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Negative refraction and photonic-crystal optics in a cold gas
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We describe propagation of light in a gas with periodic density modulation, demonstrating photonic-crystal-like
refraction with negative refraction angles. We address the role of poorly defined boundaries and damping and
derive an optical analog of the quantum adiabatic theorem. For Cs atoms in an optical lattice, we show that
relying on semiadiabatic propagation one can excite and spatially split positively and negatively refracting modes
at experimentally available gas densities.
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I. INTRODUCTION

A wave is negatively refracted at an interface of two media
if its group velocity component along the interface changes
its sign [1], as shown in Fig. 1(a). Fascinating optical effects
based on negative refraction include invisibility [2], near-field
focusing with planar devices [3], seeing around a corner [4],
and superprism [5].

This work is aimed at achieving negative refraction in a gas.
Using laser fields instead of nanofabrication for preparing the
sample will enable dynamical real-time control at a distance
in the optical frequency domain [6,7]. New applications such
as nonlinear spectroscopy with backward propagating signal
[8] may become available.

As is known, photonic crystal metamaterials offer a route
to negative refraction [9]. Both negatively and positively
refracted modes appear due to periodic modulation of the
dielectric constant, see Fig. 1(b). We shall call them “N”
and “P ”modes, respectively, implying both the negative-like
refraction in 1D photonic crystals and true negative refraction
in 2D photonic crystals, where Snell’s law with a negative
refractive index is in effect [10]. Below we theoretically
demonstrate the possibility of negative-like refraction in a cold
gas trapped in an optical lattice. Its prerequisite, photonic
band gap, is routinely observed in such systems [11]. We
study negative refraction in the proof of principle case of 1D
periodicity; implementation in 2D and 3D is straightforward.
The scheme offers low gas densities, simple design, and a large
frequency window of negative refraction.

In a gas, the intuition coming from the photonic crystal
optics meets two challenges. First, due to low densities,
a significant modulation of the dielectric constant is only
possible in a narrow vicinity of a resonance, where absorption
is high (here the term “absorption” and the damping
associated with it refer to the elastic scattering of light
into other electromagnetic modes of the environment). This
resonant absorption can be overcome using schemes based on
electromagnetically induced transparency (EIT) [12]. Here
we study another route: For a thermal gas trapped in a 1D
optical lattice, we consider relatively large detuning from the
resonance so both absorption and modulation of the refractive
index are moderate. The negative-like refraction emerges due
to periodicity of the lattice potential. The required gas density
turns out to be experimentally achievable 1013 cm−3 [13],
three to five orders of magnitude lower than in the earlier
proposals on negative refraction in a gas [6,7]. As discussed

below, the advantage comes both from not relying on the
weak magnetic response of the gas and from the N mode
being immune to resonant absorption.

The second challenge, common for all gaseous samples,
is due to poorly defined boundaries in a gas cloud. As
discussed below, if light penetrates the cloud adiabatically,
then only the P mode is excited and negative refraction
is never achieved. It turns out that this challenge can be
overcome. We derive an analog of the quantum adiabatic
theorem for coupled propagation of N and P modes and
study the dynamics of energy transfer between them. We
show that with experimentally achievable conditions one can
realize propagation possessing both adiabatic and nonadia-
batic features, thus providing transfer into the N mode and
simultaneously avoiding unwanted reflection at boundaries.

II. WAVES IN RESONANT PERIODIC ARRAYS

A 1D photonic crystal with a period a comparable with
a half of the light wavelength λ [Fig. 1(b)] acts as a volume
diffraction grating and supports P - and N -diffracted modes
[10,14]. We model an infinite (so the boundary is irrelevant)
grating as a periodic set of δ-like perturbations in the dielectric
constant:

