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Typical observables in a two-mode Bose system
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A class of k-particle observables in a two-mode system of Bose particles is characterized by typicality: if
the state of the system is sampled out of a suitable ensemble, an experimental measurement of that observable
(almost) always yields the same result. We investigate the general features of typical observables and the criteria
to determine typicality and finally focus on the case of density correlation functions, which are related to spatial
distribution of particles and interference.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensates
raised great theoretical interest. A system of Bose particles
in one or a few single-particle states (modes) is an important
workbench for fundamental concepts in quantum mechanics
and statistical physics [1–7]. A large number of particles dis-
tributed among two different modes, for example, enables one
to perform a full quantum double-slit experiment in a single
experimental run [8]. Moreover, it has been proposed that
fluctuations in the interference patterns can probe interesting
characteristics of many-body systems [9–19].

Interference is an interesting example of a property that
weakly depends on the choice of the state of the system.
In a two-mode system, second-order-interference properties
are similar as far as one considers a number state or a
phase state [5,6,20], while first-order properties are very
different. These features explain why an interference pattern
can be experimentally observed in single experimental runs by
measuring the particles’ positions [1,3,4,20–23], although in
the case of number states the offset of the pattern fluctuates ran-
domly, so that averaging over a few experimental runs yields
a flat density profile. It is also interesting to note that, when
the number of particles is large, there are interference-related
observables whose experimental measurement yields the same
result at each run with overwhelming probability [24–27].

These considerations lead us to a general definition of typ-
icality of an observable. Typicality is a mathematical concept
related to the phenomenon of measure concentration [28]. It
has been used in many emerging phenomena in physics and
other sciences, with interesting applications on the structure
of entanglement in large quantum systems [29–33], and the
search for a quantum-mechanical justification of some primary
statistical-mechanical concepts [34–44]. In this article, we
shall apply the notion of typicality to a two-mode Bose
system with a fixed number of particles. We will study the
properties of observables with respect to uniform sampling
of a suitable Hilbert subspace. An observable will be called
typical if each experimental run, performed on any state of
the subspace, would yield the same result with overwhelming
probability. According to the probabilistic interpretation of
quantum mechanics, the expectation value of an observable
provides information on the average of experimental runs on
the (pure or mixed) state. We shall build on the results of
Ref. [26] and prove that if the observable is typical, there exists

an expectation value that contains information on (almost)
every single experimental run, rather than on the average result.
Throughout this article, we shall say that a property is “almost”
always valid if it is always valid, apart from a negligible set of
cases. A number of concrete examples will be discussed in the
following.

This article is organized as follows. In Sec. II we specify
the properties of the statistical ensemble and introduce the
general formalism, which leads to the definition of typicality
of an observable. In Sec. III an analysis of the structure of
fluctuations for a general k-particle observable is performed.
Quantitative criteria will be given to determine typicality and
obtain information on higher-order fluctuations. Section IV
includes an application of the typicality criteria to density cor-
relation operators, with the case study of counterpropagating
plane-wave modes and an extension to expanding modes in
the far-field regime.

II. TYPICALITY OF AN OBSERVABLE

Let us consider a system of bosons, without internal
degrees of freedom. The system can be described in a second-
quantization picture by introducing the annihilation and
creation field operators �̂(r) and �̂†(r), satisfying canonical
equal-time commutation relations:

[�̂(r),�̂(r ′)] = 0, (1)

[�̂(r),�̂†(r ′)] = δ(r − r ′). (2)

Once an orthonormal basis for the single-particle Hilbert space
has been chosen, the field operators can be expanded as sums
of mode operators, which create or annihilate a particle in one
of the basis states. We are going to analyze a system made
up of N bosons, distributed among two orthogonal modes, a

and b, with single-particle wave functions ψa(r) and ψb(r). A
useful basis for the description of the N -particle Hilbert space
is formed by the Fock states

|�〉 :=
∣∣∣∣
(

N

2
+ �

)
a

,

(
N

2
− �

)
b

〉
, (3)

in which the two modes have well-defined occupation num-
bers. We are assuming that N is even for simplicity, but
this specification is immaterial in the large-N limit. In a
second-quantized formalism, Fock states are obtained by
applying a sequence of mode creation operators to the
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vacuum |�〉:

|�〉 = 1√
(N/2 + �)!(N/2 − �)!

