(r,t) = −σ
qr

qz

Fqr�+σ (r) sin[(ωt − qzz) − (� + σ )ϕ],

(9c)

with frequency ω, wave vectors qz and qr , related by q2
z + q2

r =
(nω/c)2, n being the index of refraction of the medium, and
r̂, ϕ̂, ẑ denoting unit vectors in cylindrical coordinates. The
integer � is related to the OAM of the beam, as will be discussed
in more detail below. The circular polarization of the field,
given by polarization vectors εσ = eiσϕ(r̂ + iσ ϕ̂) = x̂ + iσ ŷ,
is singled out with the variable σ , which yields left (right)-
handed circular polarization for the values σ = +1(−1).
Sometimes, in particular in the quantum theory of light, σ

is referred to as the spin angular momentum of the photon
with σ� being the spin per photon [55]. The radial profile of
the beam Fqr�(r) is a Bessel function: Fqr�(r) = A0J�(qrr),
with A0 being the amplitude of the potential. Note that 1/qr is
a measure of the beam waist. The vector potential of Eq. (9)
satisfies the Coulomb gauge condition ∇ · A(r,t) = 0 and the
vectorial Helmholtz equation [56].

Figure 1 shows the beam profile Fqr�(r) of the in-plane
components Ar and Aϕ and thus also of the in-plane com-
ponents of the electric field for three different values of the
OAM: � = 0,1,2. In the region close to r = 0, we observe
a main difference that exists between nonvortex beams and
TL. While for nonvortex beams (� = 0) the amplitude has
a maximum at r = 0, for TL (� �= 0) the amplitude of the
in-plane components is zero there. Close to the origin, the
profile of the in-plane components can be approximated by
Fqr�(r) ∝ (qrr)|�|.

Since for Bessel functions the relation J−�(qrr) =
(−1)�J�(qrr) holds, it can be seen from Eq. (9) that the
structure of the beam is unchanged if simultaneously the
parameters (σ,�) are replaced by (−σ, − �). Therefore, in the
following we will restrict ourselves to TL beams with � > 0.

In the paraxial approximation, when qr/qz � 1, the z

component of the vector potential is disregarded. This case has
been extensively used in the literature [1,3,6,7,10,19,57–59].
The vector potential in the paraxial approximation Apa(r,t)
then reads

Apa(r,t) = Ar (r,t)r̂ + Aϕ(r,t)ϕ̂. (10)
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In this approximation the positive and negative frequency
components of A are eigenstates of the angular momentum
operator −i�∂/∂ϕ with eigenvalue ��, which can thus be
identified with the OAM per photon [3]. Although this does not
strictly hold in the nonparaxial case, for the sake of brevity, in
the following whenever we refer to the OAM of the beam, we
are implicitly referring to the OAM of its paraxial version. The
integer � is also sometimes called the topological charge [3].

IV. HEURISTIC DERIVATION OF THE TL-MATTER
INTERACTION

In this section, following the spirit of the DMA, we derive
a gauge transformation that captures the essential features of
TL, and at the same time retains the advantages of the DMA.
The derivation is intended to be intuitive and self-evident, and
is only done for the paraxial vector potential Eq. (10). A formal
analysis leading to the same results will be given in Sec. VI,
where the more general form of the vector potential Eq. (9) will
be used and also the limitations of the paraxial approximation
will be discussed.

We are interested in the interaction of TL with a planar,
localized structure, such as a quantum disk or a quantum dot,
whose lateral dimensions are smaller than the characteristic
radial length scale q−1

r of the beam (i.e., qrr � 1). If such
a structure is placed at a position with nonvanishing electric
field, in particular close to the beam maximum, the conditions
of the DMA are satisfied and thus the DMA is well applicable.
However, this is different in the case of such a structure
centered at r = 0. At the beam center the radial profile of the
vector potential can be approximated by Fqr�(r) = α� (qrr)�,
with α� = A0/(2��!). Note that the vector potential Eq. (10)
and consequently also the electric field at r = 0 are zero and
thus within the DMA there would be no interaction whatsoever.