ε(z; ω) = 1 + εcd
∑

n

δ(z − na) = 1 + d

a
εc

∑
n

einzG, (1)

where G = 2π/a and εc is the dielectric contrast between the
layers of the grating and vacuum. The use of the δ-function
limit of the Kronig-Penney model for the atomic density
distribution in Eq. (1) is substantiated by the parameters of
nowadays experiments. For a typical optical lattice trapping
frequency about 100 kHz, the thickness d of a single atomic
layer, estimated as the size of ground-state wave function in
a lattice cite, is about 30 nm, whereas the interlayer distance
a is 532 nm (the lattice light wavelength λ = 1024 nm). The
position spread of the atoms reduces the strength of the Bragg
signal by the Debye-Waller factor β = exp[−2π2d2/a2];
values of β as low as 0.2 already lead to well-defined Bragg
pattern (see Birkl et al. in Ref. [11]). For our parameters,
β = 0.94 ≈ 1. This implies that light scattering is barely
affected by the deviation of the atomic density distribution
from a set of δ functions.
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FIG. 1. (Color online) (a) Negative (red) and positive (gold)
refraction at an interface. (b) Negative and positive Floquet-Bloch
modes in a 1D photonic crystal. (c) Solid black line: EFS in a 1D
photonic crystal. Green dashed circle: EFS for light in vacuum. Red
and gold arrows show the propagation directions of the N and P

modes. Points A, A′ denote the incident and outgoing light beams in
free space, as discussed in the text. Points B, C, D, and E denote the
P , N , Nref and Pref modes.

The Maxwell wave equation in a periodic in z and
homogeneous in x medium can be written as

M̂E = −∂2E/∂x2, (2)

where

M̂ = ∂2/∂z2 + ε(z,ω)ω2/c2. (3)

Due to periodicity along z, its solutions for TE-polarized
waves, E = (0,E,0) and H = (Hx,0,Hz), are Floquet-Bloch
modes [14] consisting of partial waves (marked by index m)
of the form

E(x,z; t) =
∑
m

Cm exp{i[kxx + (kz + mG)z − ωt]}. (4)

Substituting (1) into (2) and (3), after simple algebra we find
the amplitudes Cm,

Cm = εcω
2
(∑

l Cl

)
c2

[
k2
x + (kz + mG)2

] − ω2
. (5)

The dispersion equation for ω, kx , and kz,

cos akz = cos ak(vac)
z − d

a

εc

2

(
ωa

c

)2 sin ak(vac)
z

ak
(vac)
z

, (6)

where k(vac)
z =

√
ω2

c2 − k2
x , is obtained by summing (5) over m,

canceling
∑

m Cm and
∑

l Cl and calculating the remaining
sum over m in the right-hand side [15]. Floquet-Bloch modes
of the form (4) and (5) are sketched in Fig. 1(b). The arrows
show phase velocity directions. Amplitude of m-th partial wave
is determined by the corresponding denominator in the right-
hand side of Eq. (5), i.e., by how close to ω2/c2 each k2

x + (kz +
mG)2 is, and is shown schematically by the arrow thickness.
The group velocity is the same for all partial waves in a mode.

The number of different Floquet-Bloch modes with the
same value of kz and their propagation directions can be
deduced from the equifrequency surface (EFS) for Eq. (6)
in the kx,kz plane [10,14,16]. Figure 1(c) shows an example
EFS for the frequency ω = 1.25πc/a, strong modulation of
ε, and negligible absorption. The periodicity results in the
EFS diagram with the property ω(kx,kz) = ω(kx,kz + mG)
for all m: Instead of a single circle k2

x + k2
z = ω2/c2 (green

dashed circle in the figure), EFS consists of a series of circles
corresponding to different partial waves. In addition, at kz =
G/2 + mG there are Bragg gaps, which change the topology
of the EFS: Instead of intersecting circles corresponding to
the bare photon dispersion repeated along kz, there is a series
of smaller inner ellipses embraced by merging outer parts
of the circles. Each Floquet-Bloch mode of the photonic
crystal is characterized by a specific value of kx , and a set
of kz = kz0 + mG, m = 0, ± 1, ± 2, . . . . In Fig. 1(c) they are
represented by points on the EFS. For instance, points C and
C′ belong to the same mode: C marks its partial wave with
m = 0, C′ marks m = −1.

