
PHYSICAL REVIEW A 91, 033801 (2015)

Stable quadratic solitons consisting of fundamental waves and oscillatory second harmonics
subject to boundary confinement
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We investigate quadratic solitons consisting of fundamental waves and oscillatory second harmonics, which
can be stable when subject to boundary confinement. A family of quadratic solitons whose fundamental waves
can be monopole, dipole, or even multipole are found numerically. The existence of solitons, depending on the
sample size and degree of nonlocality, are given for strongly, generally, and weakly nonlocal cases, respectively.
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I. INTRODUCTION

Quadratic solitons, a type of parametric soliton supported
by quadratic nonlinearities, consist of coupled and mutually
trapped two-frequency waves [1,2]. The trapping results
from the rapid exchange of phase and energy between the
two-frequency waves rather than the self-induced change in
the refractive index. Since their theoretical prediction [3,4]
in the 1970s and experimental observations [5,6] in the
1990s, quadratic solitons have attracted increasing attention
because of their potential applications in ultrafast all-optical
switching and controlling of light by light [7,8]. To date,
the basic properties of quadratic solitons have been well
investigated [2,9], and the underlying physics behind them
have also been discovered by several authors [10,11].

On the other hand, nonlocal solitons, solitons in nonlinear
media with a nonlocal response, have also been studied
extensively in the recent past [12–16]. In the nonlocal response
in nonlinear media, the refractive index change at a given point
is determined not only by the light intensity at that point but
also by the light intensity near that point. There are several
types of nonlocal response in real nonlinear media, such as the
zeroth-order modified Bessel nonlocal response in nematic
liquid crystals [13], the logarithmic nonlocal response in lead
glass [17], and the exponential-decay-type nonlocal response
in aqueous solution of rhodamine B [18] and diluted India
ink [19].

Nikolov et al. found that quadratic solitons are equivalent
to nonlocal solitons on the basis of an analogy between
parametric interaction and diffusive nonlocality [20]. The
nonlocal analogy was later used to successfully describe
pulse compression [21,22], localized X waves [23], and
modulational instability [24] in χ (2) materials. Nikolov et al.
showed that the second harmonic (SH), like the nonlinear
refractive index forming a waveguide, traps the fundamental
wave (FW). They found two types of response functions,
the exponential-decay type and the sine-oscillatory type. On
the basis of the sine-oscillatory-type response function, one
can understand why Buryak and Kivshar found numerically
that quadratic solitons radiate linear waves [20,25]. In 2012,
Esbensen et al. further investigated quadratic solitons with a
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sine-oscillatory type response function and found a family of
analytical solutions under the strongly nonlocal approxima-
tion [26]. However, these soliton solutions, whether numerical
or analytical, were all unstable. We have shown that boundary
conditions can stabilize this type of nonlocal soliton with
sine-oscillatory response functions [27].

In this paper, we further investigated these oscillatory
quadratic solitons. We found a family of quadratic solitons
consisting of monopole, dipole, or even multipole FWs and
oscillatory SHs. We analyzed the existence of these solitons
by numerical simulation for strongly, generally, and weakly
nonlocal cases, respectively. We found that the existence of the
solitons depends on the sample size and degree of nonlocality.

II. NONLOCAL MODEL

We start our analysis by considering an FW and its SH
propagating along the z direction in a lossless quadratic
nonlinear medium under conditions for type-I phase matching.
The evolution of their slowly varying envelopes E1 and E2 can
be described by the dimensionless dynamical equations [20]

i
∂E1

∂z
+ d1

∂2E1

∂x2
+ E∗

1E2e
−iβz = 0, (1)

i
∂E2

∂z
+ d2

∂2E2

∂x2
+ E2

1e
iβz = 0. (2)

Here the parameter β represents the dimensionless phase
mismatch. In the spatial domain, d1 ≈ 2d2, dj > 0 (j = 1,2),
and x stands for the transverse spatial coordinate. The terms
∂2Ej/∂x2 then denote the beam diffraction. In the temporal
domain, dj is arbitrary, and x stands for the time coordinate.
The terms ∂2Ej/∂x2 then denote the group velocity dispersion.

