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Negative refraction for incoherent atomic matter waves
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In a recent paper [Phys. Rev. Lett. 102, 140403 (2009)], Baudon et al. reported that a comoving potential acting
on atoms could mimic negative-index-refraction properties of left-handed photonic metamaterials. We show in
this article that a better approximation is necessary in order to describe the real physical system proposed by
Baudon et al. We derive analytical formulas and compare their solutions with numerical simulations. It turns out
that instead of negative refraction, it is simply atomic reflection that occurs in the above-mentioned comoving
potential. Furthermore, we find that the wave packet of the reflected atomic beam by comoving potentials can
be narrowed by negative dispersion. Finally, we identify a potential configuration, near the interface with a
cubic-type potential barrier, that may lead to the observation of negative refraction with incoherent matter waves.
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I. INTRODUCTION

Left-handed photonic metamaterials (LHMs) are materials
featuring both negative electromagnetic constants ε and μ

[1,2]. Phase and group velocities of electromagnetic planar
waves propagating in such metamaterials are opposite in
direction since they are determined by, respectively, the wave
vector k and Poynting vector S. The refractive index is then
considered negative for satisfying causality principles, i.e.,
n = −(εμ)1/2. A striking characteristic following Snell’s law
is that negative refraction can be observed at the interface
between positive- and negative-refractive-index materials.
LHMs could be used to realize perfect lenses or complete
cloaking of objects from electromagnetic fields [3,4]. LHMs
were first realized at the beginning of the previous decade for
microwave frequencies [5]. Complete proof of their feasibility
was validated with the observation of negative-index refraction
[6–8]. However, it is only recently that such metamaterials
have been demonstrated at visible and UV frequencies where
they require a high degree of subwavelength nanostructuring
[9–11]. Following the success of the development of LHMs,
proposals have emerged in solid-state physics for realizing
the properties of LHMs with electron waves propagating in
graphene [12]. This system governed by the relativistic Dirac
equation could be interesting for studying the Klein tunneling
recently demonstrated in cold-atom physics [13]. Lately, in an
atom optics analog, negative refraction and Veselago lensing
were demonstrated for coherent matter waves propagating in
an optical lattice [14].

Negative refraction in atom optics would be very valuable
if it could be applied to incoherent atomic beams, which are
used in many interferometric applications. The realization of
Ref. [14] could hardly be extended to incoherent matter waves
as it requires the wave packet to populate initially only a
narrow range of quasimomenta in the ground Bloch band of
an optical lattice. Recently, comoving potentials have been
proposed as a promising means to mimic negative refraction
for atomic beams [15]. Should such large negative refraction
have been obtained, it could have led to quasiperfect focus
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of atomic beams or the demonstration of the propagation of
atomic surface waves [16,17]. The simultaneous occurrence
of negative refraction and compensation of the dispersion of
wave packets resulting from the interaction with the comoving
potential, typical of time reversal for atomic beams, would have
been of particular interest for the realization of interferometers
of great accuracy [18].

The idea of Ref. [15] was to modify the group velocity of a
wave packet (of an atom) using a potential of the form

V (x,t) = S(t) cos(2πx/λ),

where S(t) stands for the time dependence of the interaction
and λ is a spatial period. This type of potential could be
based either on pulsed alternating magnetic fields or pulsed
optical standing waves and corresponds roughly to a comoving
potential1 as some of its Fourier components are moving at a
velocity v close to that of the atoms [19].

The effect of such potential, as derived in Ref. [15], was
assumed to introduce a phase shift ��(t,k) equal to

��(t,k) = −�
−1

∫ t

0
dt ′ S(t ′) cos

(
2π

�k

Mλ
t ′
)

, (1)

where M is the mass of the atom and k a wave vector of
the reciprocal Fourier space, the wave packet being initially
centered around k0. Notice here the wave packet is restricted to
one dimension as in the other two directions it is not affected
by the potential and follows free propagation evolution. From
this expression, the group velocity along the direction of the
comoving potential x was calculated as [15]

vg(t,k0) = �k0

M
− 2π

Mλ
t S(t) sin

(
2π

�k0

Mλ
t

)
. (2)

1The Fourier transform of the potential is given by
V (x,t) = ∫ ∞

−∞ dνS̃(ν)e2iπνt cos(2πx/λ). Hence, for a real spec-
trum S̃(ν), this potential may be written as V (x,t) =
2

∫ ∞
0 dνS̃(ν) cos(2πνt) cos(2πx/λ), the integrand being equal to the

sum of two terms cos[2π (νt − x/λ)] and cos[2π (νt + x/λ)], where
the first term propagates at v = λν velocity and the second has a
negligible effect on the atoms.
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For a plane wave, phase velocity writes vϕ = ω/k where ω

is the angular frequency of the wave [20]. For a Gaussian wave
packet with very narrow space dispersion, it may seem natural
to define phase velocity at the wave-packet-center momentum
�k0 and energy E = �ω0 of the wave-packet-center position.
The issue is that any arbitrary energy reference E0 introduces
an additional term equal to E0

�k0
that can make the definition

of phase velocity unphysical. In order to lift this ambiguity,
previous authors have referred directly to k0 for describing
the direction of phase propagation instead of phase velocity
[14,15]. For numerical purposes, we extend this definition and
take the expression of phase gradient ∂xϕ(x,t), where ϕ(x,t) is
the phase of the wave function given in space representation.
This phase gradient can be evaluated over the entire space
and its calculation will be reviewed in Sec. III C. However,
phase gradient and conjugate center momentum �k0 are not
gauge invariant either. We will assume that the Hamiltonian
of the system is expressed in the length gauge, that means
it is related to the expression in Coulomb gauge via the
unitary transformation T = exp[− i

�
�d · �Ae(�r,t)] where �Ae is

the applied external vector potential and �d the dipole mo-
ment of an atom (for more explanations, see for example
Complement AIV in Ref. [21]). This gauge is used in most
nonrelativistic atom optics textbooks and is actually best suited
to expressing the system in the electric and magnetic dipole
approximations.2 It also sets a clear distinction between kinetic
and potential energy with kinetic term expressed simply as
p2/2M where the conjugate momentum p is equal to the actual
linear momentum, thus is essential in semiclassical theories
for a proper definition of atomic refractive index induced
by time-independent potentials. As was set implicitly in
Ref. [15], we will consider finding negative-index metamedia
corresponds to finding systems where phase gradient and group
velocity have opposite signs assuming the length gauge has
been chosen. The definition of phase propagation direction as
phase gradient should be modified in another gauge in order
to ensure its invariance, which simply means the effect of the
gauge transformation on the wave function should be discarded
in the calculation of the gradient.