Consider a light beam incident from x = −∞ at an angle
φ as shown in Fig. 1(b). This beam is represented by point
A on the green dashed circle

√
k2
x0 + k2

z0 = ω/c in Fig. 1(c).
At the boundary, it can couple to all the Floquet-Bloch modes
with the same value of kz0 = (ω/c) sin φ. Intersections of the
line kz = kz0 (dotted blue line) with the EFS determine the
kx values of the eigenmodes coupled to the probe. Normals
to the EFS [depicted by arrows in Fig. 1(c)] determine the
group velocity directions of these modes [10,14,16]. The figure
shows that for kz0 close to π/a there are two normal modes
with positive x component of the group velocity: an N mode
(with kx ≡ kN , point C) and a P mode (with kx ≡ kP , point B).
Note that the N mode exhibits negative-like refraction. Points
D and E with the same kz0 and kx = −kN,P correspond to two
reflected waves, denoted as Nref and Pref .

The size of the gap at kz = π/a is determined by the value
of εc in Eq. (1). In conventional photonic crystals, the contrast
εc comes from remote resonances (background dielectric
constant). In a gas with the mean density ρ, substantial contrast
appears only near an atomic resonance, ωT [17]:

d

a
εc → εres(ω) = 8πωT μ2ρ

ω2
T − ω2 − 2iωT γ

, (7)

where μ is the dipole transition matrix element and γ accounts
for losses. Below we imply that the periodic structure shown
on Fig. 1(b) depicts atoms in a 1D optical lattice. The calcu-
lations are done for the D2 line of Cs (μ = 4.48 a.u., ωT =
11732 cm−1) in a lattice with a = 532 nm. Both the Doppler
and collisional widths at T � 1 K are negligible compared to
the radiative broadening γ 	 33 MHz [18]. At large detunings
considered below, the EFS of Fig. 1(c) remains qualitatively
valid; at small detunings it washes out due to absorption.

III. DYNAMICS OF COUPLED MODES
AT THE BOUNDARY

Inside the gas cloud, the dielectric contrast is a function
of the penetration depth: εres(x,ω) = α(x)εres(ω). Here α(x)
is the density profile characterized by two scales: the total
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length of the cloud, L, and the length of the entrance and exit
zones, L∗. In these zones α(x) varies between 0 (vacuum) and
1 (peak density). Each value of x can be assigned its own
EFS diagram. As x grows, EFS gradually transforms from a
single circle

√
k2
x + k2

z = ω/c to a periodic structure similar to
that shown in Fig. 1(c) by the thick black line. The free-space
mode shown by point A adiabatically connects upon such
gradual transformation with the P mode characterized by the
same value of kz (point B). Therefore, if the gas density at the
boundary changes slowly, then transfer of energy from the P

mode both to the (wanted) N mode (point C) and (unwanted)
reflected modes (points D and E) is suppressed.

Let us consider the dynamics of coupled modes in a lossy
gas with a poorly defined gas-vacuum interface. We introduce
a “local basis” for light eigenmodes, assuming that α(x) is
a relatively slow function. Namely, we assume that at each
x the expressions (5) and (6) hold with α(x)εres(ω) replacing
εc. Now M̂ → M̂(x), and for fixed ω and kz, Eq. (5) defines
the x-dependent amplitudes Cm(x), and Eq. (6) defines the x

component of the total wave vector, kx(x). For ω and kz of
interest, both the N and P modes can propagate, and we write
the total electric field in the form:

E = cN (x) |N (x)〉ei
∫ x

0 KN (x1) dx1 + cP (x) |P (x)〉ei
∫ x

0 KP (x1) dx1 ,

(8)

where KN,P = Re[kN,P ] are the real parts of kx = kN,P found
from Eq. (6). |N (x)〉 and |P (x)〉 stand for the N and P
eigenmodes of the type (4) calculated in the local basis:

|Y (x)〉 =
∑
m

Ym(x) exp[i((kz + mG)z − ωt)]. (9)

Here Y = N,P , and Ym = Nm,Pm are the partial wave ampli-
tudes in each of the eigenmodes. Coupling to the reflected
modes is neglected on the basis of higher adiabaticity, as
explained in Sec. IV. The damping is included into the
mode amplitudes cN (x) and cP (x) through Im[kN,P (x)]. As
compared to damping-free propagation, the damping leads to
decline of the amplitudes as x grows. Each eigenmode is nor-
malized as 〈Y |Y 〉 = 4πω/(c2KY ) [19–21]. This normalization
corresponds to a unit energy flow across the plane x = const
for zero damping.