We search for stationary solutions of Eqs. (1) and (2)
in the form E1(x,z) = ϕ1(x) exp(iλz) and E2(x,z) =
ϕ2(x) exp(i2λz + iβz), where λ is the propagation constant.
Substituting in Eqs. (1) and (2), we obtain

−λϕ1 + d1
d2ϕ1

dx2
+ ϕ1ϕ2 = 0, (3)

−(2λ + β)ϕ2 + d2
d2ϕ2

dx2
+ ϕ2

1 = 0. (4)

Equations (3) and (4) have four parameters (i.e., d1, d2, β,
and λ), which seems too complicated. By introducing the
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scaling parameters, τ = x|λ/d1|1/2, φ1 = ϕ1/λ|(2d1)/d2|1/2,
φ2 = ϕ2/λ, sj = sgn(λdj) = ±1, α = (2 + β/λ)|d1/d2|, and
α > 0, as in Ref.[20,25,26], one can obtain a group of simple
equations [25]:

s1
∂2φ1

∂τ 2
− φ1 + φ1φ2 = 0, (5)

s2
∂2φ2

∂τ 2
− αφ2 + 1

2
φ2

1 = 0. (6)

Here the sign parameter s1 describes whether the nonlinearity
of the system is self-focusing (s1 = 1) or self-defocusing
(s1 = −1), whereas s2 describes whether the response function
of the system is the exponential-decay type (s2 = 1) or
the sine-oscillatory type (s2 = −1). The soliton solutions of
Eqs. (5) and (6) for s2 = 1 can be stable without boundary
confinement [3,4,20,25], whereas the soliton solutions for
s2 = −1 cannot be stable unless subject to boundary confine-
ment [25–29]. We consider only the case s2 = −1 and s1 = 1
in this paper.

We solved exactly the unbounded Eq. (6) in view of the
Fourier transform. As a result, the SH can be expressed with
the FW in the form of a convolution [20,26],

φ2 = 1

2α

∫ ∞

−∞
R(τ − ξ )φ2

1(ξ )dξ, (7)

where

R(τ ) = 1

2σ
sin

( |τ |
σ

)
. (8)

Here σ = 1/
√

α is a parameter that measures the degree of
nonlocality. Equation (7) is a general form of the nonlocal
Kerr nonlinearity, provided φ2 is regarded as the nonlinear
refractive index. Mutual trapping of an FW with its SH in
quadratic nonlinear media is equivalent to self-trapping of an
optical wave by its self-induced change in refractive index in
a nonlocal Kerr nonlinear medium, which was shown well by
Nikolov et al. [20]. The unbounded sine-oscillatory response
function Eq. (8) satisfies shift invariance and depends on the
relative positions of the source point and field point. As shown
in Fig. 1(a), the response function oscillates with the period
2πσ and amplitude 1/(2σ ) from the center τ = 0 upward to
each side until infinity. Quadratic solitons with this unbounded
sine-oscillatory response function are all unstable.

To stabilize the oscillatory quadratic solitons, we imposed
on Eqs. (5) and (6) first-type boundary conditions, i.e., φj (l1) =
φj (l2) = 0, where lj represents the positions of the boundary
(we assume l2 > l1 in this paper). Then we solved Eq. (6)
exactly using the Green’s function method in the presence of
the boundary conditions. The dependence of φ2 on φ1 becomes

φ2 = 1

2α

∫ l2

l1

R(τ,τ ′)φ2
1(τ ′)dτ ′, (9)

where

R(τ,τ ′) =
⎧⎨
⎩

sin( τ−l1
σ

) sin( τ ′−l2
σ

)
σ sin(l/σ ) , l1 � τ � τ ′,

sin( τ ′−l1
σ

) sin( τ−l2
σ

)
σ sin(l/σ ) , τ ′ � τ � l2.