In Ref. [15], while phase gradient k0 was assumed to be
unchanged for the atoms acted upon by a comoving potential,
the authors found that inversion of group velocity, from
vg(0,k0) = �k0

M
at initial time, could be observed for right

choices of the different parameters S(t) and λ in Eq. (2).
In this article, we demonstrate that the variation of the

Fourier amplitude |ψ̌(k,t)| of the wave function, neglected in
Ref. [15], is actually important. We find that because of this
variation, the center position of the wave packet k0(t) varies
with time, thereby affecting the group velocity calculation but
also the direction of phase propagation. In Sec. II, we review
the derivation of formula (1) and point out its limitations. We
then derive a more accurate analytical formula valid essentially
for a shallow potential and analyze the case of deep potentials
separately. In Sec. III, we compare our formula with purely
numerical results. We find the problem of deep potentials

2The expressions of the interaction with the magnetic field are
actually the same in the length and Coulomb gauges.

relevant to negative refraction holds large similarities with
atomic reflection. We then reconsider different applications
related to the use of comoving potentials and show for example
that wave-packet narrowing remains an interesting perspective.
Finally, we devote a lot of attention to the problem of the
calculation of phase velocity and consider particularly this
problem near a potential barrier, where we find negative
refraction may exist.

II. ANALYTICAL DERIVATION

In this section, we first review the calculation leading
to Eq. (2) and then derive more accurate solutions of the
problem of an atom in a comoving potential. The validity
of our derivations will be further verified through numerical
simulation presented in Sec. III A. We consider the motion
of an atom in interaction with a time-dependent comoving
potential acting only upon its external degrees of freedom, i.e.,
not coupling its internal energy levels. The comoving potential
is of the form

V (x,t) = S(t) cos(κx),

where S(t) is the time-dependent pulse amplitude of the
potential and κ = 2π/λ. For simplification, we will keep the
notations of Ref. [15] and therein.

A. Formulation of the problem

The time evolution of the atomic wave function is given by
the Schrödinger equation

i�∂t
(x,t) = − �
2

2M
∂2
x
(x,t) + V (x,t)
(x,t). (3)

We apply the Fourier transform with respect to x (x ↔ k), de-
fined as ψ̌(k,t) = ∫ +∞

−∞ 
(x,t)e−ikxdx for the wave function,
where |ψ̌(k,0)| is the amplitude of the initial wave packet
centered in k0. Then, using the interaction representation
ψ̌(k,t) = �(k,t)e−iωkt , where ωk = �k2

2M
, Eq. (3) simplifies to

(see Appendix A 1)

i�∂t�(k,t) = S(t)

2
e−i �κ2

2M
t
[
ei �kκ

M
t�(k − κ,t)

+ e−i �kκ
M

t�(k + κ,t)
]
. (4)

λ is assumed to be much larger than the de Broglie wavelength,
mostly true for any supersonic beam or effusive beam of
thermal atoms, so that κ � k for every k belonging to the
momentum distribution. Consequently, the following approx-
imation was assumed to be valid in previous works [15]
(wrongly, as we will see further):

�(k − κ,t) ≈ �(k + κ,t) ≈ �(k,t). (5)

With this assumption, the Schrödinger equation reduces to

i�∂t�(k,t) ≈ S(t)e−i �κ2

2M
t�(k,t) cos

(
�kκ

M
t

)
. (6)

If the signal S(t) starts at t = 0, after integration we get
�(k,t) = �(k,0)ei��(k,t) with a phase shift as given in Eq. (1):

��(k,t) = −1

�

∫ t

0
dt ′S(t ′) cos

(
�kκ

M
t ′
)

, (7)
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where the missing factor e−i �κ2

2M
t is neglected in comparison to

the fast-varying cosine term.
From expressions (6) and (7), it is clear only the phases in

the wave packet are modified, hereby leaving k0 independent
of time. From the stationary phase condition discussed in
Appendix A 2, result (7) leads to expression (2) of the group
velocity, which can be recast in the form

vg = vg(0)

[
1 − ε

2
ω0t sin(ω0t)

]
, (8)

where vg(0) = �k0
M

, ε = S

�2k2
0/2M

, and ω0 = �κk0
M

.

It is known from the first-order time-dependent complex
WKB approximation [22,23] that the atoms should follow the
classical trajectory in the limit of small de Broglie wavelength.
Non-negligible change of kinetic energy is to be expected
classically. In a quantum description k0t ≡ k0(t), center wave
vector of the wave packet at time t should also change. A
classical calculation in the limit of small constant potential
amplitude S(t) = S(0) = S and large kinetic energies provides
the following unambiguous result obtained in Appendix B if
we assume S(t > 0) = S and S(t < 0) = 0:

vg(t) = vg(0)

{
1 + ε

2
[1 − cos(ω0t)]

}
. (9)

Although the group velocity variations in Eqs. (8) and (9) are
of the same order, they behave completely differently. The
velocity change in Eq. (8) alternates between positive and
negative and the envelope of this velocity change goes linearly
to ∞ while it is unidirectional and always given by the sign of
ε in Eq. (9). Obviously, there must be a missing term that was
forgotten in the above derivation of Eq. (8). We have actually
already mentioned that approximation (5) was the problem and
the reason why k0t was found constant.