Motivated by the EFC Hamiltonian, we try a gauge
transformation function of the form

χ (r,t) = − 1

β
r⊥ · Apa(r,t), (11)

where we have defined a two-dimensional in-plane position
vector r⊥ = r r̂ = xx̂ + yŷ out of the 3D vector r, and added
a constant prefactor 1/β to be determined later. For β = 1 the
transformation obviously reduces to the EFC case. According
to Eqs. (5) the potentials in the new gauge are calculated to

Apa′
(r,t) =

(
1−�+1

β

)
Apa

r (r,t)r̂+
(

1−σ�+1

β

)
Apa

ϕ (r,t)ϕ̂

− qz

qr

qrr

β
Fqr�(r) sin[(ωt − qzz) − (� + σ )ϕ]ẑ,

(12a)

Upa′
(r,t) = − 1

β
r · Epa(r,t). (12b)

While the radial dependence of the scalar potential as well as
of the in-plane components of the new vector potential is ∼
(qrr)� like in the case of the old vector potential, the remaining
component A

pa′
z is ∼(qrr)�+1 and can thus be neglected in the

region close to the singularity. This is consistent with keeping
terms up to order (qrr)�. In the EFC gauge (β = 1) we then
have A

pa′
r (r,t) = −�A

pa
r (r,t) and A

pa′
ϕ (r,t) = −σ�A

pa
ϕ (r,t).

Thus, for |�| � 1, the new vector potential is not smaller than
the old one clearly demonstrating that this gauge does not help
to reduce the difference between mechanical and canonical
momentum.

On the other hand, when σ = 1 the in-plane components
A

pa′
ϕ and A

pa′
r of the new vector potential vanish for β = � + 1.

As a result, Apa′
(r,t) = 0. The Hamiltonian then reads

H = p2

2m
+ V (r) − 1

� + 1
qr⊥ · Epa(r,t). (13)

We achieve a Hamiltonian which contains an EFC-like term,
but with a different prefactor. Furthermore, since the new vec-
tor potential vanishes, the canonical and mechanical momenta
are equal. We will refer to the transformation according to
Eq. (11) with β = � + 1 as the TL gauge. The very reason for
the new prefactor (� + 1)−1 is the existence of a vortex, that
causes the first term of an expansion of the vector potential
near r = 0 to be proportional to r�. For the case σ = −1,
the gauge transformation with β = � + 1 is not advantageous.
This is because A

pa′
ϕ �= 0, as seen by inspecting Eq. (12a),

and it cannot be neglected. Conversely, choosing β = −� + 1
(for � > 1) would remove the ϕ component but keep the r

component.
The lowest nonvanishing order in the expansion of Eq. (13)

can be shown to agree with the lowest nonvanishing multipole
term in the radial direction. In the case of � = 1, for example,
the lowest order in the expansion of the electric field is
the linear term; Eq. (13) then becomes identical to the
quadrupole-moment coupling. However, Eq. (13) still contains
the full spatial dependence and in particular the full angular
dependence of the beam, which is the most characteristic
feature of TL.

It is legitimate to wonder why there is such an asymmetry
between TL fields having the same � but differing in their
circular polarization state, while an asymmetry of this type is
not present in plane waves. We will further explore this in the
next section.

V. ELECTRIC AND MAGNETIC FIELDS OF TL

The aforementioned results suggest that there are two
topologically distinct classes of TL fields, depending on the
combination of OAM and circular polarization, which we will
study now in detail. We calculate the electric and magnetic
fields using the full form of the vector potential [Eq. (9)].

A plot of two representative cases of electric and magnetic
fields for � = 1 and σ = ±1, at t = 0 and z = 0, is presented
in Fig. 2. For comparison, the fields of a nonvortex beam with
� = 0 and σ = 1 are also shown. The vectorial character of the
nonvortex beam is similar to a plane wave with perpendicular E
and B fields. The amplitude is radially modulated according to
the Bessel function J0. In contrast, in the case of TL with � = 1
the field profiles are much more complex. When σ = −1, the
electric field is oriented azimuthally around the beam axis,
and the magnetic field in the central region points inwards.
For other values of t (or z), the patterns change, but eventually
both magnetic and electric fields cycle through the radially
like and azimuthally like polarization patterns. In contrast,
when σ = 1, the fields look entirely different, and never evolve
into azimuthal or radial patterns. We refer to these two as
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FIG. 2. (Color online) In-plane components of the electric and magnetic fields at t = 0 and z = 0 for � = 0 and polarization state σ = +1,
as well as for � = 1 and polarization states σ = −1 (antiparallel) and σ = 1 (parallel). Beam parameters are qr = 0.1qz, qz = 0.02 nm−1, and
λ = 300 nm.

the antiparallel [sgn(�) �= sgn(σ )] and the parallel [sgn(�) =
sgn(σ )] beam classes.