(10)
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FIG. 1. (Color online) (a) Unbounded sine-oscillatory response
function Eq. (8). [(b),(c)] Bounded sine-oscillatory response function
Eq. (10). Here σ = 0.5.

The bounded sine-oscillatory response function Eq. (10) is not
shift invariant and depends on the absolute positions of the
source point and field point. As shown in Figs. 1(b) and 1(c),
the response function oscillates from each boundary point
τ = lj to the source point τ = τ ′. On each side of the source
point sine functions are with the same period 2πσ and different
amplitudes. Their derivative ∂R/∂τ at the boundary point can
be positive or negative, and their phase can be changed to
ensure that the source point turns sharply downward. The
derivative ∂R/∂τ at the source point is discontinuous and is
always negative on the left and positive on the right.

III. SOLITON SOLUTIONS

We solved Eqs. (5) and (6) numerically using a Newton iter-
ative scheme in the presence of first-type boundary conditions
with s2 = −1 and s1 = 1. We found many quadratic solitons
for different sample sizes l = l2 − l1 and different degrees of
nonlocality α. Here the FWs have monopole, dipole, or even
multipole profiles, and the profiles of the SHs are oscillatory
with a period Ts = 2πσ = 2π/

√
α. According to the size

of the soliton width w (defined as w2 = 4[
∫ l2
l1

τ 2φ2
1dτ/P −

(
∫ l2
l1

τφ2
1dτ/P )2]) for monopole FWs relative to the oscillatory

period Ts for oscillatory SHs, the quadratic solitons can
be classified into strongly, generally, and weakly nonlocal
solitons, corresponding to the different parts in the α domain.
Because the soliton width w obtained numerically is on
the order of O(1), we define Ts >> 1 and Ts << 1 as the
conditions for strong and weak nonlocality, respectively. Due
to the dramatically changing of soliton power P (defined as
P = ∫ l2

l1
φ2

1dτ ) for monopole FWs, which can not be shown
clearly in a single figure, we show the solutions of solitons in
three cases, respectively.
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FIG. 2. (Color online) [(a),(b)] Soliton power P (solid line) and
width w (dotted line) for FW vs the degree of nonlocality and sample
size, respectively. [(c),(e)] Typical soliton profiles with different α

and li .

A. Strongly nonlocal solutions

In the strongly nonlocal case, the oscillatory period Ts

for SHs is always much larger than the soliton width w for
FWs. From Ts >> 1 we obtain α << 4π2. On the basis of the
numerical results, we find that α < 1 is an acceptable condition
for the strongly nonlocal case. Figure 2(a) shows typical curves
for the soliton power P and soliton width w for various α

values when l = 28. The soliton power P and width w for
FWs increase piecewise and monotonically with increasing
α. Figure 2(b) shows typical P and w curves for various l

values when α = 0.04 and Ts = 10π . For any given α, the
soliton power P and width w for FWs change piecewise and
periodically with a period Ts/2 as the sample size l increases.
The piecewise properties can be described by the concept of
the irreducible soliton zone (ISZ) [27].

We define an ISZ just containing the entire nonzero part
of the FW between two zeros of the SH profile. The soliton
in the ISZ is called an irreducible soliton (IS). The size of
the ISZ, li , satisfies Ts/2 < li < Ts . No soliton exists when
the sample size is less than Ts/2. When the sample is greater
than Ts , it can be divided into two parts, the ISZ and several
extended zones, as shown in Fig. 3. A soliton in a sample
larger than the ISZ can be regarded as an extension of an IS.
For the FW, the extension keeps the profiles in the ISZ invariant
and pads the zero part in the extended zone. For the SH, the
extension keeps the profiles in the ISZ invariant and increases
the m/2 sine oscillation in the extended zone. A large sample
can have one [e.g., Figs. 3(a) and 3(d)] or two [e.g., Figs. 3(b)
and 3(c)] extended zones. The total size of the extended zones
should be mTs/2 (m is a positive integer). Therefore, one can
know all the soliton solutions in the entire sample size l by
investigating the IS in the ISZ with a size of li using the relation
l = li + mTs/2.