(â†)N/2+�(b̂†)N/2−�|�〉. (4)

Since ψa(r) and ψb(r) are orthonormal, the mode operators

â =
∫

d r ψ∗
a (r)�̂(r), b̂ =

∫
d r ψ∗

b (r)�̂(r) (5)

satisfy the canonical commutation relations

[â,â†] = [b̂,b̂†] = 1, (6)

and all the operators of mode a commute with those of mode
b. The number operators N̂a = â†â and N̂b = b̂†b̂ count the
numbers of particles in each mode.

We are interested in the properties of an ensemble of states
randomly sampled from the n-dimensional subspace

Hn = span{|�〉,|�| < n/2}, (7)

spanned by the Fock states with 0 < n � N + 1 (n is
odd for simplicity.) In the case n = 1, the subspace
H1 = span{|� = 0〉} is one-dimensional. Thus, only the
state |� = 0〉 = |(N/2)a,(N/2)b〉 has nonvanishing probabil-
ity [12,20–24,45]. In this situation, it is improper to talk of
typicality. In the following, we are instead interested in the
large-n case [26], where the notion of typicality acquires
meaning. If a Bose-Einstein condensate (BEC) made up on
N particles is “evenly” split between the two modes (e.g., by
adiabatic splitting), one expects n = O(

√
N ). However, we

shall not restrict our attention to this special case and assume
throughout this article the far more general condition

n = o(N ), (8)

namely, limN→∞ n/N = 0.
We shall assume that states are randomly sampled out

of space (7) with a uniform distribution. This is clearly
a simplifying assumption: the number of states that are
involved in the description and their amplitudes depends on
the experimental procedure, yielding the separation of the
condensate in the two modes [46]. However, it will emerge
that our main results are qualitatively unchanged for a large
and relevant class of probability distributions on Hn.

The average of the projection on a random vector state
|�N 〉 ∈ Hn uniformly sampled on Hn yields the (microcanon-
ical) density matrix

ρ̂n = |�N 〉〈�N | = 1

n

∑
|�|<n/2

|�〉〈�| =:
1

n
P̂n, (9)

where P̂n is the projection onto the subspace Hn. In the
following, only the density matrix (9) will explicitly appear
in our analysis and calculation. The definition and use of
the random state |�N 〉 in Eq. (9) is superfluous and can be
dispensed with, in accord with the prescription of Ockham’s
razor. In this respect, it is worth stressing that no hypothesis
of decoherence will be made, and if one wants, one can safely
assume that in each experimental run a wave function describes
the condensate, which is therefore in a pure state.

Given an observable Â, the statistical average of its
expectation value reads

A := Tr(ρ̂nÂ) = 1

n

∑
|�|<n/2

〈�|Â|�〉. (10)

Its quantum variance is

δA2 := Tr(ρ̂nÂ
2) − [Tr(ρ̂nÂ)]

2
. (11)

The significance of this quantity in the context of ensemble
statistics becomes clear once it is decomposed in the sum of
two contributions [26,27,47]: it contains both the classical and
quantum uncertainties of the observable A in the microcanon-
ical state ρ̂n. Therefore, the asymptotic condition

δA = o(A) (12)

for N → ∞, that is, limN→∞ δA/A = 0, ensures that in the
overwhelming majority of cases the experimental measure-
ment of the observable Â will fluctuate within an extremely
narrow range around the average expectation value A. Thus,
the outcome of a measurement of Â is almost always the same
(and it equals its average) for every experimental run in the
ensemble. We call this property typicality of the observable.

In the following sections we will define and characterize
conditions for a k-particle observable to be typical and analyze
in detail the case of spatial correlation functions, which are
related to interference.