The field patterns shown in Fig. 2 gives an indication why
a gauge, in which the scalar potential provides the dominant
contribution to the coupling, could be found in the parallel
class but not in the antiparallel class. In the central region
the field lines of the electric field in the parallel class are
similar to a vector field close to a saddle point. Such a vector
field can indeed be written as the gradient of a scalar field. In
contrast, in the antiparallel class the field lines of the electric
field are obviously closed indicating that this is dominantly a

vortex-type field which has a nonvanishing curl and therefore
cannot be obtained as a gradient of a scalar potential. Hence,
in any gauge the interaction will mainly originate from the
vector potential.

It is our interest to study the region close to the phase
singularity r = 0. Thus we provide analytical results for the
field amplitudes in this region expanded in powers of (qrr).
Table I presents the lowest nonvanishing orders in (qrr) of the
electric and magnetic fields in the plane z = 0 and at t = 0
obtained from the full vector potential in Eq. (9). In Table II
the same fields but obtained from the potential in the paraxial

TABLE I. Electric- and magnetic-field components at z = 0 and t = 0 in the region close to the phase singularity calculated from the full
vector potential in Eq. (9).

Parallel Antiparallel
� > 0,σ = +1 � > 0,σ = −1

r̂ −(qrr)� sin[(� + 1)ϕ] −(qrr)� sin[(� − 1)ϕ]

E/(α�ω) ϕ̂ −(qrr)� cos[(� + 1)ϕ] (qrr)� cos[(� − 1)ϕ]

ẑ 1
2(�+1)

qr

qz
(qrr)�+1 cos[(� + 1)ϕ] −2�

qr

qz
(qrr)�−1 cos[(� − 1)ϕ]

r̂ (qrr)�
[
1 + q2

r

2q2
z

]
cos[(� + 1)ϕ] −(qrr)�

[
1 − (� − 1) q2

r

2q2
z

+ q2
r

2q2
z

4�(�−1)
(qr r)2

]
cos[(� − 1)ϕ]

B/(α�qz) ϕ̂ −(qrr)�
[
1 + q2

r

2q2
z

]
sin[(� + 1)ϕ] −(qrr)�

[
1 + (� + 1) q2

r

2q2
z

− q2
r

2q2
z

4�(�−1)
(qr r)2

]
sin[(� − 1)ϕ]

ẑ 1
2(�+1)

qr

qz
(qrr)�+1 sin[(� + 1)ϕ] 2�

qr

qz
(qrr)�−1 sin[(� − 1)ϕ]
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TABLE II. Same as in Table I, but in the paraxial approximation,
i.e., obtained from Eq. (10).

Parallel Antiparallel
� > 0,σ = +1 � > 0,σ = −1

r̂ −(qrr)� sin[(� + 1)ϕ] −(qrr)� sin[(� − 1)ϕ]

Epa/(α�ω) ϕ̂ −(qrr)� cos[(� + 1)ϕ] (qrr)� cos[(� − 1)ϕ]

ẑ 0 0

r̂ (qrr)� cos[(� + 1)ϕ] −(qrr)� cos[(� − 1)ϕ]

Bpa/(α�qz) ϕ̂ −(qrr)� sin[(� + 1)ϕ] −(qrr)� sin[(� − 1)ϕ]

ẑ 0 0

approximation [Eq. (10)] are given. Note that the in-plane
vector potential of Eq. (10) gives rise to a z component of
the magnetic field; this component, however, has a prefactor
(qr/qz) and therefore, in order to be consistent with the paraxial
approximation, it has been omitted in Table II. Indeed, it is
clearly seen that if in Table I all terms containing a factor
(qr/qz) or (qr/qz)2 are neglected the fields of Table II are
obtained.

Let us first compare the full form and the paraxial case
for the parallel class [sgn(�) = sgn(σ ); in our case σ = 1]. In
the paraxial approximation we obtain pure in-plane fields with
electric and magnetic fields having the same dependence on r .
When calculated from the full vector potential, the magnetic
field is slightly rescaled, the correction being of second order
in the small parameter (qr/qz). Both fields acquire a small
z component which is of first order in (qr/qz). Additionally
it is proportional to (qrr)�+1 and thus decreases faster for
r → 0 than the in-plane components. Thus these corrections
are negligible in the region close to the phase singularity
and the assumptions of the paraxial approximation are well
satisfied in this region.

