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Periodically driven quantum matter: The case of resonant modulations
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Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic
modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be
described by a time-independent effective Hamiltonian, which is generally identified through a perturbative
treatment. Here, we present a general formalism that describes time-modulated physical systems, in which the
driving frequency is large, but resonant with respect to energy spacings inherent to the system at rest. Such a
situation is currently exploited in optical-lattice setups, where superlattice (or Wannier-Stark-ladder) potentials
are resonantly modulated so as to control the tunneling matrix elements between lattice sites, offering a powerful
method to generate artificial fluxes for cold-atom systems. The formalism developed in this work identifies the
basic ingredients needed to generate interesting flux patterns and band structures using resonant modulations.
Additionally, our approach allows for a simple description of the micromotion underlying the dynamics; we
illustrate its characteristics based on diverse dynamic-lattice configurations. It is shown that the impact of the
micromotion on physical observables strongly depends on the implemented scheme, suggesting that a theoretical
description in terms of the effective Hamiltonian alone is generally not sufficient to capture the full time evolution

of the system.
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I. INTRODUCTION

Subjecting a material to fast-oscillating fields constitutes a
versatile scenario to reach and manipulate unusual quantum
phases in solid-state laboratories, such as high-temperature
superconductors [1-3] and topological quantum states of
matter [4—18]. This approach is rooted in the fact that the
dynamics associated with time-dependent Hamiltonians can
be well captured by a time-independent effective Hamiltonian
H.g, in the limit of infinitely small driving period T < fc,
where 7., denotes a typical time scale for the dynamical
properties under scrutiny; see Refs. [4,5,19-23]. In this picture,
the energy spectrum of the static system is replaced by the
(Floquet) spectrum associated with Heg, which can potentially
present interesting features, such as topological properties.

The idea to enrich a physical system by designing a
time-modulation protocol has inspired several other fields of
research. It was recently applied to photonic crystals [24],
ion traps [25,26], and cold-atom setups [21,22,27-52]. In
particular, optical-lattice potentials for cold atoms [53] are
ideally suited for generating a wide family of time-dependent
potentials. These modulated potentials recently led to the
experimental realization of effective magnetic fields in square
[34,40-42,48], triangular [33,39], and honeycomb lattices
[47]. Such arrangements already revealed striking phenomena,
including frustrated magnetism [33,39], chiral currents [45],
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signatures of the Berry curvature [47], and the measurement
of a nontrivial Chern number [48].

Time-modulated quantum systems can be classified into
two distinct families. In the first class, the driving frequency
w = 21/ T is arbitrarily large and it is off-resonant with respect
to any energy separation A intrinsic to the static system.
The shaken optical lattices of Refs. [27,33,35,39,47] belong
to this first category. The second class concerns systems
involving a resonant modulation. The experimental setups
of Refs. [34,40-42,48] belong to this second class, where a
superlattice (or a Wannier-Stark ladder) with energy offsets
+ A between neighboring sites was combined with a resonant
modulation [with frequency @ = A/h] to induce tunneling
over the lattice in a controllable manner.

In Ref. [22], a general formalism that analyzes periodically
driven quantum systems was developed, with a view to identi-
fying realistic schemes leading to interesting band structures.
This approach, which generalizes the work of Ref. [20],
provides a systematic method to obtain an unambiguous
effective Hamiltonian H.q ruling the long-time dynamics,
together with a so-called “kick™ operator K(r) describing
the micromotion (i.e., the rapid motion undergone within
one period of the driving). Although general, the formalism
presented in Ref. [22] was dedicated to time-dependent
systems involving off-resonant modulations.

In this work, we extend the formalism of Ref. [22] so as to
include the case of resonant modulations. We obtain general
expressions for the effective Hamiltonian and kick operators,
and apply them to diverse schemes involving two-dimensional
superlattices or Wannier-Stark ladders. A particular emphasis
is set on the effective-magnetic-flux configurations generated
in modulated optical lattices, such as those leading to Chern
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bands with large flatness ratio. The latter band properties are
particularly intriguing, as they could be exploited to produce
fractional Chern insulators [54-56] with cold-atom setups;
see also Refs. [57-65]. Analytical expressions are obtained
to describe the micromotion in these schemes; this allows
one to predict the pattern and time dependence of momentum
distributions, as revealed by time-of-flight images.