B. Analytical derivation

In this section, we derive the group velocity using a better
approximation than the one leading to Eq. (8). The additional
terms included here turn out to be essential to describe the
physical system. After the derivation and discussion on the
case of shallow comoving potentials, we will look into the
deep potential case.

1. Derivation for shallow potentials

The comoving potential is introducing a modulation with
period 2π/κ , such that �(k,t) varies on the κ scale. Therefore,
approximation (5) cannot hold. As a verification, we can
further expand �(k ± κ,t) and express it to first order:

�(k ± κ,t) ≈ �(k,t) ± κ
∂�

∂k
. (10)

Rewriting (4), we obtain

i�∂t� ≈ S(t)

[
� cos

(
�kκ

M
t

)
− iκ

∂�

∂k
sin

(
�kκ

M
t

)]
. (11)

In this expression, we have kept the approximation ωκt =
�κ2t
2M

� 1. We further simplify the problem with the assump-
tion of an initial Gaussian wave packet, looking for a solution

ξ of the form

�(k,t) = �(k,0)ξ (k,t) = e
− �k2

2δk2

(δk2/4π )1/4
ξ (k,t),

where �k = k − k0.
With this initial condition and in the limit of shallow

potentials, a calculation derived in Appendix A 3 yields the
following expression for ξ :

ξ (k,t) = e
∫ t

0 dt ′ωp(t ′)[−i cos(βkt ′)+ �k
ωδk

β sin(βkt ′)]
.

where ωp(t) = S(t)/�, β = �κ/M and ωδk = �δk2/M . This
solution is valid when condition |ωp|ωκt

2 � 1 is fulfilled.
Considering the characteristic time t0 = πM

�κk0
, this condi-

tion is indeed equivalent to considering a shallow potential
|ε(k0)| � 1, where ε(k) = S

�2k2/2M
. Finally, � is given by

�(k,t) = e
− �k2

2δk2

(δk2/4π )1/4
e
−i

ωp

βk
sin(βkt)

e
ωp

ωδk

�k
k

(1−cos(βkt))
, (12)

in case S(t > 0) = S and S(t < 0) = 0, i.e., taking ωp con-
stant.

2. Discussion of the result

We turn to the analysis of our solution (12), valid for shallow
potentials. We must notice that for this solution, approximation
(10) is indeed valid as κ∂k� ∼ ε while κ2∂2

k � ∼ εκ/k0 is much
smaller.

The phase shift, as calculated in Ref. [15], remains given
by

��(k,t) = −
∫ t

0
dt ′

S

�
cos(βkt ′),

but there is an additional correction on the amplitude, given
by the argument∫ t

0
dt ′

ωp

ωδk

�k

k
sin(βkt ′) = ε(k)k�k

2δk2
[1 − cos(βkt)],

after integration for ωp constant.
The new wave-packet center is a solution of

∂k

{
− �k2

2δk2
+ ε(k)k�k

2δk2
[1 − cos(βkt)]

}
= 0.

It can be evaluated easily as �k0t = k0t − k0 remains very
small compared to k0 for shallow potentials as shown in
Appendix A 4:

k0t = k0 + ε(k0)

2
k0

[
1 − cos

(
�k0κt

M

)]
. (13)

This result is equivalent to the result of Eq. (9). It simply
means the atom follows the classical trajectory as derived in
Appendix B in the limit of a weak interaction potential and
large kinetic energy.

In case the initial position is xM (0) = x0 
= 0, the
initial expression for � can be approximated by
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�(k,0) = e
− �k2

2δk2

(δk2/4π)1/4 e
−i�kx0 . Thus, after a similar calculation3

based on the stationary phase condition, the group velocity
is found to remain equal to the result of classical mechanics
obtained in Appendix B:

vg(t) = vg(0)

{
1+ ε(k0)

2

[
cos κx0−cos

(
�k0κt

M
+ κx0

)]}
.

(14)

Equation (A7) could be used to evaluate more accurately
the new wave-packet center for deeper potentials, especially
since assumption |ωp|ωκt

2 � 1 should remain valid at short
times even in presence of larger potentials. However, it must
be reminded that the solution found this way will remain
approximate as �(k ± κ,t) was linearized.

3. Deep potential case

Actually, for very deep periodic and static potential, the
atom is confined near the bottom of the potential and the
system is equivalent to the very well-known problem of a
Gaussian wave packet inside a harmonic potential [24]. The
general solution of this system is


(k,t) =
(

π

−iαt

)1/2

e−i(k−k0t )2/(4αt )−ikxM+iγt . (15)

In this expression, xM = v0/ω sin(ωt) and k0t =
Mv0/� cos(ωt) are the position center and momentum center
of the wave packet, where ω = κ

√−S/M = √−ε/2 ω0 and
where it was assumed xM (0) = 0. The time-dependent width
of the wave packet is given by

αt = −Mω

2�

[
1
2Mω − α0� cot(ωt)

α0� + 1
2Mω cot(ωt)

]
,

where α0 = iδk2/2 and the time derivative of γt satisfies

γ̇t = i�αt/M + k0t ẋM − (S/� + ωk0 ).

If we consider �(k,t) = 
(k,t)eiωkt , it is clear now that
approximation (10) is not valid.4

In conclusion, we have obtained two approximate solutions
for shallow and very deep potentials. Before providing any
further analysis in regard to negative refraction, a numerical
simulation of the Schrödinger equation without approximation
(10) will be necessary in order to solve the problem of
potentials whose depth is comparable to the initial kinetic
energy of the atoms.

3It is convenient to perform the change �(k,t) → �(k,t)e−i�kx0

directly in Eq. (4), hence leading to the simple replacement �kκt

M
→

�kκt

M
+ κx0 in all the subsequent equations.