In the antiparallel class [sgn(�) �= sgn(σ ); here σ = −1], on
the other hand, the z components of the electric and magnetic
fields still contain the small parameter (qr/qz); however,
the radial dependence is now proportional to (qrr)�−1. The
in-plane component of the electric field is still proportional to
(qrr)�; thus at sufficiently small r the electric field is always
dominated by the z component. This clearly demonstrates that
the paraxial approximation, which neglects the z component,
is not applicable in the region close to the phase singularity.
Indeed, a careful look at the z component of the vector potential
in Eq. (9) reveals that already there the small factor (qr/qz) is
counterbalanced by a r dependence which is one order lower
than for the in-plane components and therefore dominates
close to r = 0.

The dominance of the z component of the fields is closely
related to the field profiles in the antiparallel case shown in
Fig. 2. As already mentioned, the electric-field profile has a
nonvanishing curl which is oriented in the z direction. Ac-
cording to Maxwell’s equation this curl is associated with the
time derivative of a magnetic field, which therefore necessarily
has to have a strong z component close to r = 0. Half an
oscillation period later, the roles of electric and magnetic fields
in the central column of Fig. 2 are interchanged. Then the

magnetic-field lines are closed circles being associated with a
strong z component of the electric field close to the center.

For angular momenta � � 2 the magnetic field in the
antiparallel class has an additional correction which is of
second order in (qr/qz) but which has a r dependence
proportional to (qrr)�−2. For sufficiently small radii this is the
dominant contribution to the fields. Thus, in this case, close
to the center the beam is dominated by the magnetic field.
This holds in particular for the case � = 2, in which there
is a nonvanishing in-plane magnetic field at the beam center,
while the electric field vanishes at this point. This is again
an indication that an EFC-like Hamiltonian is not applicable
since with such a Hamiltonian the interaction with matter is
described only in terms of the electric field.

Some research articles in the topics of highly focused TL
and azimuthally or radially polarized fields report similar
findings to ours. Paraxial beams of TL can be focused using,
e.g., high-NA lenses [60,61] or a nanoantenna [62]. The
theoretical analysis of focusing, based entirely on electric and
magnetic fields, can be done using the formalism by Wolf [63],
and the results [60,61] show important similarities with the
field patterns presented in Fig. 2. Azimuthally and radially
polarized fields are a special class of TL fields [33,56]. The
field patterns of azimuthally or radially polarized nonparaxial
Bessel beams presented by Ornigotti et al. [33] are also in
agreement with our findings. Regarding the magnitude of the
fields near r = 0 Zurita-Sánchez et al. [8] have shown that, for
the strongly focused azimuthally polarized beam they studied,
the magnetic interaction overcomes the electric interaction
near the phase singularity; recently, their findings have been
corroborated by the theoretical study of Klimov et al. [12]
in the case of focused Laguerre-Gaussian beams. Finally,
in their research on highly focused TL beams, Monteiro
et al. [64], Iketaki et al. [60], and Klimov et al. [12] report
that interesting effects only occur when � = 1,2 and σ = −1.
The overall similarities are no coincidence, for the vector
potential Eq. (9)—in contrast to Eq. (10)—shares with the
aforementioned nonparaxial beams the important feature of
having a non-negligible z component, which we have shown
to give rise to the described features.

We are now in a position to clarify the findings in the heuris-
tic derivation of the TL-matter coupling shown in Sec. IV.
There it was assumed that there is no z component in the vector
potential. From Table I we see that the z component of the fields
are negligible only in the parallel class. In the antiparallel class
they are proportional to (qrr)−1Fqr�(r). Because for r → 0 the
magnetic field cannot be neglected compared to the electric
field, we were not able to derive an EFC-like Hamiltonian.
In other words a Hamiltonian representation given solely in
terms of the electric multipoles, such as −(1/β)qr · E(r,t),
is insufficient to describe the TL-matter interaction for the
antiparallel class.

VI. FORMAL DERIVATION OF THE TL-MATTER
INTERACTION

The use of the gauge transformation function χ (r,t) found
in Sec. IV can be motivated using formal arguments. In the
following we use the more general form of Eq. (9) for the
vector potential in the Coulomb gauge.
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For charged particles localized around the same center,
a Power-Zienau-Woolley (PZW) transformation can be done
using the gauge function

χ (r,t) = −
∫ 1

0
r · A(ur,t)du, (14)

where A(ur,t) is given in the Coulomb gauge. This is the
generalization to inhomogeneous fields of the Göppert-Mayer
transformation (DMA), and leads to the so-called Poincaré
gauge [36,37]. In our work we focus on the interaction of
TL with planar systems. Therefore, if we consider a charge
distribution mainly extended in the x − y plane for a fixed z,
the quantity ur scales only in the in-plane component with
ur � (ur,ϕ,z) (see, e.g., Ref. [36]).