The paper is structured as follows. In Sec. II, we propose
a general method to extend the formalism of Ref. [22] to
the case of resonant driving. We show how to handle this
subtle situation, where the static Hamiltonian now includes
energy offset terms ~A = hw, which diverge with the driving
frequency @ — oo. Section III discusses how additional
(possibly time-dependent) diverging terms can be handled
within this formalism; in particular, Sec. III analyzes the
“strong-driving” regime of time-modulated systems, where
the modulation strength is of the order of the driving
frequency. Section IV applies the formalism to the case
of general superlattices involving two sites per unit cell; it
discusses the effective dynamics and micromotion based on a
momentum-space picture. We then study in Sec. V the case
of two-dimensional square superlattices and Wannier-Stark
ladders with energy offsets £ A between neighboring sites; in
particular, we discuss the effective flux patterns that can be
generated in such configurations. These results are illustrated
in Sec. VI, which analyzes specific experimental schemes. An
emphasis is set on the different micromotions associated with
these schemes. The possibility to locally control the tunneling
matrix elements and flux patterns is also presented. Section
VII extends the results of Sec. V to the more general case
where the superlattice contains high-order offsets A x integer,
which can potentially lead to even richer flux patterns when
modulating the system with higher harmonics @ x integer. We
conclude with final remarks and outlooks in Sec. VIII.

II. GENERAL FRAMEWORK

We consider the behavior of quantum systems subjected to
time-periodic Hamiltonians of the form

oo
A=Y HY™, (1)
j=—o0

and we define T = 27 /w as the period. In Ref. [22], it was
shown that the dynamical behavior at large frequency w — oo
can be uniquely represented in terms of an effective (time-
independent) Hamiltonian ﬁeff, and a time-periodic “kick”
operator K (1) with a zero time average over one period. In this
picture, the time-evolution operator is defined and partitioned
as

1) = U(t; 1) (t0); U(t;ty) = e KD =/M—10) et i K1)
v (t) 0
@)

where the kick operator R (1) both describes the initial kick
expli K (to)] acting on the system at the initial time 7, as well
as the micromotion exp[—i K (¢)] undergone within a period
(t — ty # T x integer). The effective Hamiltonian I:Ieff and
kick operator K () can be systematically computed using a
perturbative expansion [20,22] in powers of 1/w, assuming
that the Hamiltonian H (t) remains finite in the limit w — oo.
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Here, we generalize this approach to allow the static
component H® to include terms proportional to @, which
therefore also diverge in the limit w — oo. This situation oc-
curs in lattice systems using resonant restoration of tunneling
[25,28,66], a technique which has been recently implemented
[34,40-42,48] to generate artificial fluxes and Chern bands
in optical lattices. This general method uses superlattices
(or Wannier-Stark ladders) with large static energy offsets
A, which inhibit the bare tunneling between neighboring
sites, together with a resonant time-dependent modulation
with characteristic frequency w = A/h; the latter restores
the hopping in a controlled manner, e.g., generating complex
tunneling matrix elements.

We take the static Hamiltonian H© to have the form

ﬁ<°>=2ﬁ“ﬁoﬁz)ﬁﬁ+hw2aﬁ“, a.BeZ, 3)

aff o

where P® is a projection operator, which divides the full
Hilbert space into a set of orthogonal sectors (13“ PP = Bup ﬁ"‘)
labeled by the integer oz, and ), P* = 1. The number of such
sectors depends on the problem of interest. A simple example is
provided by a tight-binding lattice Hamiltonian for a particle
hopping on a superlattice with two sites per unit cell, “A”
and “B,” with energy offsets 0 and fiw, respectively. The full
Hilbert space then splits into states on A sites denoted by
o = 0, and those on B sites denoted o« = 1; see Fig. 1(a). Such
a case applies in the experiments of Refs. [34,41,48]. More
generally, the number of sectors & could be more than 2, e.g.,
see Fig. 1(b) and Ref. [43], and could even be infinite, e.g., as
in the Wannier-Stark ladder; see Fig. 1(c) and Refs. [40,42].
A similar situation, of static energy offsets at multiples of A,
has been studied by Hauke et al. [36].