III. CONTROL OF FLUCTUATIONS FOR A k-PARTICLE
OPERATOR

In a second quantization formalism, the field operators �̂

and �̂† can be used to build up many-body observables [48].
The simplest ones are the Hermitian 2k-point functions

Ĝk(r1, . . . ,rk) :=
k∏

i=1

�̂†(r i)
k∏

j=1

�̂(rj ). (13)

Following Eq. (10), one can observe that the ensemble average
of Ĝk can be computed for any n once its expectation value over
the N -particle two-mode Fock states |�〉 is known. Thus, when
the field operators in (13) are expanded in orthogonal modes,
only the terms formed by operators associated with modes a

and b are relevant in Gk . Moreover, operator products with a
different number of â†’s and â’s (respectively, b̂†’s and b̂’s)
give vanishing contributions to 〈�|Ĝk|�〉. The relevant terms
in (13) can be reordered to be expressed as number operators
N̂a,b. The average eventually reads [we will assume k = O(1)]

Gk(r1, . . . ,rk)

=
k∑

m=0

Fm(r1, . . . ,rk)
1

n

×
∑

|�|<n/2

m−1∏
A=0

(
N

2
+ � − A

) k−m−1∏
B=0

(
N

2
− � − B

)
,

(14)

with

Fm(r1, . . . ,rk) = |�m(r1, . . . ,rk)|2, (15)
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where �m(r1, . . . ,rk) is, apart from a normalization factor, the
symmetrized k-body wave function with m particles in mode
a and k − m particles in mode b:

�m(r1, . . . ,rk)

=
∑

σ

ψa(rσ (1)) · · · ψa(rσ (m))ψb(rσ (m+1)) · · · ψb(rσ (k)),

(16)

with σ denoting permutation of k elements.
An important class of k-particle observables can be obtained

by integrating the 2j -point functions, for j � k, with a
multiplicative kernel Aj [49]:

Âk =
k∑

j=0

∫
d r1 · · · d rjAj (r1, . . . ,rj )Ĝj (r1, . . . ,rj ). (17)

The ensemble average of Â can be immediately computed by
inserting the general results (14). Thus, since Gj = O(Nj )
when k = O(1), we have

Ak =
∫

d r1 · · · d rkAk(r1, . . . ,rk)Gk(r1, . . . ,rj )

+O(Nk−1). (18)

In order to study the behavior of the variance (11) and
determine whether Âk is typical or not, we should compute its
square, which involves at the highest order in N a product of
Ĝk functions that can be recast into a single 4k-point function
by normal ordering the field operators:

Â2
k =

∫
d r1 · · · d r2k[Ak(r1, . . . ,rk)Ak(rk+1, . . . ,r2k)

× Ĝ2k(r1, . . . ,r2k)] + O(N2k−1). (19)

From (17)–(19) we get an expression for the variance,

δA2
k =

∫
d r1 · · · d r2k[Ak(r1, . . . ,rk)Ak(rk+1, . . . ,r2k)

× γk(r1, . . . ,r2k)] + O(N2k−1), (20)

with

γk(r1, . . . ,r2k) := G2k(r1, . . . ,r2k)

−Gk(r1, . . . ,rk) Gk(rk+1, . . . ,r2k), (21)

which depends only on the ensemble averages of Gk and G2k .
Notice that the order N2k−1 comes both from contributions
in (17) with j < k and from normal ordering.

Our aim is to find whether, for some choice of the sampled
Hilbert subspace Hn, the standard deviation (20) is of smaller
order with respect to the average Ak in the asymptotic N →
∞ regime. This behavior is in accord with the definition of
typicality of the observable Âk given in Sec. II. First, let us
observe that, since Gk is polynomial in N and n, inserting the
general result (14) into δA2

k yields a polynomial function of
degree 2k in the number of particles and the dimension of the
sampled subspace:

δA2
k =

k∑
p=0

2k−p∑
q=0

D(Ak)
p,q

(
N

2

)p

nq. (22)

Due to the symmetry of the summand around � = 0, only terms
N2k−qnq with even q are present in (22). It is evident that, as
far as n = o(N ), it is necessary and sufficient for Âk to be
typical that