The relation l = li + mTs/2 can explain the curves in
Figs. 2(a) and 2(b). In Fig. 2(b), the oscillatory period is
Ts = 10π , and the curves repeat with a period of Ts/2 = 5π .
From the relation Ts = 2π/

√
α, the curves in Fig. 2(a) vary
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FIG. 3. (Color online) Profiles of solitons when α = 0.04 and
l = 66. Dash-dotted frames represent the ISZ.

piecewise without a fixed period. The discontinuity points in
Figs. 2(a) and 2(b) correspond to l = mπ/

√
α, at which the

system is unstable and no solitons exist. In both Figs. 2(a)
and 2(b), the first branch on the left corresponds to the solutions
of the IS. Typical profiles of the IS are given in Figs. 2(c)–2(e).
The FW and SH profiles are bell shaped in Figs. 2(c) and 2(e)
when α or li approaches the left edge of the ISZ branch in
Figs. 2(a) and 2(b). The SH in Fig. 2(d) is close to bell shaped
except for a small dip in the center when α or li approaches
the right edge of the ISZ branch.

For a given α and l (>Ts), one can calculate li and m using
l = li + mTs/2 and Ts/2 < li < Ts . The soliton peak of the
FWs will appear at m + 1 different positions in a sample of
length l. Thus, we have m + 1 different soliton solutions for
one sample. Figure 3 shows a typical case for l = 66 and
α = 0.04. Then one has Ts = 10π = 31.4, li = 18.88, and
m = 3. The soliton peaks appear at four different positions in
the sample. The power and width of the FW are the same for
all four solutions.

Using the concept of the ISZ, we can construct a family
of quadratic solitons consisting of dipole FWs and oscillatory
SHs. As shown in Figs. 4(a) and 4(b), the irreducible dipole
solitons consist of two monopole ISZs plus one extended zone
of width Ts/2. The two monopole ISs are exactly identical
except for the phase of the FW. There are two types of dipole
solitons, the out-of-phase [Fig. 4(a)] and in-phase [Fig. 4(b)]
cases, depending on how the phases of the two FW peaks are
related. For a given α and l > 2li + Ts/2, one can calculate
li and m using l = 2li + Ts/2 + mTs/2 with Ts/2 < li < Ts .
The soliton peaks will appear at 2m different positions in the
sample. Figures 4(c)–4(f) show a typical case for l = 87 and
α = 0.04. Here Ts = 10π = 31.4, li = 19.95, and m = 2. The
two peaks of the FW appear at four different positions in the
sample, as shown in Fig. 4, and we have four different in-phase
dipole soliton solutions. For the out-of-phase case, one can
obtain another eight dipole soliton solutions. All 12 of these
solutions are constructed on the basis of one ISZ solution.

In the same way, we can construct a triple soliton solution
when the sample size l > 3li + Ts . The triple solitons have
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FIG. 4. (Color online) [(a),(b)] Profiles of the irreducible dipole
solitons, where α = 0.04 and l = 56. [(c)–(e)] Profiles of dipole
solitons when α = 0.04 and l = 87. Dash-dotted frames represent
the ISZ.

three monopole ISZs plus two extended zone of width Ts/2.
Generally one can construct a large family of multipole
quadratic solitons based on one ISZ solution for a sufficiently
large sample.

Our linear stability analysis shows that solitons in the
strongly nonlocal case are always stable when subject to
boundary confinement. It is noteworthy that the maximum
amplitudes of the FWs are much smaller than those of the
SHs, and the maximum amplitudes of the SHs in the ISZ are
slightly larger than that in the extended zone.