Using the notation of projectors, the time-dependent com-
ponents in Eq. (1) may be written as

AD =3 P AY PP for j#0. (4)
of
We stress that the present approach assumes that all divergent
terms are present in the static Hamiltonian (3) only, and that
they can be assembled in the form hw )", a P in particular,
we impose that the components I:I;g) in Egs. (3) and (4) do not
contain any divergent terms.
We analyze this generalized situation, with Hamiltonian
(1) formed from (3) and (4), by performing a time-dependent
unitary transformation

ly) — [¥) = R@)IY),
R(1) = exp |:i Zaa)tP"‘] =Rt+T). (5

The new Hamiltonian, H=RHR' — ihléatléf, can then be
recast in the form (1) studied in Ref. [22]
iy = Y A RO = 3 PRGBS (6)
) o )
J af
where calligraphic characters will hereafter be associated
with the transformed frame. Importantly, the resulting time-

dependent Hamiltonian 7{(¢) no longer contains diverging
terms proportional to . The new static term H® has
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FIG. 1. (Color online) Superlattices and resonant modulations.
(a) The two-site superlattice (¢« = 0,1), (b) the three-site superlattice
(¢ =0,1,2), and (c) the Wannier-Stark ladder (¢ = 0,1,2,3,...).
Colors refer to the different sectors o € Z. The cases (a) and (c)
involve a single-harmonic modulation, with frequency w = A /h; see
Sec. V. The case (b) involves a higher-order offset 2A, requiring the
use of a two-harmonic modulation to restore the tunneling over the
entire lattice; see Sec. VII.

contributions from the initial static elements A, which
do not couple different sectors (e.g., on-site potentials or
interactions), but also, from time-varying effects captured by

I-AI;I’;, which do couple different sectors with 8 —a = j # 0.

Similarly, we note that the new time-dependent elements 74",
with j # 0, can have contributions from the initial static
terms I:Iég) that couple different sectors, @ # S (e.g., tunneling
terms).

Since H(¢) remains periodic in time, the methods of
Ref. [22] can be applied to understand its effects as w — oo.
In particular, the time-evolution operator in Eq. (2) now reads
[22]

O(t;10) = IQT(t)e—i/%me—<i/n><r—zo>7%e‘f K0 R(ty), (7

A N 1 | VOO
Hor =H"+ -3 ;[H(J’“,H(‘”] + 0/, (8
j>0
. 1 | B O
]C(t) = h_ Z T[H(+J)611w1 — H(*])e*l]wl] + 0(1/(1)2)
Hhe j>0 J

€))

These expressions rely on a perturbative expansion in powers
of (1/w). In this work, we truncate the expansion to first
order, noting that higher-order corrections are typically small
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in experimental situations [48]; expressions for higher-order
terms are given in the Appendix; see also Refs. [22,23].
Importantly, the convergence of the series in Egs. (8) and
(9) relies on the fact that all the diverging terms contained
in the time-periodic Hamiltonian (1) have been removed
by the unitary transformation in Eq. (5). However, this is
not necessarily the case in general [22,23], in particular in
situations where the strength of the time modulation is also of
order w. A generalization of the formalism handling additional
(possibly time-dependent) diverging terms is presented in
Sec. III. Moreover, our analysis can readily be extended to
cases where the static offsets in (3) are multiples of an energy
ha', with @' any rational fraction of the drive frequency w
(0'/w = N/M with N, M integer): the unitary transformation
that removes «' from H® again generates a time-dependent
Hamiltonian (¢) that is periodic, now with frequency w/M.

Advantages of the method

Periodically driven systems are often treated using a
stroboscopic analysis of the time evolution: the state of the
system |{(¢)) is studied at specific times t = NT, where
N is an integer. According to the time periodicity of the
Hamiltonian H(r + T) = H(z), the time-evolution operator
can be written as U(t = NT) = [U(D)]", where

O(T) = Te /M Jo AW _ ,~G/WT By (10)

Here 7 denotes the time ordering, and we introduced an
effective time-independent Hamiltonian Hp. The latter can
be constructed perturbatively, for instance, using the Baker-
Campbell-Hausdorff formula [22,37,38] or the Magnus ex-
pansion [19,23]. The effective Hamiltonian Hr provides the
effective band structure and the topological properties of the
driven system [5]. Importantly, by definition, this stroboscopic
analysis disregards any effects due to the micromotion, which
can lead to relevant effects in realistic situations [22]; it
also assumes that the modulation has been launched at a
precise time [fo =0 in Eq. (10)]. One way to evaluate
micromotion effects in the stroboscopic picture is to treat
the final (observation) time ¢ % NT as a random variable
uniformly distributed within a driving period; the dynamics can
then be numerically obtained through a special time-averaging
over this independent random variable [23].