D
(Ak)
2k,0 =

∫
d r1 · · · d r2kAk(r1, . . . ,rk)Ak(rk+1, . . . ,r2k)

×
[

k∑
M=0

FM (r1, . . . ,r2k)

−
k∑

m,m′=0

Fm′(r1, . . . ,rk)Fm(rk+1, . . . ,r2k)

]
(23)

vanishes, namely,

D
(Ak)
2k,0 = 0. (24)

In this case, since Ak = O(Nk), the relative fluctuations are

δAk

Ak

= O

(
1√
N

)
+ O

( n

N

)
→ 0 for N → ∞, (25)

which is consistent with Eq. (12). Fluctuations that scale like
N−1/2, related to normal ordering and to the very definition of
Âk , are ensemble independent in the sense that they are present
even in degenerate distributions of states. Linear fluctuations
in n are clearly related to the dimension of the sampled
subspace and therefore strongly depend on the definition of
the ensemble. It is interesting to note that, if n = O(Nα), two
qualitative regimes can be distinguished: (i) when α � 1/2,
the relative fluctuations scale like N−1/2, while (ii) if α > 1/2,
they asymptotically vanish like Nα−1, i.e., more slowly. This
reasoning is based on the assumption that D

(Ak)
2k−2,2 does not

vanish: we will see in the following how this condition can
be checked and discuss in the next section a relevant class of
exceptions.

Due to the form of the symmetrized products of wave
functions (16), the typicality condition (24) can be recast
in a more convenient form: in particular, we can dispose of
the integral over 2k variables by observing that the functions
�M (r1, . . . ,r2k) can be decomposed as

�M (r1, . . . ,r2k)

=
min{M,k}∑

m=max{0,M−k}
�M−m(r1, . . . ,rk)�m(rk+1, . . . ,r2k).

(26)

This result is related to the cluster decomposition principle in
Bose systems [50]. When one computes the square modulus
FM = |�M |2 of (26), which enters the variance in (21), the
term

∑
m FM−mFm appears. This contribution exactly cancels

with the subtracted terms in (21) since it can be obtained by a
change of summation indices,

k∑
m,m′=0

Fm′(r1, . . . ,rk)Fm(rk+1, . . . ,r2k)

=
k∑

M=0

M∑
m=0

FM−m(r1, . . . ,rk)Fm(rk+1, . . . ,r2k)
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+
2k∑

M=k+1

k∑
m=M−k

FM−m(r1, . . . ,rk)Fm(rk+1, . . . ,r2k).

(27)

Accordingly, a compact form of the typicality condition (24)
reads

D
(Ak)
2k,0 =

2k∑
M=0

min{M,k}∑
m′ 
=m=max{0,M−k}

I (Ak)
M−m,M−m′I (Ak)

m,m′ = 0, (28)

where the coefficients Im,m′ are integrals over k position
variables of products of the type �∗

m′�m:

I (Ak)
m,m′ =

∫
d r1 · · · d rkAk(r1, . . . ,rk)(�∗

m′�m)(r1, . . . ,rk).

(29)

Given the integral kernel Ak , which determines the highest
order in N of the observable Âk , and the mode wave functions
ψa,b(r), it is sufficient to compute the integrals (29) to check
whether the observable is typical.

It is also interesting to analyze the structure of D
(Ak)
2k−2,2,

also in view of the following discussion on spatial correlation
function. If D

(Ak)
2k−2,2 is nonvanishing, the transition between

an ensemble-independent (N−1/2) and an ensemble-dependent
behavior of fluctuations occurs for n = O(N1/2). In order to
analyze this quantity, one should take into account terms of
order Nk and Nk−2n2 in the general expression (14),

Gk(r1, . . . ,rk)

=
k∑

m=0

Fm(r1, . . . ,rk)

{(
N

2

)k

+
(

N

2

)k−2

× n2

24
[k2 − k(4m + 1) + 4m2]

}

+O(Nk−1) + O(Nk−4n4), (30)

which is to be used in the computation of (21). Integration over
the kernel Ak and application of the same change of indices
leading to Eq. (27) yield the result