To find the amplitudes cP (x) and cN (x), we substitute
Eq. (8) into the wave equation (2), (3) with ε(x,z,ω) =
α(x)ε(z,ω) and M̂ = M̂(x). Using Eq. (5) for the amplitudes
of the partial waves, one can check that at a given x,

M̂(x)|N (x)〉 = k2
N (x)|N (x)〉,

(10)
M̂(x)|P (x)〉 = k2

P (x)|P (x)〉.
We apply the slow envelope approximation [17], assuming

that x derivatives of all involved quantities are small compared
to kP,N . Making use of Eq. (10), we find that the wave equation
is satisfied if (prime denotes x derivative)[

2KNc′
N |N〉 + 2KNcN |N ′〉

+ (
K

′
N + i

(
K

2
N − k2

N

))
cN |N〉]ei

∫ x

0 dx1KN (x1)

+ [
2KP c′

P |P 〉 + 2KP cP |P ′〉
+ (

K
′
P + i

(
K

2
P − k2

P

))
cP |P 〉]ei

∫ x

0 dx1KP (x1) = 0. (11)

We consecutively multiply (11) by 〈N | and 〈P |. The resulting
equations can be simplified by noticing that (Y = N,P )

Re[〈Y |Y ′〉] = −2πωK
′
Y

c2K
2
Y

,

(12)
〈N |P ′〉 = 〈P ′|N〉∗ = −〈P |N ′〉∗.

These equalities are obtained by differentiating over x the
normalization condition 〈Y |Y 〉 = 4πω/(c2KY ) and the orthog-
onality condition 〈P |N〉 = 0. Now from Eq. (11) follow the
coupled equations for cN (x) and cP (x):

c′
N = ξ ∗KP cP exp

[
i

∫ x

0
(KP − KN )dx1

]
− iηNKN cN

(13)

c′
P = −ξKN cN exp

[
−i

∫ x

0
(KP − KN )dx1

]
− iηP KP cP ,

where

ξ = c2

4πω
〈P |N ′〉,

(14)

ηY = c2

4πω
Im[〈Y |Y ′〉] + 1

2

(
1 − k2

Y

K
2
Y

)
.

Note that Im[ηY KY ] = −Im[kY ], and the losses due to absorp-
tion in Eq. (13) are defined by Im[kY ] as expected.

IV. ADIABATICITY CRITERIUM

Equations (13) resemble the equations describing two-state
quantum dynamics with the time derivative replaced by
the x derivative. To obtain a simple qualitative criterium
of adiabaticity for light propagation, we draw an analogy
with the quantum adiabatic theorem [22]. Similarly to the
quantum two-level dynamics, coupling between the light
modes averages out if

|ξKP,N | � |KP − KN | (15)

at all x. We estimate ξ in Eq. (14) for negligible damping,
when ηN ≈ ηP ≈ 0, so KY ≡ kY . We differentiate the first of
the equations (10) over x, multiply the result by 〈P |, and use
the complex conjugate of the second of Eqs. (10). Using the
orthogonality of |N (x)〉 and |P (x)〉 at each x, we find that

〈P |M̂ ′|N〉 = (
k2
P − k2

N

)〈P |N ′〉. (16)

The left-hand side can be transformed using the definition (3)
of the operator M̂:

〈P |M̂ ′|N〉 = α′ ω
2

c2
〈P |ε(ω,z)|N〉

= α′ ω
2

c2
εres(ω)

∑
nm

P ∗
mNn, (17)

where Nm and Pm are x-dependent mode amplitudes defined in
(9). For the density profile α(x) = sin2(πx/2L∗) used below in
the numerical calculations, we replace α′ with π/2L∗ and find:

ξ = ωεres(ω)

8vL∗
(
k2
P − k2

N

) , (18)

where v = 1/|∑mn P ∗
mNn| is a constant of the dimension

of velocity, ranging from several atomic units in the regions
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FIG. 2. (Color online) (a) Amplitudes |cP (L)| (gold, right scale)
and |cN (L)| (red, left scale) in dependence on L and δ with L∗ =
20 μm. (b) |cN (L)| at x = L as a function kz = ω/c sin φ for two
sets of parameters.

of low gas density and small adiabaticity to about 18 a.u. at
ρ = 1013 cm−3 (the speed of light c = 137 a.u.).