In contrast to the stroboscopic analysis, the present method
built on Egs. (5) and (7)—(9) allows for a complete description
of the time evolution, including the effects due to the initial
phase of the driving and the micromotion. Indeed, the time-
evolution operator in Eq. (7) can be systematically calculated,
for any arbitrary initial driving time #; and final time ¢ #
to + NT, through the evaluation of commutators [Eq. (8)].
In particular, according to Eq. (7), the micromotion is fully
captured by the product of operators

RI(t) exp[—iK(1)] = e7 MO, (11)

which can be explicitly calculated using Egs. (5) and (9). The
right-hand side of Eq. (11) defines the micromotion operator
M(t), which will be explicitly computed and analyzed below.

We point out that the present method can be readily applied
to arbitrarily complicated time-dependent Hamiltonians. As
for any perturbative approach, the present method is applicable
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in physical situations where the expansion in powers of 1/w
rapidly converges, which is the case whenever the transformed
Hamiltonian in Eq. (6) is regular. The next section, Sec. III,
discusses the applicability of the present method in situations
where additional diverging features are present in the system,
which typically occurs in a strong-driving regime [23].

III. TREATING ADDITIONAL DIVERGING TERMS: THE
STRONG-DRIVING REGIME

In this section, we generalize the formalism presented in
Sec. II to the case where the time-dependent Hamiltonian in
Egs. (1), (3), and (4) contains additional diverging terms; see
also Refs. [22,23,36]. Here, we are interested in solving the
Schrodinger equation for a time-periodic Hamiltonian of the
general form

H(t) = Heeo(t) + hoO(1), (12)

where I:Ireg(t) and O(t) remain finite as w — oo, such that
the second term explicitly diverges linearly in w. Note that
O(t) can contain a static part, as analyzed in the previous
Sec. IT [Eq. (3)], as well as a time-dependent part representing
“strong driving.” This strong-driving problem can be treated
by generalizing the unitary transformation in Eq. (5), so as
to remove all diverging terms from the Hamiltonian A (¢) in
Eq. (12), namely

l) — 1Y) = R@)y), ﬁ(r)=7exp{iwﬁ O(r)dr},

(13)
which indeed leads to the transformed Hamiltonian
H(r) = R(t)Heg R (0). (14)

This operation allows for significant progress in the resolution
of the time-dependent system if the latter belongs to a class
where [O(1), O(t")] = 0 for all times ¢ and ¢’; in other words,
this operation is relevant for situations where R(t) and H(r) can
be computed explicitly. Considering such a class of systems,
we impose that the operator R(r) should be time periodic,

R(t) = exp {zw/ 0(r)dr} =Rt+T), (15
0

so that the transformed Hamiltonian 7:((t) in Eq. (14) can
be readily treated using the formalism presented in Sec. II
[Egs. (7)—(9)]. Note that this condition requires the time aver-
age (1/T) fOT O(1)d to have eigenvalues that are integers.
We are interested in treating systems with several diverging
terms, e.g., O(t) = 01(t) + Ox(t). In this framework it is
useful to note the factorization rule R(z) = R;(¢)R»(¢), which
is due to the commutativity [01 s 02] = 0 of individual compo-
nents at all times. This results in the transformed Hamiltonian

H(t) = Ry(t) R, (1) Hreg RI (1) R (0). (16)

For the sake of simplicity, we now apply this generalization of
the formalism to a common situation, where the Hamiltonian
includes a regular static term, a diverging static offset term,
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and a strong resonant cosine modulation,
H(t)="Y_ P*HY PP + hoo(O1 + 05(1)),
af
O1=> aP¥ 0,1)=Kocos(wt + $)A,
o

A7)

where the projectors P® and integers o have already been
introduced in Eq. (3). In order to fulfill the commutation
conditions discussed above, the general operator A should nec-
essarily commute with O;. Generalizations to cases involving
additional terms in Eq. (17) can be treated along the same line,
as long as the system satisfies the commutation conditions.