D
(Ak)
2k−2,2 = 1

12

⎡
⎣(J (Ak))2 +

2k∑
M=0

min{M,k}∑
m′ 
=m=max{0,M−k}

× {
I (Ak)

M−m,M−m′I (Ak)
m,m′

× [2k2 − k(4M + 1) + 2M2]
}⎤⎦ , (31)

where the I integrals have been defined in (29) and

J (Ak) =
∫

d r1 · · · d rkAk(r1, . . . ,rk)

×
k∑

m=0

Fm(r1, . . . ,rk)(k − 2m). (32)

The summation appearing in (32) contains an equal number
of positive and negative terms. Thus, it can vanish if the mode

structure is properly chosen. In particular, it vanishes when
the Fm’s are invariant with respect to the exchange of the two
mode wave functions:

Fm = Fk−m ⇒
k∑

m=0

Fm(k − 2m) = 0. (33)

This condition is always valid in a “double-slit” BEC in-
terference experiment [8,51–55], where the two modes are
identically prepared (within experimental accuracy) and then
let to interfere. It is easy to check that the above condition is
satisfied whenever |ψa(r)| = |ψb(r)| at all points. In turn, this
is a consequence of the invariance of Fm under local phase
transformations ψa,b(r) → eiϕ(r)ψa,b(r).

IV. TYPICALITY OF DENSITY CORRELATIONS

In this section we will specialize the general results obtained
for an observable of the form (17) to a particular class, related
to the spatial interference of condensates. This is usually
accessible to experimentalists and provides an interesting
example of typical behavior. We shall analyze the integrated
density correlation functions

Ĉk(x1, . . . ,xk−1) =
∫

d rρ̂(r)ρ̂(r + x1) . . . ρ̂(r + xk−1)

=
∫

d rĜk(r,r + x1, . . . ,r + xk−1)

+O(Nk−1), (34)

where ρ̂(r) = Ĝ1(r). In agreement with Eq. (17), it is clear
from the normal-ordered form that the highest-order integral
kernel for this class of observables is

Ck(r1, . . . ,rk) =
k−1∏
i=1

δ(r i+1 − r1 − xi). (35)

The singularities arising in the normal ordering of (34) can be
avoided by smearing all densities around the points (r + xi)
with functions that take into account the finite experimental
spatial resolution.

The I integrals appearing in the typicality condition (28)
can be computed for any couple of mode wave functions
using (35):

I (Ck)
m′,m =

∫
d r1 · · · d rkCk(r1, . . . ,rk)(�∗

m′�m)(r1, . . . ,rk)

=
∫

d r(�∗
m′�m)(r,r + x1, . . . ,r + xk−1). (36)

Consider for definiteness m′ > m. In this case, the function
�∗

m′�m(r1, . . . ,rk) is the sum of products of k mode wave
functions and k complex conjugates, with the number of ψ∗

a ’s
exceeding the number of ψa’s by m′ − m. The structure of the
products reads

S∏
σ=1

|ψa(rjσ
)|2

T∏
τ=1

|ψb(rjτ
)|2

×
Z∏

ζ=1

(ψ∗
a ψb)(rjζ

)
X∏

ξ=1

(ψ∗
b ψa)(rjξ

), (37)
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with S + T + Z + X = k, S + Z = m′, and S + X = m,
which implies

Z − X = m′ − m (38)

for all products in �∗
m′�m.

A. Plane-wave modes

Let us focus on two modes that are paradigmatic in
the description of interference of Bose-Einstein condensates,
namely, two counterpropagating plane waves,

ψa(r) = eik0·r , ψb(r) = e−ik0·r . (39)

In the next section, we will show how the results obtained in
this idealized situation generalize to the more realistic case of
two expanding modes that are spatially separated at the initial
time.