4As κ∂k� = κ�[ −(k−k0t )
2αt

− ixM + i�kt

M
], the leading term is kδk2

2ε κk2
0

for ωt = π/2, which can be very large as δk ∼ k0 and −k/(κε) 
 1.
Similarly, the leading term of κ2∂2

k � scales like k2δk4

4ε2 κ2k4
0

for ωt = π/2,

likely to be even larger than κ∂k�.

III. NUMERICAL SIMULATION

In this section, we compare our analytical solutions (12) and
(15) to numerical simulations, both quantum and classical.
We investigate in detail the problem of negative refraction
with deep potentials. We show that the solution of this system
corresponds mostly to a problem of atomic reflection. We
particularly review the possibility to realize time reversal with
simultaneous inversion of velocity and wave-packet narrowing
as was proposed initially in Ref. [18]. Eventually, a peculiar
feature is found at the limit of highly dispersive atomic wave
packets near a potential barrier that may lead to the observation
of negative refraction.

All the results are obtained by direct computation of
the temporal evolution of a wave packet interacting with a
comoving potential V (x) = S cos(2πx/λ) suddenly switched
on at t = 0. The wave packet initially fits a Gaussian


(x,0) =
(

1

πδ2
x

)1/4

e
− (x−x0)2

2δ2
x eik0x, (16)

where k0 is the initial central momentum of the wave packet,
δk = 1

δx
is its momentum width as defined previously. We take

x0 = λ unless specified otherwise for the atoms to be situated
at the bottom of a potential well at t = 0.

The evolution of the wave packet 
(x,t) is given by the
Schrödinger equation

i∂t
 = −�

2M
∂2
x
 + ωp cos(κx)
, (17)

with ωp = S/� and κ = 2π/λ. For convenience, we use
reduced variables, position u = κx and time τ = �κ2

2M
t = ωκt ,

replacing Eq. (17) by

i∂τ
 = −∂2
u
 + εα2 cos(u)
, (18)

where we have defined the momentum ratio α = k0/κ and
potential to kinetic energy ratio ε = ωp/ωk0 . The solution of
this equation is obtained with the integrated IDA solver from
Mathematica.

A. Comparison with analytical results

We compare here the numerical solution for the temporal
evolution of the wave-packet-center position to the different
analytical solutions derived in the previous section. The
wave-packet-center position xM is defined as the maximum
of the probability density in analogy with the stationary phase
approximation [20].

For free propagation of a Gaussian wave packet, the
spatial center is given by uf (τ ) = 2ατ . For shallow potentials,
we compute numerically the difference �un(τ ) = κxM (τ ) −
uf (τ ) between the central position of the wave packet
calculated with Eq. (18) and that of free propagation. The
result is shown in Fig. 1. It is also compared to the following
analytical value obtained after integration of the solution (13)
for a potential plugged in at t = 0 with constant amplitude

�ua = εα

[
τ − sin(2ατ )

2α

]
. (19)
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FIG. 1. (Color online) Analytical result of the relative position
of the wave-packet center �ua from Eq. (19) (dashed curve) in
comparison to the numerical result �un (solid curve) and previous
analytical solution from Eq. (2) (dotted-dashed curve) for α = 72 and
ε = −0.05 (see text).

The agreement between the two is reasonably good as shown
in Fig. 1 for an already large ε = −0.05 potential. In contrast,
formula (2) yields a completely erroneous result.

In order to illustrate the case of deeper potentials, corre-
sponding to relatively large ε, we compare directly the nu-
merical result of the central position of the wave packet un(τ )
to the linear dependence uf (τ ) = 2ατ of free propagation, as
shown in Fig. 2. The group velocity inversion appears quite
clearly. In this figure, we also plot the result of our approximate
analytical solution (13). Although accurate for short times,
the latter fails to give a good estimation at large τ . This is
not surprising as the motion is almost harmonic for |ε| � 2
and is actually already better described by formula (15) for
ε = −1.25 as shown in Fig. 2 as well. The numerical curves
contain a small discontinuity which is due to the appearance
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FIG. 2. (Color online) Absolute position of the wave-packet cen-
ter u(τ ) in units of λ/2π as a function of time, calculated under
different conditions: quantum numerical simulation in presence of
group velocity inversion (ε = −1.25 and α = 37 and δk = κ

2π0.1 )
(bold solid curve); classical numerical simulation with similar
potential (dashed curve); harmonic potential approximation for deep
potential (thin solid curve); shallow potential approximate result
from Eq. (13) for an identical potential (dotted-dashed curve); free
propagation case (dashed line).
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FIG. 3. (Color online) Wave packet versus position x at different
times during the interaction with a periodical potential, whose
parameters are the ones given in Fig. 2. (Solid line) initial wave packet
with center position xM (0) = λ; (dashed line) intermediate-time
wave packet, after reflection; (dotted-dashed line) wave packet with
complete inversion of the group velocity.

of slight oscillations after reflection and slight modulations of
the positions of the maximum of the wave packet as shown
in Fig. 3.

B. Comparison with a classical simulation

In Fig. 2, we also compare the result of the quantum
simulation with the classical motion described by Newton’s
equations (given in Appendix B). Except for a slight effect due
to wiggles in the wave packet, it is clear the quantum dynamics
of the center position of the wave packet is no different than the
classical dynamics of a punctual object. Such an observation
is not surprising as the de Broglie wavelength used in the
simulation is much smaller than the period of the potential
(α = 72). In most practical situations, α is even larger. In
other words, the potential is almost constant on the scale of
the wave function. As given by Ehrenfest theorem and as long
as the temporal spreading of the wave packet due to dispersion
is small compared to the period of the potential, the dynamics
of this system is mostly classical. From a classical point of
view, if a different choice is made for the initial position x0,
there can even be acceleration by the potential rather than
deceleration and inversion of velocity.