First, we note that the unitary transformation related to
the diverging static term fiwO; has already been analyzed in
Sec. II; its associated operator is I?l(t) = expliot Za af’“],
and the transformed Hamiltonian was given in Eq. (6). The
unitary transformation that removes the time-dependent term
in Eq. (17) is written as

o0
Ro(t) = expli Ko sin(wt + ¢)A] = Z Ti(KoA)etk@r+o),

k=—00

(18)

where J; denotes the Bessel functions of the first kind. The
transformed Hamiltonian in Eq. (16) is eventually given by

=) HV eI,

J

oo
AD=3" 3" Tu(KoA)P A PP Ty jrap(KoA)e TP,
o,B k=—00

19)

The transformed Hamiltonian H(¢) in Eq. (19) is time-periodic
with period T, so that the time-evolution operator in Eq. (7)
can be constructed using the formalism described in Sec. II,
namely,

0t:10) = RYOR](ye e (M0t RO R, (1) Ro (o),
(20)

where the effective Hamiltonian 7:leff and kick operators are
given by the series in Egs. (8) and (9). In particular, the
micromotion is now described by the product of operators

e MO — RIR] (1) e KO, 1)

Importantly, the micromotion depends on the time modulation
O (1), but also on the static offset terms O,. This important
aspect will be analyzed later in this work, based on concrete
examples.

Ilustration for a strongly driven two-level system

We now illustrate this approach dedicated to strongly driven
systems, by considering a simple example: two coupled levels,
|0) and |1), separated by a very large energy offset A, and
subjected to a resonant driving with frequency w = A /h.
We write the corresponding time-periodic Hamiltonian in the

033632-4



PERIODICALLY DRIVEN QUANTUM MATTER: THE CASE ...

form (17),
H(t) = Hieg + h(01 + O5(1)),
Hyee = 10)(1] + [1)(0], Oy = P, (22)
01 (1) = Ko cos(wt + ¢)P°,

where the projectors onto the two levels « = 0,1 are given by
P = |a)(«|. Applying the unitary transformations R, 2(t) de-
fined above [Eq. (18)], we obtain the transformed Hamiltonian
H(r) in Eq. (19), with the explicit Fourier components

AP = T3 (Kl0) (10 + Fij (Ko) 1)/(0]e" =,
(23)
where we used the fact that

Ti(KoP®) = Ju(Ko)P® + Ti(O)P' = T (Ko)P° + 810 P

From the transformed Hamiltonian in Eq. (23), one readily
derives the effective Hamiltonian using Eq. (8). To lowest
order, this yields

Her ~ HO = J1(Ko)e' 10)(1] + H.c. (24)

One recovers that the modulation essentially restores the
coupling, and that the new coupling matrix elements are
renormalized by a Bessel function of the first kind [25,28,66].
Note that these matrix elements also acquire a complex phase
factor, which is related to the phase of the modulation ¢;
these induced complex phase factors constitute the basis for
generating artificial magnetic fields in modulated superlattices
(Sec. V). We also emphasize that the effective Hamiltonian
in Eq. (24) can be written as the time average of the trans-
formed Hamiltonian, Hee =~ (1 /T) fOT H(r)dt; this indicates
that, at the lowest order of the perturbative treatment, the
effective Hamiltonian (24) is strictly equivalent to the one that
would have been derived using a Magnus-expansion approach
[23,36]. Finally, we point out that the effective Hamiltonian in
Eq. (24) can be obtained in a similar manner for the case where
the static energy offset in Eq. (22) is given by NhwP', with
N € Z. In this case, the effective tunneling matrix elements in
Eq. (24) are found to be replaced by Jn(Kj) exp(i¢N).