B. Generally nonlocal solutions

In the generally nonlocal case, the oscillatory period Ts

for SHs is similar to the soliton width w for FWs. This case
is a transition between the strongly nonlocal case (Ts >> 1)
and weakly nonlocal case (Ts << 1). Our numerical results
show that it can be regarded as a generally nonlocal case
when 1 < α < 4π2. Figure 5(a) shows typical P and w curves
for various α values when l = 16.84. The soliton power
P increases piecewise and monotonously, and the width w

changes piecewise and nonmonotonously with increasing α.
Figure 5(b) shows typical curves of the soliton power and width
for various l values when α = 11 and Ts = 2π/

√
11 = 1.89.

For a given α, the soliton power P and width w for the FWs
change piecewise and periodically with a period Ts/2 as l

increases. In addition, the soliton width w is comparable with
the oscillatory period Ts , and the maximum amplitudes of the
FWs are always larger than those of the SHs.
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FIG. 5. Soliton power P (solid line) and width w (dotted line)
for FW vs the degree of nonlocality α (a) and sample size l (b),
respectively.

Two typical soliton profiles are shown in Figs. 6(a) and 6(b).
The FW profile in Fig. 6(a) has several shoulder peaks in
addition to the central peak, which is similar to the profile
of a lattice soliton. The FW profile in Fig. 6(b) is monopole
without a shoulder structure. The SH profiles in Figs. 6(a)
and 6(b) are both oscillatory. According to the linear stability
analysis, solitons in the generally nonlocal case are not
always stable. The stability of the quadratic solitons depends

FIG. 6. (Color online) [(a),(b)] Profiles of quadratic solitons for
different l when α = 11. [(c)–(f)] Simulated propagation of FWs
[panels (c) and (d)] and SHs [panels (e) and (f)] corresponding to
panels (a) and (b) based on Eqs. (1) and (2). Dash-dotted frames
represent the ISZ.
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FIG. 7. (Color online) [(a),(b)] Profiles of quadratic solitons for
the same l and α as in Fig. 6(b). (c) Typical dipole quadratic soliton
profiles with li = 14.95. Dash-dotted frames represent the ISZ.

on both α [i.e., α = (2 + β/λ)|d1/d2|] and l. Figures 6(c)
and 6(e) show unstable propagation of the quadratic soliton,
and Figs. 6(d) and 6(f) show stable propagation. The prop-
agation parameters are d1 = 1, d2 = −4, λ = 1, and β = 42.
Further, we added 3% relative noise as perturbation during
propagation.

In the generally nonlocal case, we can also define an ISZ,
which includes several SH oscillatory periods, as shown in
Figs. 6(a) and 6(b), to cover the entire nonzero FW profiles.
Thus, the exact size of the ISZ, li , should be determined by
numerical solutions, and its value may depend on the numerical
accuracy. The numerically obtained typical values of li are
approximately 5Ts–7Ts depending on the value of α. When the
sample size l < 5Ts , the FW profiles will be influenced by the
boundary, i.e., ∂φ1/∂τ �= 0 at the boundary points. When the
sample is larger than the ISZ, the entire sample can also be
divided into an ISZ and several extended zones. Thus, for a
given α and a large l, we have to numerically find the first
solution to determine the value of li . Then we have the relation
l = li + mTs/2 and can construct all m + 1 solutions for the
sample of length l. Figures 6(b), 7(a), and 7(b) show a typical
case, where l = 16.84, α = 11, Ts = 2π/

√
11, li = 14.95, and

m = 2. The soliton peaks can appear at three different positions
in the sample.