In Ref. [25], it was proposed to use the same pulsed
optical potential for slowing atoms by decreasing their group
velocity. Although that study is somewhat disconnected from
the purpose of this article, it is interesting to realize that
the problem is also purely classical. Actually, slowing of
atoms by pulsed standing waves is still possible according
to our improved calculation and it is similar to optical Stark
deceleration. A periodic potential is pulsed such that the atoms
always adiabatically follow classical trajectories on the rising
slopes of the potential, therefore removing their kinetic energy
[26–29].

C. Is there negative refraction with comoving potentials?

In the previous subsection, we have seen that the motion of
the atoms in the comoving potential remains mostly classical,
which is not a good indication for the presence of negative
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FIG. 4. (Color online) Numerical calculation of the group ve-
locity (dashed line) and phase velocity (solid line) as a function
of interacting time for a spatially narrow wave packet δx = 0.02λ,
with potential depth ε = −1.0 and α = 36. We added an arbitrary
reference energy E0 = 300�ωκ for the calculation of the phase
velocity, which ensures phase velocity is always positive before the
turning point but does not change the interpretation of the result.

refraction. Actually, we can see in Fig. 2 that group velocity
inversion occurs within less than one spatial period of the
potential. We claim that this inversion of group velocity is
simply due to reflection of the atoms on the potential barrier
and is not due to negative refraction. Starting from the bottom
of a potential well with a given initial velocity, the atoms
adiabatically follow the potential until they are reflected back
if the potential energy barrier is larger than the initial kinetic
energy. Therefore, the atoms are simply confined in one
potential well. To confirm this result, we plot phase velocity
versus group velocity in Fig. 4 according to the formula
vϕ(k0t ,t) = − ∂t ϕ(xM,t)

∂xϕ(xM,t) where ϕ(xM,t) is the phase of the wave
function calculated numerically. We remind here xM (t) is the
center of the wave packet at time t . A divergence and inversion
of phase velocity is observed at the point of group velocity
inversion which is due to the fact the instantaneous phase
gradient ∂xϕ(xM,t) cancels out and changes sign. Indeed, this
behavior can be understood from Eq. (A1) for the expression
of the phase �(x,k,t). Using this equation at first order in
k − k0t , the wave function reads as


(x,t) = 1

2π

∫ +∞

−∞
dk|ψ̌(k,t)|ei�(x,k,t)

≈ 1

2π

∫ +∞

−∞
dk|ψ̌(k,t)|

× ei[(k0t x−ωk0t
t)+��(k0t ,t)]ei(k−k0t )[x−xM (t)],

where it is assumed �(x,k,0) = kx. We can further approx-
imate |ψ̌(k,t)| to be a Gaussian centered around k0t , i.e.,
|ψ̌(k,t)| = gt (k − k0t ) in analogy with the Gaussian wave-
packet dynamics approximation [24]. Therefore, the wave
function reads as


(x,t) = ei[(k0t x−ωk0t
t)+��(k0t ,t)]ǧt [x − xM (t)], (20)

with total phase ϕ(x,t) = k0t x − ωk0t
t + ��(k0t ,t). This ex-

pression for the wave packet shows very clearly how an

instantaneous phase gradient can be defined as ∂xϕ(x,t) ≈
k0t while the instantaneous angular frequency is −∂tϕ(x,t).
Instantaneous phase velocity is obviously given by

vϕ(k0t ,t) = − ∂tϕ(x,t)

∂xϕ(x,t)
= �k0t

2M
− ∂t��(k0t ,t)

k0t

,

which diverges and changes sign at the turning point, an
effect well known from semiclassical theories [30]. The quasi
simultaneous change of sign for phase gradient and group
velocity is actually the result that constitutes a seminal feature
of reflection. As explained in introduction, phase velocity
systematically diverges to +∞ before the turning point and
−∞ after the turning point only if a sufficiently large energy
reference is added to the Hamiltonian such that −∂tϕ(x,t) is
large and positive. Those results are of course quite similar for
time dependent potentials with slowly decreasing amplitudes
such as considered in Ref. [15].

In conclusion, we find no indication of negative refraction
but rather indications of atomic reflection, that can mimic
certain results of optical negative refraction but shall not be
confused with them.

D. Wave-packet spatial narrowing

We have shown that group velocity inversion is not caused
by negative refraction but due to atomic reflection. Here, we
investigate an important application of the initially proposed
negative-refraction method, namely, simultaneous occurrence
of group velocity inversion and compensation of wave-
packet dispersion, which could have interesting application
in interferometry [18]. When comparing the wave packet after
full reflection to the initial one, a decreasing of its spatial
dispersion can be seen (cf. Fig. 3). Here, the dispersion is
defined as the full width at half maximum (FWHM) of the
probability distribution of the wave packet. This dispersion
shrinking can be somewhat interpreted if we try to provide a
more accurate expression for the wave function (20) by using
the development (A1) of the phase �(x,k,t) at second order
around k0t .

Developing the phase �(x,k,t) at second order around k0t ,
the wave function reads as [20]


(x,t) = ei[k0t x−ωk0t
t+��(k0t ,t)]

2π

∫ +∞

−∞
gt (k)eik(x−xM )ei

k2β

2 dk

= ei[k0t x−ωk0t
t+��(k0t ,t)]

(
2a2

π

)1/4
ei

φt
2 e

− [x−xM (t)]2

a2−2iβ

(a4 + 4β2)1/4
, (21)

with β(t) = ∂2
k ��(k0t ) − �t

M
, φt (t) = arctan( 2β

a2 ), and a(t)2 =
2

δk2(t) for a Gaussian gt (k) of width δk(t). This expression
shows the natural wave-packet spreading can be canceled by
large ∂2

k ��(k0t ).
However, more than free propagation expansion cancel-

lation, numerical simulation shows spatial narrowing of the
wave packet, with a final wave packet narrower than the
initial one, mostly for δk < 2κ . Not only does the wave packet
focus near the turning point, but also the spatial distribution
never returns back to its initial value after full reflection,
remaining narrower. In Fig. 3, we have purposely chosen
potentials deep in comparison to the initial kinetic energy
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FIG. 5. (Color online) Center position of the wave packet with
respect to its initial position (solid line) and wave-packet dispersion
(dashed line). Parameters of the simulation are the ones of Fig. 2,
except ε = −1.0 and x0 = 0. Maximum inverted velocity (slope of
the center position curve) is reached at t ∼ 0.07/ωκ . Large wiggles
appear for t > 0.08/ωκ .