Defining r = r⊥ + zẑ = r r̂ + zẑ, the gauge function reads

χ (r,t) = −
∫ 1

0
r⊥ · A(ur,ϕ,z; t)du −

∫ 1

0
zAz(ur,ϕ,z; t)du.

(15)

For small systems (qrr � 1) the radial dependence can
be approximated by Fqr�(r) � α�(qrr)|�|, which leads to
Fqr�(ur) � u|�|Fqr�(r). With these simplifications, we evaluate
the integrals Eq. (15), and obtain

χ (r,t) = − 1

|�| + 1
r⊥ · A(r,t) − 1

|� + σ | + 1
zAz(r,t). (16)

The in-plane part of the transformation function χ (r,t) is
exactly the same as we got in Sec. IV. In addition, there is a new
term arising from the nonvanishing z component of the vector
potential. Note that we have neither required A′(r,t) = 0 in
the new gauge, nor have we neglected Az(r,t). Additionally,
for nonvortex fields (� = 0) with negligible z component our
result coincides with that of the EFC Hamiltonian.

Here we have motivated the use of Eq. (16) by showing
that the TL gauge function can formally be derived by a
PZW transformation for charged particles localized in a planar
structure (constant z). Since any gauge transformation function
can be postulated and used to cast the potential in suitable
forms, the TL gauge can also be applied to other more general
structures for variable z (with varying degrees of accuracy or
usefulness).

We see that the natural extension of the DMA to the case of
TL beams is slightly different from the plain EFC Hamiltonian.
Because of the generalized use of EFC Hamiltonians [7,10,11],
it is worth exploring further its connection to our result. To this
end, let us simply postulate a general gauge transformation of
the form

χβ(r,t) = − 1

βr

r⊥ · A(r,t) − 1

βz

zAz(r,t), (17)

where βi is any number. Clearly, we can recover the TL
gauge by βr = |�| + 1 and βz = |� + σ | + 1. In contrast, when
setting βi = 1, Eq. (17) reduces to the EFC gauge. In the
following, we will again only consider the case of � > 0 and
polarization σ = ±1, since, as already discussed, there are no
essential differences in the case with negative � and opposite
sign of σ .

According to Eqs. (5b) and (17), the scalar potential in the
new gauge reads

U ′(r,t) = − 1

βr

r⊥ · E(r,t) − 1

βz

zEz(r,t). (18)

Obviously, in the scalar potential we recover an EFC-type
structure of the Hamiltonian, however, with in general different
prefactors for the in-plane and out-of-plane components. The
new vector potential in the region close to the phase singularity
is given by

A′
r = βr − (1+�)

βr

Ar+ σ

2βz

q2
r

q2
z

A0
1

(� + σ )!

(
qrr

2

)�+σ−1

(qzz)

×
[

(� + σ ) − (� + σ + 2)

(� + σ + 1)

(
qrr

2

)2]

× sin[(ωt − qzz) − (� + σ )ϕ], (19a)

A′
ϕ = βr−(1+σ�)

βr

Aϕ− σ

2βz

q2
r

q2
z

A0
(�+σ )

(� + σ )!

(
qrr

2

)�+σ−1

(qzz)

×
[

1 − 1

(� + σ + 1)

(
qrr

2

)2]

× cos[(ωt − qzz) − (� + σ )ϕ], (19b)

A′
z = βz − 1

βz

Az − σ

βz

qr

qz

A0
1

(� + σ )!

(
qrr

2

)�+σ

(qzz)

×
[

1 − 1

(� + σ + 1)

(
qrr

2

)2]

× cos[(ωt − qzz) − (� + σ )ϕ]

− 2

βr

qz

qr

A0
1

�!

(
qrr

2

)�+1

sin[(ωt − qzz) − (� + σ )ϕ],

(19c)

where we have used the expansion in powers of (qrr) and kept
all terms up to the order � + 1.