When we numerically find that the sample size l is
greater than 2li + Ts/2, we can also construct a dipole soliton
consisting of dipole FWs and oscillatory SHs, as shown
in Fig. 7(c). The irreducible dipole solitons consist of two
monopole ISs at each side and one Ts/2-wide extended zone
in the center. There also exist two types of dipole soliton,
which can be in phase or out of phase depending on the
relative phase between the two monopole FWs. For a given
l = 2li + Ts/2 + mTs/2 and α, the peaks of the FWs will
appear at 2m different positions in the sample. Figure 7(c)
shows a typical case, where l = 34.63, α = 11, Ts = 2π/

√
11,

li = 14.95, and m = 4. The soliton peaks can appear at eight
different positions in the sample, and we have 24 solutions for
dipole solitons, including in-phase or out-of-phase solitons.
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FIG. 8. (Color online) [(a), (b)] Soliton power P (solid line) and
width w (dotted line) for FW vs the degree of nonlocality α and sample
size l, respectively. (c) Typical soliton profiles with li = 20.08.

C. Weakly nonlocal solutions

In the weakly nonlocal case, the oscillatory period Ts

for SHs is much smaller than the soliton width w for FWs
(Ts << 1). Our numerical results show that it can be regarded
as the weakly nonlocal case when α > 4π2. Figure 8(a) shows
typical curves of the soliton power and width for various α

values when l = 32. The soliton power P and width w increase
linearly and piecewise with increasing α. Figure 8(b) shows
typical P and w curves for various l values when α = 90 and
Ts = 2π/

√
90. For a given α, the soliton power P and width w

for FWs remain invariant except for some periodic gaps with
a period Ts/2 as l increases. Therefore, the power and width
of the FWs depend mainly on α, not on the sample size l.
A typical soliton profile when α = 90 and l = 32 is shown
in Fig. 8(c). We can see that the maximum amplitude of the
FWs is far larger than that of the SHs. The SH profile has a
monopole main peak, and the oscillation of the SH continues,
although it disappears from view.

In the weakly nonlocal case, we can also define an ISZ,
which includes a much longer SH oscillatory period, as shown
in Fig. 8(c). Then, for a given α and l, one can determine li
and l = li + mTs/2 numerically, as in the generally nonlocal
case. Figures 8(c), 9(a), and 9(b) show a typical case, where
l = 32, α = 90, Ts = 2π/

√
90, li = 20.08, and m = 18. Then

the soliton peaks can appear at m + 1 different positions in the
sample of length l.

We can also find solutions of a dipole soliton consisting
of dipole FWs and oscillatory SHs, as shown in Fig. 9(c).
There also exist two types of dipole solitons, in phase or
out of phase solitons. For a given l = 2li + Ts/2 + mTs/2
and α, the soliton peaks can appear at 2m different positions
in the sample. Figure 9(c) shows a typical case, where
l = 64.33, α = 90, Ts = 2π/

√
90, li = 20.08, and m = 36.

The soliton peaks can appear at 72 different positions in the
sample.

Our linear stability analysis shows that solitons in the
weakly nonlocal case are always stable when subject to
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FIG. 9. (Color online) [(a),(b)] Profiles of quadratic solitons for
the same l and α as in Fig. 8(c). (c) Typical dipole quadratic soliton
profiles with li = 20.08. Dash-dotted frames represent the ISZ.

boundary confinement. It is noteworthy that the maximum
amplitudes of the FWs are much greater than those of the SHs,
and the maximum amplitudes of the SHs in the ISZ are also
greater than that in the extended zone.

IV. CONCLUSIONS

In summary, we found a family of quadratic solitons
subject to boundary confinement. Among them, the FWs are
monopole, dipole, or even multipole, and their peaks can
appear in any part of the sample. However, the SHs are
always oscillatory. Using the concept of the ISZ, we explained
the existence of the solitons depending on the degree of
nonlocality α and sample size l, for strongly, generally, and
weakly nonlocal cases, respectively. In Ref. [27], we found
that boundary conditions can stabilize nonlocal solitons, which
are the equivalent of quadratic solitons. In this paper, we
further showed that the sample size and boundary conditions
govern the existence of the solitons. Our results show that
boundary conditions play a important role in the propagation
and stabilities of nonlocal solitons. This implies that boundary
confinement can conquer the singularity and instability in other
physical system.
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