to emphasize the wiggles effect, but shallower potentials,
down to the ε/2 threshold for reflection, produce more regular
trajectories and less deformation of the wave packet. Actually,
there seems to exist a best potential for dispersion narrowing
for our choice of parameters, situated around ε = −1.0, with
up to 50% narrowing when inverted velocity is maximum
as shown in Fig. 5. This decreasing in wave-packet width
seems also to increase with α but is only valid for initially
largely spread wave packets. The width taken so far, δx =
0.1λ, corresponds to a momentum width δk = δ−1

x and a
temperature T = �

2δk2

6MkB
∼ 0.6 μK of a rubidium thermal gas if

the potential has a period λ = 0.4 μm. Narrowing can become
more pronounced at lower temperatures, to the expense of
larger wiggles. Wave-packet narrowing disappears rapidly at
larger temperatures where it is even replaced by dispersion.
Indeed, for large-momentum distribution, natural dispersion
cannot be canceled by negative dispersion from the potential
and the wave packet does not focus around the turning point.

E. Negative refraction at a cubic potential barrier

Wave-packet narrowing cannot be explained at second-
order expansion of the phase �(x,k,t) assuming a Gaussian
wave packet. Hence, it is a result that cannot be described
by the Gaussian wave-packet dynamics approximation [24]
and must be due to the nonharmonic terms in the potential.
Similarly, there is a very slight delay in Fig. 4 between the
times when phase and group velocities change sign, that cannot
be accounted for with the Gaussian approximation of the
wave function either. Indeed, expression (21) would yield the
following phase for the wave function:

ϕ(x,t) = k0t x − ωk0t
t + ��(k0t ,t)

− arctan
( 2β

a2

)
2

+ 2β(x − xM )2

a4 + 4β2
,

and the following expression for the phase gradient

∂xϕ(x,t) = k0t + 4β(x − xM )

a4 + 4β2
.

The phase gradient is calculated at x(t) = xM (t) in the
expression of the phase velocity in Fig. 4. Thus, it would
be simply equal to k0t and cancel out exactly for k0t = 0. That
would mean a divergence and change of the sign of phase
velocity for k0t = 0. Since k0t = 0 is defined as the turning
point where group velocity also changes sign, no delay would
be seen in Fig. 4.

This velocity lag has to do with the non-Gaussian spreading
of the wave packet and the rapid evolution of the phase at
the turning point. While the position of the wave packet
is almost stationary around the turning point, the phase is
changing very rapidly. The velocity delay appears only for
δk > 10κ , and can become very large for wave packets with
larger-momentum distribution. Thus, in theory, as defined here,
negative refraction occurs during this short delay before full
reflection of the wave packet.

To be more quantitative, we examine the effect of the
anharmonic terms of the V (u) = ε cos u potential where we
remind u = κx, taken for ε ∼ −1 at which value the effects
we observe happen. With such a potential, reflection occurs
when u ∼ π/2, that means the potential is well approximated
as V (u) = −[(π/2 − u) − (π/2−u)3

3! ] around reflection. To an-
alyze the role of the anharmonic cubic term, we simulate the
effect of a cubic potential barrier, with a potential of the form

V (u) = N [(π/2 − u) + a3(π/2 − u)3],

where N is adjusted such that V (0) = −1 at u = 0 where
the wave packet is initially positioned. We take α = 37 as in
Figs. 2–6. We confirm that the velocity lag depends only on
the presence of coefficient a3. Interestingly, we find the group
velocity changes sign before the phase gradient ∂xϕ(xM ) does
for a3 < 0, but after ∂xϕ(xM ) does for a3 > 0. In Fig. 6, the
velocity lag for a3 = 1

6 appears very large. Corresponding
probability densities and phases of the wave packets just
before phase gradient inversion and just before group velocity
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FIG. 6. (Color online) Numerical calculation of the group veloc-
ity (dashed line) and phase gradient at wave-packet center (solid
line) as a function of interacting time for a spatially narrow wave
packet δx = 0.02λ launched onto a cubic-type potential barrier
V (x) ∝ x + a3x

3 where a3 = 1
6 (see text).
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FIG. 7. (Color online) Probability densities (thin curves) and
phases (bold curves) of the wave packets just before phase gradient
inversion at t = 0.048ω−1

κ (dashed curves) and close to group velocity
inversion at t = 0.06ω−1

κ (solid curves), with computation parameters
as given in Fig. 6.

inversion are displayed on Fig. 7. Phase gradient is fully
negative for t = 0.06ω−1

κ while group velocity is still positive,
however, at the expense of a non-Gaussian spreading of the
wave packet. The behavior of the wave packet is fairly different
depending upon the sign of a3. It looks like a repulsion by
the potential for a3 < 0 with some slight refocusing effect at
the turning point while the wave packet senses deeply into the
potential barrier for a3 > 0. This result clearly shows that it is
possible to obtain opposite sign for phase gradient and group
velocity in the vicinity of the classical turning point, hence
negative refraction.