As discussed in Sec. IV for the paraxial approximation,
also here it is obvious that the EFC gauge with βi = 1 is not
useful for TL because the transformed in-plane components
of the vector potential are not smaller than the original ones.
In fact, for � > 1 they are in general even larger. A more
detailed discussion of the EFC gauge can be found in the
Appendix. In the following we will restrict ourselves to the TL
gauge βr = � + 1 and βz = � + σ + 1 and discuss the vector
potential for the different cases. We recall that Ar (r,t) and
Aϕ(r,t) are proportional to (qrr)�, while Az(r,t) ∝ (qrr)�+σ .

A. Vector potential in the parallel class

We first examine the new vector potential in the parallel
class, i.e., sgn(�) = sgn(σ ) or, more explicitly, σ = 1. The
results are a direct extension to those found by the heuristic
derivation in Sec. IV. In the parallel class the radial dependence
of the transformed potential is the same as for the original one.
Moreover, each component of the vector potential contains
a term proportional to the small quantities (qzz). Since we
assume a planar structure these terms can be neglected. Then
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the expressions simplify to

A′
r (r,t) = 0, (20a)

A′
ϕ(r,t) = 0, (20b)

A′
z(r,t) =

[
1 + �

2 + �
+ 2

(
qz

qr

)2]
Az(r,t). (20c)

The first thing to notice is that the components A′
r and A′

ϕ of
the new vector potential are zero, as we have already found in
Sec. IV. Therefore, in the Hamiltonian

H = p2

2m
+ V (r) − 1

� + 1
qr⊥ · E(r,t) − 1

� + 2
qzEz(r,t)

− q

m
pzA

′
z(r,t) + q2

2m
A′

z
2(r,t), (21)

the in-plane TL-matter interaction can be expressed solely
by a dipolelike term −(� + 1)−1qr⊥ · E(r,t) with a prefactor
different to the EFC Hamiltonian. For the z component we
have both a dipolelike term, but also a term −(q/m)pzA

′
z(r,t),

which still contains the vector potential. We point out that
[q2/(2m)]A′

z
2(r,t) ∝ (qrr)2�+2, and may be safely disre-

garded.
It is interesting to also compare again the canonical and

mechanical momenta. Their difference is given by

p − mṙ = qA′
z(r,t)ẑ. (22)

Also here the canonical and mechanical momenta are the same
for the in-plane components and only in the z component a
difference in the momenta arises, which is however of the order
(qrr)�+1 and therefore one order higher than the correction to
the in-plane momenta in the original gauge.

Let us now consider what happens in situations of experi-
mental and application interest. We first address the situation
when the interaction with the system only occurs through the
in-plane components of the field, for example in the selective
excitation of heavy holes in a quantum dot. Then, the TL-
matter interaction reads HTL-matter = −(� + 1)−1qr⊥ · E(r,t)
and is modeled by electric multipoles only with all the benefits
of a DMA. Effectively we end up in the desirable situation
where the vector potential is eliminated, as also shown in
Sec. IV. Nevertheless the description is beyond the DMA
because it keeps the full spatial dependence of the electric field
and thus can give rise to transitions which are forbidden in the
case of excitation by plane waves, for example, transitions
from envelope function with s-type symmetry in the valence
band to those with p-type symmetry in the conduction band
or vice versa.

Next, we consider the case where the system interacts with
the z component of the field, for example, in intersubband
transitions in quantum wells [26] or the excitation of light
holes [65]. Here, the electric multipoles are accompanied by
a magnetic term arising from the nonvanishing z component
of the vector potential. However, since no atypical behavior
of the fields near the phase singularity occurs, it is expected
that the electric interaction is larger than the magnetic one as
usually happens. One could then safely only retain the electric
multipolar term, and possibly neglect the difference between
momenta. Therefore, for the parallel class a Hamiltonian
with only electric dipole-moment terms having the correct

prefactors can describe the TL-matter interaction at the phase
singularity.

B. Vector potential in the antiparallel class

For the antiparallel class, we already found that a descrip-
tion with electric field only is not sufficient. Still, we can
gain valuable insights from studying the antiparallel case with
sgn(�) �= sgn(σ ), i.e., σ = −1. Here, the vector potential reads

A′
r (r,t) = − q2

r

2q2
z

qzz

�

[
(� + 1) − 4�(� − 1)

(qrr)2

]
Aϕ(r,t), (23a)

A′
ϕ(r,t) = 2�

� + 1
Aϕ(r,t)

− q2
r

2q2
z

qzz

�

[
(� − 1) − 4�(� − 1)

(qrr)2

]
Ar (r,t), (23b)