For the plane-wave modes (39), |ψa,b| = 1 and ψ∗
a ψb =

e−2ik0·r . Inserting these results in the general form of the
products (37) and integrating over r as in (36) yields

Z∏
ζ=1

e
−2ik0·xjζ −1

X∏
ξ=1

e
2ik0·xjξ −1

∫
d re−2i(m′−m)k0·r = 0. (40)

Thus, all the contributions to the integral (36) identically vanish
for every k and every set of points (x1, . . . ,xk−1). This implies
that condition

D
(Ck)
2k,0 = 0 (41)

is satisfied by all density correlation functions of the form (34),
which are thus typical for n = o(N ). The structure of the
modes provides interesting information also on the N2k−2n2

part of the fluctuations, arising from (21) and the general
expression (30). Since |ψa| and |ψb| are identically equal
to one, the mode wave functions satisfy the symmetry
condition (33) for the Fm functions. This implies that the J (Ck)

integrals, defined as in Eq. (32), identically vanish, which,
together with the cancellation of the I integrals, leads to the
result

D
(Ck)
2k−2,2 = 0. (42)

Thus, the highest order of ensemble-dependent contributions
to the variance δC2

k is indeed N2k−4n4, which should be
compared with the order N2k−1 of the ensemble-independent
fluctuations. This means that if n = O(Nα), the relative
fluctuations behave like

δCk

Ck

=
{

O
(

1√
N

)
for α � 3/4,

O
((

n
N

)2) = O(N2(α−1)) for α > 3/4.
(43)

Observe that, when α � 3/4, the dominant fluctuations are
ensemble independent, while they depend on the choice of
n in the other case. The transition between the two regimes
for a typical observable is generally expected at α = 1/2 [see
discussion after Eq. (25)]; in this case, however, the transition
takes place at the larger threshold value α = 3/4 by virtue
of the cancellation (42). This behavior, which is general for
density correlation functions, generalizes the results obtained
in [26] for the Fourier transform of the second-order density

x

ρ x

typical

typical

non typical

O N

FIG. 1. (Color online) In the asymptotic regime, the outcome
of a density measurement in a two-plane-wave mode system is
approximated by the function (47). The visibility ∼O(1) and the
period ∼k−1

0 of the interference pattern are (almost) fixed by
typicality, namely, by the typical correlation function (46). The offset
φ of the pattern, and thus the value of density at the origin, does not
appear in the typical observable (46) and fluctuates randomly. The
order O(

√
N ) of the density fluctuations refers to the case n = O(Nα)

with α � 3/4 [see Eq. (43)].

correlation function

Ĉ2(x) =
∫

d rρ̂(r)ρ̂(r + x). (44)

We include a brief discussion of this operator to clarify what
implications typicality has from an experimental point of view.
The expectation value of (44) is generally given by

C2(x) = N2

4

2∑
m=0

∫
d rFm(r,r + x) + O(N ) + O(n2), (45)

which, in the case of plane waves, specializes to

C2(x) 
 N2
[
1 + 1

2 cos(2k0 · x)
]
. (46)

Due to typicality, the function (46) represents the over-
whelmingly probable experimental result of a measurement
of the observable Ĉ2(x), unless n = O(N ). This function is
the two-point density correlation of a classical density (see
discussion in Ref. [26])

ρ(x) = 2N2 cos2(k0 · x + φ). (47)

Among all the parameters that determine the typical experi-
mental outcome of a density measurement, one, namely, the
offset φ of the interference pattern, is not determined by
typicality since correlation functions do not depend on it.
In Fig. 1 a possible outcome of a density measurement in
a two-plane-wave mode system is represented, with its typical
(and nontypical) features highlighted.

B. Arbitrary expanding modes

Let us now discuss the typicality properties of density
correlation functions for a two-mode system that is closer
to actual experimental implementations and find out in which
cases the results (41) and (42) can be generalized. Let us
consider two spatially separated modes ψa(z) and ψb(z) in
one dimension, which are concentrated, respectively, around
positions za and zb, with their initial width being much
smaller than their distance. Besides these conditions, no other
requirement is necessary on the mode wave functions, which
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are fully general. The spatial separation implies that the
convolution∫

dz′ψ∗
a (z′)ψb(z′ + z) =: eFab(z)+iϕab(z), (48)

with Fab and ϕab being real functions of z, is peaked around a
point z = z0, while the convolutions of ψ∗

a with ψa and of ψ∗
b

with ψb are peaked around z = 0. If the trapping potential is
turned off at the initial time t = 0, the particles evolve under the
free Hamiltonian H0 = −d2/dz2. In the absence of collisions,
the k-point functions at t > 0 can be obtained by replacing