Since we are dealing with individual wave packets of rather
narrow spatial dimensions, we can infer that our description
is mostly valid for incoherent matter waves. We have not
performed a full statistical treatment as it is beyond the scope of
our paper. However, we have checked that negative refraction
occurs for a large range of initial kinetic energies around
Ekin0 = V (π/2) − V (0), from 0.8Ekin0 to 1.2Ekin0 namely.
Therefore, it would be satisfying for incoherent matter waves
with a broad statistical distribution of velocities. Practically,
assuming a characteristic length λ = 0.4 μm for the potential
and an initial mean velocity of the atoms launched on the
barrier equal to v0 = 0.42 m/s as in Fig. 4, the wave packets
would have a velocity width of 0.064 m/s and a spatial extent
of 8 nm and would correspond to a temperature T = 14 μK
for a thermal gas. An optical dipole potential of a few tens
of μK would be suitable for this type of experiment. The
barrier potential may not be directly created but may be
approximated by slightly modifying an oscillating potential.
We have presented the results in reduced units which means
a much wider range of parameters is accessible. However,
increasing initial kinetic energy means also the potential
height has to be increased. Discussing the realization of this
experiment may be too premature at this point as the conditions
of observation of negative refraction have not been checked
yet. Especially, we have not tested whether or not this type of
negative refraction can be used effectively to realize perfect
focusing. One could imagine a moving potential barrier that
may ensure a negative refraction occurring for a sufficiently
long time to be observable.

IV. CONCLUSION

In conclusion, we find group velocity inversion in pres-
ence of comoving potential is related to reflection. Negative
refraction is possible only in the vicinity of the turning point
and is not limited to comoving potentials. As expected, we
have shown that our perturbation analysis matches classical
trajectories in the limit of small de Broglie wavelengths.
A quantum simulation of the system in interaction with a
large potential confirms the possibility for compensation of
spatial dispersion of a wave packet at low temperature, which
may be promising for interferometric application. A semi-
classical complex time-dependent Wentzel-Kramers-Brillouin
(CWKB) method [22,23] may also be able to capture most
of the present results for larger potentials relevant to group
velocity inversion and wave packet narrowing. It could be
interesting in a further study to introduce the formalism of
Bloch states in an optical lattice in the limit of large potentials
[31,32]. It could be also interesting to go further on the analysis
of cubic-type potential barrier, possibly moving, using the
formalism developed for anharmonic potentials [33].
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APPENDIX A: DETAILED ANALYTICAL DERIVATIONS

1. Schrödinger equation in Fourier space

This paragraph details the derivation of Eq. (4). The
time evolution of the atomic wave function is given by the
Schrödinger equation

i�∂t
(x,t) = − �
2

2M
∂2
x
(x,t) + V (x,t)
(x,t).

Applying the Fourier transform with respect to x (x ↔ k),
defined as ψ̌(k,t) = ∫ +∞

−∞ 
(x,t)e−ikxdx where |ψ̌(k,0)| is the
amplitude of the initial wave packet centered in k0, the equation
reads as

i�∂t ψ̌(k,t) = ωkψ̌(k,t) + 1

2π
(W ∗ ψ̌)(k,t),

noting ωk = �k2

2M
and having written the Fourier transform of

the comoving potential as

W (k,t)=
∫ +∞

−∞
V (x,t)e−ikxdx = πS(t)[δ(k − κ)+δ(k + κ)].

Then, defining ψ̌(k,t) = �(k,t)e−iωkt , the equation simplifies
to

i�∂t� = 1

2π
eiωkt (W ∗ e−iωkt�).

Therefore, we obtain
i�∂t�(k,t)

= S(t)

2
e−i �κ2

2M
t
[
ei �kκ

M
t�(k − κ,t) + e−i �kκ

M
t�(k + κ,t)

]
.
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2. Stationary phase condition

The stationary phase condition states that |
(x,t)| is maxi-
mum in x = xM if the phase �(x,k,t) in the integrand of the in-
verse Fourier transform 
(x,t) = 1

2π

∫ +∞
−∞ dk|ψ̌(k,t)|ei�(x,k,t)

cancels out at first order around the central momentum for
x = xM .

The total phase in the integrand is given by

�(x,k,t) = �0(k,0) + kx − �k2

2M
t + ��(k,t),

where �0(k,0) is the phase at t = 0. In order to calculate xM (t)
and the group velocity dxM

dt
, the phase can be expanded around

k0t ≡ k0(t), center of the wave packet at time t , in the form

�(x,k,t)

≈ �0(k0t ,0) + ��(k0t ,t) − �k2
0t

2M
t + k0t x

+ (k − k0t )

[
∂k (�0(k,0) + ��(k,t)) |k0t

− �k0t

M
t + x

]

+ (k − k0t )2

2

{
∂2
k [�0(k,0) + ��(k,t)] |k0t

− �

M
t

}
.

(A1)

The stationary phase condition results in

xM (t) = �k0t

M
t − ∂k [�0(k,0) + ��(k,t)] |k0t

.

The group velocity is then given by

vg(t) = dxM

dt
= �k0t

M
+ �

M

dk0t

dt
t − ∂t∂k��(k,t)|k0t

. (A2)

3. Wave packet in a shallow periodical potential

It is the purpose of this paragraph to give a solution of the
following equation in the limit of shallow potentials and for
an initial Gaussian wave packet:

i�∂t� = S(t)

[
� cos

(
�kκ

M
t

)
− iκ

∂�

∂k
sin

(
�kκ

M
t

)]
. (A3)

Looking for a solution ξ of the form �(k,t) = e
− �k2

2δk2

(δk2/4π)1/4 ξ (k,t),
Eq. (A3) writes

∂tξ

ωp

=
[
β�k

ωδk

sin (βkt) − i cos (βkt)

]
ξ − κ sin (βkt) ∂kξ,

(A4)

where ωp(t) = S(t)/�, β = �κ/M , and ωδk = �δk2/M .
We may neglect the last term in this equation. To analyze

at what condition this approximation is valid, we apply the
change of variables t ′ = t and u = βkt that implies ∂kξ =
∂uξβt ′ and ∂tξ = ∂t ′ξ + u

t ′ ∂uξ , from which we obtain

∂t ′ξ+ u

t ′
∂uξ =ωp

(
�u

ωδkt ′
sin u−i cos u

)
ξ−ωpκβt ′ sin u ∂uξ,

where we have defined �u(t ′) = β�kt ′. The above equation
can be recast in the form (defining t = t ′)

t∂t ξ + u∂uξ =
(

ωp

ωδk

�u sin u − iωpt cos u

)
ξ

− 2ωpωκt
2 sin u ∂uξ. (A5)