A′
z(r,t) =

[
� − 1

�
− 2qz

qr

]
Az(r,t)

− qr

qz

qzz

�

[
qrr

2
− 2�

qrr

]
Ar (r,t). (23c)

We have kept the terms ∝ (qzz) since, in contrast to the parallel
class, they are now accompanied by radial dependencies
proportional to (qrr)−1 and (qrr)−2 times the original vector
potential. Thus the transformed vector potential becomes
even stronger close to the phase singularity. The magnetic
interaction resulting from these terms may be comparable or
even surpass the electric interaction. This is in agreement
with previous results for highly focused beams, where a
magnetic-field contribution stronger than the electric-field
contribution at the phase singularity was found [8,12]. It is
also interesting, that even far from the phase singularity, the
in-plane term A′

ϕ does not vanish.
Let us study this in more detail using as an example the

excitation of a quantum dot placed at the beam axis by a
TL beam and energy close to the quantum dot band gap.
Considering again the case of optical transitions with in-plane
matrix elements such as the heavy hole-to-conduction band
transitions, we neglect the z component of the interaction, and
also the terms proportional to A′(r,t)2. Then, the Hamiltonian
reduces to

H � p2

2m
+ V (r) − 1

� + 1
qr⊥ · E(r,t)

− q

2m
[p⊥ · A′

⊥(r,t) + A′
⊥(r,t) · p⊥]. (24)

[We note that the angular component of the momentum
vector reads (p)ϕ = (1/r)pϕ , where the canonical momentum
pϕ = ∂L/∂ϕ̇ is in fact an angular momentum [66].] Though
there is an EFC-type Hamiltonian, clearly the in-plane vec-
tor potential remains in the Hamiltonian. We wonder how
electric and magnetic contributions compare to each other.
Let us specifically consider the case � = 2. Then, the electric
multipolar term is proportional to r(qrr)2. On the other hand,
the magnetic term in Eq. (24) is proportional to p(qrr)0. If we
assume that momentum and position vector are proportional to
each other, as it is so in the DMA (since p = −i(m/�)[r,H0]),
it becomes clear that one should not a priori neglect the
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magnetic interaction, for it may be comparable to or even
larger than the electric interaction, in particular at the phase
singularity.

When the z component of the fields becomes also important,
it is clear that also here the vector potential remains in the
Hamiltonian. Thus, for the antiparallel class, the TL-gauge
transformation, though being mathematically correct, is in
general not advantageous.

VII. CONCLUSIONS

We have studied the TL-matter interaction close to the
beam axis. In contrast to conventional light beams, twisted
light has a phase singularity at the point r = 0, and a strong
intermixing between polarization and OAM. We distinguished
the TL beams into two topologically different classes, namely
the parallel class where handedness of circular polarization
(i.e., the photon spin) and OAM have the same sign and the
antiparallel class where the signs of circular polarization and
OAM differ.

To obtain a Hamiltonian which includes the EM fields
instead of the potentials, we suggested to use a new gauge,
the TL gauge. For the parallel class, the TL gauge leads
to a Hamiltonian which has a dipole-type structure, but a
different prefactor. For in-plane problems it takes the simple
form HTL-matter = −(|�| + 1)−1qr⊥ · E(r,t). The prefactor is
mandatory to describe the correct interaction and to achieve
the identity of canonical and mechanical momentum. The
origin of the prefactor in the TL gauge is the vortex, which
exists at the phase singularity. For the antiparallel class we
showed that the TL gauge, which casts the Hamiltonian at least
partly into electric fields, is not in general advantageous as the
vector potential cannot be eliminated nor neglected. Because
in the antiparallel class magnetic effects cannot be neglected
compared to the electric ones, the Hamiltonian should include
magnetic as well as electric terms, and their relative strength
must be analyzed in the particular problem at hand.

We compared the TL gauge to the more common DMA and
EFC Hamiltonians. While for structures located close to the
beam maximum the DMA is applicable, for structures located
close to the beam center it cannot be used since the electric
field at the phase singularity vanishes. We have also pointed
out that the use of the paraxial approximation close to the
phase singularity may be misleading and should be avoided at
least in the antiparallel beam class.

In contrast to other gauges the TL gauge depends explicitly
on beam parameters, in particular on the OAM �. On the one
hand, this is clearly a restriction, but on the other hand, when
TL is used to excite structures in the region of the beam center,
this is usually done with the aim to address specific transitions
which are driven by a light field with a given value of �. In
this case a beam with a well-defined � is used and thus, at
least for beams within the parallel class, the TL gauge for this
experimental setup is well defined and can be used to write the
coupling completely in terms of the electric field.