The coupling between the modes is only effective in the
regions of low adiabaticity, where kP 	 kN . Then kP,N/(kP +
kN ) 	 1/2, and Eq. (15) reduces to the following condition for
dynamics to be adiabatic:

�A ≡ L∗(kP − kN )2 16 v

ωεres
 1. (19)

�A is the adiabaticity parameter. The condition �A = 1,
which separates regimes of adiabatic and nonadiabatic dy-
namics, corresponds to L∗ ranging from a submicron scale
to tens of microns for different angles of incidence. Figure 2
demonstrates the lengths and incidence angles, which result
in nonadiabatic coupling between the P and N modes. A
discussion of the role of these parameters is in the next section.

Equation (19) shows that the transfer between the modes
only takes place if their wave vectors are sufficiently close. The
latter observation allowed us to neglect the reflected modes
in Eq. (8): At the values of L∗ such that the evolution of
coupled P and N modes corresponding to points B and C
in Fig. 1(c) is barely nonadiabatic, coupling to the reflected
modes corresponding to the points D and E can be neglected
due to larger |kP − kPref ,Nref |. This differs from conventional
photonic crystals, where L∗ = 0 and reflection at the boundary
is always present.

V. NUMERICAL RESULTS

For light entering a cloud of Cs atoms in an optical lattice,
Eqs. (13) are solved numerically with the boundary conditions
cN (0) = 0, cP (0) = 1. The amplitude cN (L) at the exit depends
on four key parameters. On one hand, L∗, kz = (ω/c) sin φ, and
the detuning δ = ω − ωT determine the adiabaticity parameter
�A. On the other hand, δ and L determine losses due to
absorption. The smaller the δ, the larger the (wanted) dielectric
contrast and (unwanted) absorption.

In Fig. 2(a) we plot the amplitudes at the exit, |cN (L)|,
|cP (L)|, as functions of δ for L = 50 and 110 μm, with
L∗ = 20 μm, ρ = 1013 cm−3, kz = 0.98 π/a, and α(x) = 1
inside the cloud and changing according to sin2(πx/2L∗)
law at the boundaries. We have checked numerically that the
dependence of the results on the exact profile α(x) is small
in comparison with their dependence on the other parameters
examined in the paper (angle, detuning, and the entrance region
size L∗) as long as α(x) is smooth and changes from 0 to

Re[k] / G Im[k] / G

(a)

0.36

0.40 kP

kN

0 50 0 50
0

0.1

0.2

0
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c (x)P

(b)

0

0.01

0 50

kP

kN

(c)

c (x)N

x ( m) x ( m) x ( m)

(d)

25 m

I N

I P

za

d (e)

I 
, I

(a
rb

.u
)
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N

 

0

FIG. 3. (Color online) Strong absorption (δ = 2γ ). Spatial de-
pendence of the real (a) and imaginary (b) parts of kN and kP and
of cN and cP (c). Dashed vertical lines mark the entrance and exit
zones. (d) Beam propagation through the cloud. Gold shows the P

beam and red the N beam. (e) Intensity profiles of the modes along z

at L = L∗.

1 within, approximately, L∗. The sin2 profile used in this
section clearly distinguishes between the boundary zones and
that of the peak density, thus making the discussion more
transparent.

For kz = 0.98 π/a, the amplitude cN (L) in Fig. 2 reaches
values 0.05–0.1 in the frequency window as large as 20γ ,
i.e., over 2.5 GHz, slowly declining at larger detunings.
For strong absorption (δ < 2γ for our geometry), coupling
between the modes is only effective at the entrance: The P

mode is completely absorbed at x � L∗, see the dynamics
of cP,N (x) in Fig. 3(c). The N mode survives, experiencing
much lower absorption, due to reasons discussed below. In the
regime of small absorption (δ > 20γ ) cP (L) 	 1, and cP,N (L)
do not depend on L. We observed that at higher densities,
starting from ρ ∼ 1014 cm−3, the energy transfer dynamics
strongly resembles that in a Landau-Zener transition [23].
At intermediate absorption, the values cP (L) and cN (L) are
comparable. Figure 2(b) shows the angular dependence of
|cN (L)| and |cP (L)| calculated for the same density profiles
as in Fig. 2(a). The value kz = 0.98π/a, used in the rest of
our calculations for illustrative purposes, is at the edge of the
window of allowable angles. Closer to the Bragg angle, |cN (L)|
can be as high as 0.8.