The full time-evolution operator in Eq. (20) is eventually
obtained through the calculation of the kick operator K@)
defined in Eq. (9). Using Egs. (9) and (23), we find

N 1 1 . .
Ky~ ——3° 7Jj+1(1<o>e”<‘”’+¢>e'¢ 10)(1] — H.c.
Jj#0

1 . Ko) .
~ %{m(m (Jo(Ko)e"”’ - @el@w’ﬂ” N )

—H.c. } (25)

In particular, the micromotion operator in Eq. (21) is found to
be well approximated by

M(1) =~ Koy sin(wt + ¢)P° + wt P'. (26)

We conclude this paragraph by analyzing the weak-driving
regime of the system, i.e., Ky < 1. In this case, the effective
Hamiltonian (24) and kick operators (25) are now well
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approximated by

. KO ) . eia)t
of & —|0Y(1]€'? + Hc., K@) ~ —|1)(0| + H.c.,
Het 2|><|e +Hc @) l.hw|><|+ c

whereas the micromotion operator (21) is still well approx-
imated by Eq. (26). We emphasize that these weak-driving
results could have been equally obtained by directly applying
the formalism of Sec. II.

In the following sections, we will implicitly assume that the
strength of the time modulation is sufficiently weak so that the
formalism of Sec. II directly applies. However, we point out
that the strong-driving regime of the time-modulated systems
presented below can be treated according to the general method
discussed in this section (see Sec. V E).

IV. TWO-SITE DYNAMIC SUPERLATTICES: A
MOMENTUM-SPACE APPROACH

In this section, we illustrate the formalism of Sec. II by
analyzing the general features of modulated two-site lattice
systems, treated in a tight-binding description. Disregarding
the actual geometry of the lattice, we consider models display-
ing two types of lattice sites (A and B, labeled by the sector
index o = 0,1), and which are subjected to a local (on-site)
time-dependent potential with a single harmonic. To simplify
the presentation in this section, we replace po Oaﬁ P Oaﬁ,
taking the projectors to be implied by the subscripts. Using
these shorter notations, the two-site static Hamiltonian takes
the general form

A= 3" AY + P'ho. 27)
a,p=0,1

Assuming that the time-dependent potential is only constituted
of on-site operators, we specifically write the time-dependent
components (4) with sector-diagonal entries,
A = AV AR, (AN AGM =0 @8)
This simple and general setting (27) and (28) may lead to
interesting flux configurations and band properties [44], as
will be more specifically illustrated in Secs. VIC and VID.
In order to evaluate the effective Hamiltonian (8) and
kick operator (9), we perform the transformation (5). Since
the corresponding unitary operator R(r) = exp[iwt P'] only
contains on-site terms, it commutes with all the terms in the
time-dependent Hamiltonian, Eqgs. (27) and (28), except with
the static intersector tunneling terms H 1(8) and I:Ié?). Hence,
apart from removing the diverging term in Eq. (27), the only
effect of the transformation (5) is to make these tunneling

terms time dependent. This gives the modified Hamiltonian
(6) with

50) _ 770 73 (0)

H™ = Hy +H,y,

HO = A0+ AP+ AY, D = A0+ RS+ A,
(29)
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A. The effective Hamiltonian

Taking the properties of the projection operators into
account, the first-order effective Hamiltonian (8) takes the form

N N N 1 4 A~
0 0 ) 0
Flos = A + A + o[RS A 60)
1 A O) A ACD) A N N A O) A
©0) (=1 (1) 7y (0) (=1) 5(0) 0) 7y (1
+%{H10 Hoo +H00 H01 _Hll HIO _HOI Hll }
(31

The terms appearing in the first line, (30), arise from the static
Hamiltonian (27) with the intersector couplings treated within
second-order perturbation theory. The terms in the second line,
(31), describe the restoration of couplings between A and B
sectors via resonant modulations (28).

We now make the additional assumption that the static
system has spatial symmetries that lead to a conserved
quasimomentum k and only two energy bands. This requires
the corresponding Hamiltonian H© to have a unit cell
containing only one A and one B site. The wave vector k is then
conserved (up to reciprocal-lattice vectors) by all the terms in
line (30). However, the time-modulation components A*' can
have lower spatial symmetry: specifically, it can be that A"
couples a state with wave vector k to a state with wave vector
k' = k + q; such modulations that both transfer energy hw
and momentum Aq to the system are crucial in the context of
artificial gauge fields for cold atoms [67,68]. Provided there
is only one such wave vector ¢ (or wave vectors that differ
from ¢ by a reciprocal-lattice vector), the quasimomentum k
is also conserved by the intersector terms (31) of the effective
Hamiltonian. That is, the effective Hamiltonian only couples
the state with wave vector k on the A sites, |0,k), to the state
with wave vector k' = k + g on the B sites, |1,k). In this
two-state basis, {|0,k),|1,k’)}, the effective Hamiltonian (30)
and (31) takes the form

eo(k)

off 1y vo1 (k)
H o = (UIO(k) >’