In comparison to other gauges, like the Poincaré gauge or
the multipolar gauge, the TL gauge offers the same advantages
for TL beams in the parallel class as the DMA offers for slowly
varying light beams: in contrast to the Poincaré gauge, the TL
gauge can be simply evaluated and leads to explicit formulas.

For in-plane problems HTL-matter contains only the electric field,
which makes it manifestly gauge invariant and secures the
physical meaning of the momentum operator. Furthermore,
it contains all the higher-order electric-field couplings like
coupling to quadrupole terms in a compact, appealing form.

In this paper we have restricted ourselves to the coupling of
light to the orbital degrees of freedom. In addition there can be
the usual coupling of the magnetic-field part to the spin degrees
of freedom, which can be introduced in terms of a Zeeman-type
coupling. This coupling involves directly the magnetic field
and is therefore manifestly gauge invariant. In the case of
TL in the visible or near-visible spectral range this coupling is
typically far off-resonant and can therefore safely be neglected.
More interesting can be an indirect coupling of the field to the
spin in the case of strong spin-orbit coupling. The Rashba
Hamiltonian, for example, couples the spin to the mechanical
momentum [67]. The general subject of TL-spin interaction in
the presence of spin-orbit interaction, however, is beyond the
scope of the present paper and is left to future studies.
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APPENDIX: EFC GAUGE FOR TWISTED LIGHT

In this appendix we will discuss in some more detail why the
EFC gauge is not useful for TL. We obtain the EFC gauge from
our more general gauge function Eq. (17) by setting βr = βz =
1. From the general formulas (19) we can then calculate the
new potentials. In the parallel class, when restricting ourselves
to the lowest nonvanishing order in (qrr) (which is the order
� for the in-plane components and � + 1 for the z component)
and, as discussed in Sec. VI A, neglecting terms involving the
small quantities ∝(qzz), the expressions simplify to

A′
r (r,t) = −�Ar (r,t), (A1a)

A′
ϕ(r,t) = −�Aϕ(r,t), (A1b)

A′
z(r,t) = 2(1 + �)

(
qz

qr

)2

Az(r,t). (A1c)

We see that the vector potential in the EFC gauge grows with
�. At first glance the Eqs. (A1) might look surprising since
they seem to violate the uniqueness of the EM fields: if one
wanted to calculate the z component of the magnetic field
using the in-plane components of the new vector potential,
one would find that B ′

z = (∇ × A′)z = −�(∇ × A)z = −�Bz,
which would violate the independence of the EM field on gauge
transformations. Such a contradiction is only apparent for the
following reason. We approximated the in-plane components
of the vector potential to lowest order in qrr , i.e., (qrr)�. Under
this approximation Bz = (∇ × A)z = 0 and thus there is no
contradiction.

The transformed vector potential also reveals a difference
between canonical and mechanical momentum p − mṙ =
qA′(r,t), which also grows with �. Therefore, when the EFC
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gauge is applied to high-� TL beams at the phase singularity and the canonical momentum instead of the mechanical momentum
is used in calculations, a significant error may be introduced.

In the antiparallel class we have

A′
r (r,t) = −�Ar (r,t) − q2

r

2q2
z

(qzz)

[
(� + 1) − 4�(� − 1)

(qrr)2

]
Aϕ(r,t), (A2a)

A′
ϕ(r,t) = �Aϕ(r,t) − q2

r

2q2
z

(qzz)

[
(� − 1) − 4�(� − 1)

(qrr)2

]
Ar (r,t), (A2b)

A′
z(r,t) = −2qz

qr

(� + 1)Az(r,t) − qr

qz

(qzz)

[
qrr

2
− 2�

qrr

]
Ar (r,t). (A2c)

Again, the in-plane components grow with increasing �. Furthermore, like in the case of the TL gauge in the antiparallel class
(Sec. VI B), the vector potential exhibits new terms containing (qrr)−n multiplying the original vector potential. Thus, also in
the EFC gauge the transformed vector potential becomes even stronger close to the phase singularity. For both reasons the EFC
gauge is not useful in the antiparallel class.
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[54] R. Jáuregui, Phys. Rev. A 70, 033415 (2004).
[55] S. J. van Enk and G. Nienhuis, Europhys. Lett. 25, 497 (1994).
[56] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda,
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