ψa,b(z) → ψa,b(z,t) = exp (−itH0) ψa,b(z). (49)

We are interested in the large-time (far-field) regime, in
which the evolved wave functions are approximated by the
asymptotic form [56]

ψa,b(z,t) 

(

1

4πit

) 1
2

e
ix2

4t ψ̃a,b

( z

2t

)
, (50)

where ψ̃a,b(k) = ∫
dze−ikzψa,b(z) are the Fourier transforms

of the initial modes. In the far-field approximation, the
quantities ψ∗

a ψb and their complex conjugates, which enter
the typicality condition (28) through products of type (37), are
thus related to products of Fourier transforms, which can be
expressed through the convolution (48) as

ψ̃∗
a (k)ψ̃b(k) =

∫
dz eFab(z)+iϕab(z)−ikz. (51)

Using a quadratic approximation of Fab around its maximum
z0, the integral becomes Gaussian, and the product ψ∗

a ψb reads

ψ∗
a (z,t)ψb(z,t) 
 c(z0,t) exp

(
−i

z0z

2t

)

× exp

(
− z2

8t2|F ′′
a,b(z0)|

)
. (52)

If the spatial period of the complex exponential is much shorter
than the standard deviation of the Gaussian part, namely,

z0 � 2π

|F ′′
a,b(z0)| , (53)

the product (52) is consistent with the result for counter-
propagating plane-wave modes with time-dependent wave
number k0(t) = z0/4t , modulated by a slowly varying Gaus-
sian envelope, whose width is of the same order as the
standard deviation of the far-field-approximated |ψa|2 and
|ψb|2. Thus, the integrals of products (37) with the kernel (35)
are exponentially suppressed as e−(z0|F ′′

ab|)2
. This means that

when the relation (53) on the initial wave packets is satisfied,

the typicality condition (41) on correlation functions is fulfilled
within a very good level of approximation.

The generalization of the result (42), yielding the cancel-
lation of N2k−2n2 terms in the variance, cannot be extended
without further assumptions to the case of expanding modes in
the far-field regime. In fact, the relation |ψa(z,t)| = |ψb(z,t)|
might not even be approximately verified in the large-time
limit. Condition J (Ck), which, together with the results
discussed above, leads to D

(Ck)
2k−2,2 = 0, can be verified only

if the low-momentum Fourier components of the two modes
are approximately equal [see Eq. (50)]. In the case analyzed in
Ref. [26], in which the correlation C2(z) has been studied for a
system with two translated Gaussian modes, it turned out that
D

(C2)
2k,2 
 0, as expected from the present general discussion.

V. CONCLUSIONS AND OUTLOOK

In this article we have defined and characterized the
typicality of a generic observable in a two-mode Bose system.
The results enable one to determine if an observable is
typical once the mode wave functions are known and to
identify different regimes in the fluctuations around the
typical expectation value, as the dimension of the sampled
subspace varies. The observable analyzed in the last section is
experimentally accessible and can provide a test for typicality.

The identification of typicality criteria for observables
helps one understanding which properties are shared by the
vast majority of states and which ones have instead wide
fluctuations. Remarkably, this distinction is central in deter-
mining “good” (macroscopic) observables in both classical
and quantum-statistical mechanics [57]. The relation between
the results obtained in this article and statistical mechanics will
be the object of future research.

It would also be interesting to extend the formalism in
order to include more general cases, such as nonuniform
samplings or randomly fluctuating modes. Other possible
avenues for future investigation will be the analysis of
the dynamical effects of typicality [47] and the statistical
interpretation of recent experiments on phase randomization
in condensates [51–55], as well as the characterization of the
typicality of entanglement in a Bose-Einstein condensate [58].
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