Figure 3 illustrates propagation of a Gaussian beam with
the central wave vector kz = 0.98 π/a, δ = 2 γ , through a
cloud with L∗ = 20 μm, L = 50 μm. The intensities of the
two modes in Fig. 3(d) are calculated by expanding the incident
beam into plain waves, each with its own kx,kz. For each of
them we write E(x,z; t) as in Eqs. (5) and (8), and propagate it
according to Eqs. (13). Then we combine the waves to retrieve
the overall field. The resulting angles of propagation of the P

and N beams, φN and φP , correspond to the curvature of the
EFS at points B and C in Fig. 1(c).

According to Figs. 3(a) and 3(c), transfer between the
modes is only efficient for x � 10 μm, where the distance
between KN and KP is minimal and dynamics have nonadia-
batic features, cf. Eq. (19). The P mode is completely absorbed
(rescattered into other modes), while the N mode propagates
as a coherent signal with minimal absorption. As the gas
density at the exit of the cloud decreases, all the amplitudes
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FIG. 4. (Color online) Same as in Figs. 3(c) and 3(d) but for
intermediate and weak absorption: δ = 3γ [(a) and (b)] and δ = 7γ

[(c) and (d)].

Nm except N−1, depicted by point C′ in Fig. 1(c), vanish. Due
to partial adiabaticity of the exit dynamics, C′ connects with A′
on the green circle, and the N mode leaves the cloud in such a
way that its negative-refraction-like propagation is preserved.
Therefore, adiabaticity plays a negative role at the entrance
and a positive role at the exit.

Figure 4 shows propagation of the same Gaussian beam
as in Fig. 3 for intermediate absorption, δ = 3γ and 7γ . By
varying the detuning, one can control the P -mode exit intensity
while keeping the N mode intact. For a large detuning and low
absorption [Figs. 3(c) and 3(d)], nonadiabaticity of the exit
with L∗ = 20 μm begins to play a role: The amplitude cN

grows both at the entrance and at the exit from the cloud.
Counterintuitively, the N mode is generated in the regions of
low, rather than high, gas density. Indeed, the transfer between
the modes is due to their nonadiabatic coupling rather than
reflection from the atomic planes.

VI. STABILIZATION OF THE N MODE

Figures 3(b) and 3(c) illustrate an important ingredient
of our scheme. As the gas density increases, Im[kP ] in-
creases as well, but Im[kN ] quickly reaches maximum and
stabilizes. While for the parameters of Fig. 3 this behavior
is barely seen, for higher gas densities and for kz closer
to π/a we observed formation of a well-defined maximum
followed by strong suppression of Im[kN ] deeper in the gas
cloud.

A similar phenomenon in another periodic system has been
described in Ref. [24]: Considering the light eigenmodes in
a purely absorptive cos-like grating as consisting of only the
partial waves with the numbers 0 and −1, one finds that at
strong potential strength one of the eigenmodes is stabilized.
Similar stabilization is well known in quantum mechanics [25].
It is characterized by a branching point of the “exceptional
point” type in the eigenvalues’ dependence on the system
parameters and is usually attributed to interference of the
quantum amplitudes.

In a quantum-mechanical description, for a mode charac-
terized by two amplitudes C0 and C−1, one would write the

decay dynamics in the form

Ċ0 = −i

∫
CEV0,E dE,

Ċ−1 = −i

∫
CEV−1,E dE, (20)

ĊE = −iVE,0C0 − iVE,−1,

where CE are the bath mode amplitudes. If the coupling
VE,0 = VE,−1, then the asymmetric mode with C0 = −C−1

is stabilized (“destructive interference”), and the symmetric
mode with C0 = C−1 undergoes fast decay (“constructive
interference”). Light in an absorptive lattice can be described in
an analogous way, with decay into bath modes due to Rayleigh
scattering.