Since ωκt � 1, it seems natural to neglect ωpωκt
2 sin u∂uξ in

Eq. (A5). Then, remarking that neglecting ωpωκt
2 sin u∂uξ

in Eq. (A5) is absolutely equivalent to neglecting
ωpκ sin(βkt)∂kξ in Eq. (A4), we obtain

ξ (k,t) = e
∫ t

0 dt ′ωp(t ′)[−i cos(βkt ′)+ �k
ωδk

β sin(βkt ′)]
,

in the limit of shallow potentials, which yields for �, in case
S(t > 0) = S and S(t < 0) = 0, i.e., taking ωp constant

�(k,t) = e
− �k2

2δk2

(δk2/4π )1/4
e−iωp

M
�kκ

sin( �kκ
M

t)e
ωp

ωδk

�k
k

[1−cos( �kκ
M

t)]
. (A6)

If we refer to t0 = πM
�κk0

∼ 2M
�k0κ

= (ωk0ωκ )−1/2 as a character-
istic time in Eq. (A5), we find

|ωp|ωκt
2
0 � 1 ⇔ |ωp|

ωk0

� 1 ⇔ |ε(k0)| � 1,

where ε(k) = S
�2k2/2M

. In other words, the approximation
performed in Eq. (A5) gives an analytical solution valid for
potentials shallow in comparison to the initial kinetic energy of
the atom. The neglected quadratic term in time from Eq. (A5)
has a rather small influence at the beginning whatever the
potential but one can expect its importance to increase rapidly
over time for deep potentials.

4. New wave-packet center

The new wave-packet center in the limit of shallow
potentials is solution of

∂k

{
− �k2

2δk2
+ ε(k)k�k

2δk2
[1 − cos (βkt)]

}
= 0.

With the property ∂k[ε(k)k�k] = ε(k)k0, the new wave-packet
center fulfills the following equation:

�k − ε(k)k0 sin2(βkt/2) + ε(k)�k sin(βkt) = 0. (A7)

Since ε � 1 and βkt ∼ π for t = t0, it is obvious from the
above equation that its solution �k0t = k0t − k0 remains very
small compared to k0. Hence, the third term of this equation
can be neglected and we shall replace k by k0 in the second
term in order to calculate �k0t at first order, leading to the
following simple result:

k0t = k0 + ε(k0)

2
k0

[
1 − cos

(
�k0κt

M

)]
,

where we remind k0 stands for k0 = k0(0).
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Consequently, the expression for the group velocity is given
by

vg(x,t) = �k0t

M
+ �

M

d�k0t

dt
t − ∂t∂k��(k,t)|k0t

= �k0t

M
+ ε(k0)

2
k0

�k0κt

M
sin

(
�k0κt

M

)

−ε(k0t )

2
k0t

�k0t κt

M
sin

(
�k0t κt

M

)

≈ �k0t

M
, (A8)

valid in the limit of small �k0t .

APPENDIX B: CLASSICAL TRAJECTORY

1. Time-independent case

Let us first consider an atom in a potential
V (x) = S cos(κx), considered as a small interaction pertur-
bation, suddenly switched on at t = 0. From Newton’s law
and conservation of total energy E0, we can write

M
d2x

dt2
= Sκ sin(κx) (B1)

and

dx

dt
=

√
2

M
[E0 − S cos(κx)], (B2)

with E0 = Mv2
0

2 + S cos(κx0) where x0 and v0 are the initial
conditions given from the sudden approximation.

Considering our case |S| � E0, it must be possible to
simply replace x by x = x0 + v0t in Eq. (B2) as the change of
velocity is small. This result can easily be verified. With the
assumption |S| � E0, Eq. (B2) simplifies to

dx

dt
=

√
v2

0

{
1 − S

E0
[cos(κx) − cos(κx0)]

}

≈ v0

{
1 − ε

2
[cos(κx) − cos(κx0)]

}

≈ v0

[
1 − ε

2
cos(κx)

][
1 + ε

2
cos(κx0)

]
,

with small ε = S/E0. We write v′
0 = v0[1 + ε

2 cos(κx0)].

The above differential equation is simply solved:

dx

[
1 + ε

2
cos(κx)

]
= v′

0dt,

⇔ x + ε

2
sin(κx)/κ = v′

0t + cte,

⇒ x + M

2E0κ2

d2x

dt2
= v′

0t + cte,

⇔ x(t) = v′
0t + A sin(ω0t + ϕ) + cte,

where ω0 = v0κ .
Solving for the different initial conditions yields

x(t) = v′
0t − εv0

2ω0
[sin(ω0t + κx0) − sin(κx0)] + x0.

Eventually, we have got

vg = v0

{
1 + ε

2
[cos(κx0) − cos(ω0t + κx0)]

}

for the group velocity inside the potential. For x0 = 0, the
above expression writes

vg(t) = vg(0)

{
1 + ε

2
[1 − cos(ω0t)]

}
.

2. Numerical simulation

Equations (B1) and (B2), valid also for time-dependent
potentials, can be recast in reduced units as

d2u

dτ 2
= 2εα2 sin u (B3)

and

du

dτ
= 2α

√
1 + ε(cos u0 − cos u), (B4)

where u = κx, τ = ωκt knowing ωκ = �κ2/2M , ε(t) = S(t)/
(Mv2

0/2), and α = k0/κ . Solving numerically Eq. (B3) with
initial condition u(0) = κx0 and u′(0) = 2α is straightforward.
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