Unlike many quantum-mechanical phenomena, in our
system the origin of the stabilization can be explicitly traced
to the spatial symmetry properties of N and P modes. Indeed,
Eq. (5) shows that near kz 	 π/a the partial wave amplitudes
Pm (of the P mode) and Nm (of the N mode) with m = 0, − 1
are large, and all others are small. The relative signs of
the amplitudes depend on whether the point on EFS, which
corresponds to the m-th partial wave, is inside or outside the
green dashed circle with the radius ω/c [see Fig. 1(c) and
Eq. (5)]. For the N mode, point C representing the 0-th partial
wave is inside, and point C′ representing the −1-st wave is
outside the circle, therefore the signs of N0 and N−1 differ. For
the P mode, both 0-th and −1-st partial waves are represented
by points outside the green circle, and the signs of P0 and
P−1 coincide. Therefore, the N mode is asymmetric, P mode
is symmetric with respect to the atomic layer planes. This is
seen in Fig. 3(e) showing the calculated distribution of field
intensities.

We conclude that the N mode stabilizes because its field
maxima are at the z values with no lattice atoms. The absence of
absorption in the N mode allows us to choose small detunings
from the resonance, thus weakening the requirement for the
gas density.

VII. CONCLUSIONS AND OUTLOOK

In summary, this paper describes semiadiabatic dynam-
ics of coupled optical modes (an optical analog of the
quantum Landau-Zener dynamics), and explains stabiliza-
tion of optical eigenmodes. It shows that their combina-
tion can solve the problem of negative refraction con-
trolled in real time at a distance. We also specify a sys-
tem where the experiment on negative refraction can be
done with the present-day technology. Finally, we present
a series of numerical calculations, finding the most im-
portant dependencies of these effects on the experimental
parameters.

The proposed scheme realizes negative-refraction-like light
propagation in a cold gas at the experimentally achieved
density of 1013 cm−3. This density estimate is three orders
of magnitude lower than in the chirality-based proposals
[7] and five orders of magnitude lower than in magnetic
resonance-based proposals [6]. The advantage is due to the
fact that our scheme does not rely on weak magnetic-dipole
couplings employed in previous proposals. Stabilization of
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the N mode against absorption further weakens the density
requirements. Finally, due to the effect of the grating, a very
weak contrast of ε (in our calculations, εc ∼ 10−2) is sufficient
for strong modification of light propagation. At the same time,
bandwidth of the negative refraction window is ∼20 times
higher than the frequency window in EIT-based band-gap
structures [12].

Our choice of the model atomic density profile allowed
us to use concise equations for the field amplitudes Cm

and to treat the mode dynamics analytically. This choice
is substantiated by nowadays experimental techniques. A
more smooth z distribution of atoms, such as, for example,
ε(z) = 1 + εc cos ak, would yield an infinite system of coupled
equations for the amplitudes [14]. This would make the
discussion less illustrative, while preserving the qualitative
result: The negatively refracting mode is localized outside the
maxima of atomic density. The more spread is the atomic
distribution, however, the stronger is the undesired absorption
of the N mode. A detailed study of these effects must be tied
to the trapped gas temperature in a particular experiment: The
higher the temperature, the more vibrational states of atoms in
each lattice cite are excited and the stronger the atomic density
spread in each lattice well.

Implementation of our scheme in higher-dimensional
lattices with true negative refraction is straightforward. In
conventional photonic crystals, high dielectric contrast is
required to avoid the unwanted positively refracted wave [10].
In contrast, the present scheme can be employed even with
small εc, since the birefrigence is suppressed via absorption of
the P mode. Vaguely defined boundaries make the dynamics
of light conceptually differ from that at a conventional
interface. However, with reasonable length parameters one
can transfer noticeable fraction of light into the N mode
while fully controlling the intensity of the P mode at the exit.
Nonadiabaticity is beneficial for the P - to N -mode energy
transfer, and adiabaticity is good for preserving the N -mode
character of the outgoing light. Intensity of the negatively
refracted light will be higher for higher gas densities, smaller
absorption, and angles closer to the Bragg angle.
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