(k)

N 1 .o n
eolk) = (0,k| A — h—Hé?)Hl(g)m,k),
w
; (32)
k) = (LKA + - A Hi LK),

1 Y 7y (— y(— Y *
vio(k) = %u,kmgmgo D ASVAD0,k) = v, (k).

Here €y(k) and €; (k') are the dispersions for particles of wave
vectors k and k' moving on the decoupled A and B sites,
as described by the terms in (30), and vio(k) encodes the
couplings between the A and B sites through the terms (31).
The energy spectrum and topological properties associated
with the effective Hamiltonian 7:[eff can then be directly
deduced from the functions €y ; and vyo in Eq. (32), as will be
illustrated in Sec. VID using a specific model.

B. The kick operator

For such models, the micromotion undergone within each
period of the driving [Eq. (11)] is essentially due to the kick
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operator (9), whose leading terms are given by

i) = %(ﬁf@ +AY £ AV L He,  (33)
where we used Eq. (29). For ¢ = 0, this couples the two
basis states |0,k), |1,k). For g # 0, the kick produced by the
operator exp[—i I@(t)] in Eq. (7) can couple the set of states
{10,k + nq),|1,k + mq)} with n, m any integers in the range
0 < n,m < nmax — 1, and ny, defined by the condition that
nmaxq 1S a reciprocal-lattice vector. In this case, the micro-
motion will involve oscillations between plane-wave states at
these np,y different wave vectors k + nq. As will be discussed
below in specific examples, this leads to an oscillation in the
amplitudes of discrete peaks in the momentum distribution,
as revealed by time-of-flight images in cold-atom setups; we
shall show an example in Sec. VI C, leading to a staggered flux
pattern, where ny,,x = 4, and thus displaying four peaks in the
expansion images; see Fig. 3.

V. MODULATED SQUARE SUPER-LATTICES

We now apply the formalism to the case of general square
superlattices, which are modulated in time in a resonant
manner in view of realizing nontrivial flux patterns.

A. The time-dependent Hamiltonian

Considering a single-band tight-binding approximation,
the static Hamiltonian H® is taken in the general second-
quantized form

I:I(O) = Tx + Ty + S + Uon—site’ S =A Zs(m)ﬁm,n'
m,n

(34)

The static Hamiltonian includes the nearest-neighbor hopping
terms

A A W
T, =—J, E Api 1 pOmn + H.c.,
m,n

Ty = _Jy Zfljn,n_,r]&m,n + H.C.,

m,n

where J, , denote the hopping matrix elements, &L,;1 creates
a particle at lattice site x = (ma,na), a is the lattice spacing,
(m,n) are integers. The number operator in Eq. (34) is defined
as iy, = &L,n&m,n. The Hamiltonian in Eq. (34) also includes
a “superlattice” term S, which creates energy offsets between
lattice sites along the x direction, the spatial modulation being
described by the function s(m). The energy A > J, is large so
that the bare tunneling is potentially inhibited along the x direc-
tion, depending on the spatial modulation s(m). For instance,
the two-site superlattice potential [Fig. 1(a)] corresponds to
the case s(m) = 1/2(—1)", whereas the Wannier-Stark ladder
[Fig. 1(c)] corresponds to the case s(m) = m. Importantly, the
superlattice function s(m) only depends on the x coordinate,
which will simplify the following analysis. In Eq. (34), all
additional static potentials (e.g., confinement), and on-site
interparticle-interaction terms are assembled in Uon_si[e: in
contrast to the tunneling terms, on-site potentials do not couple
different sectors, and thus they commute with the unitary
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transformation (5); see Eq. (36) below. Hence, they can be
directly included in the effective Hamiltonian ﬂeff at the
zeroth-order level, HO — RO 4 Uon,site; see Eqgs. (6) and
(8). Note also that these static on-site terms do not enter the
kick operator in Eq. (9).

For the sake of simplicity, we will assume that s(m +
1) — s(m) = £1, in which case a single-harmonic modulation
is sufficient to restore the tunneling. The time-dependent
Hamiltonian is thus written in the form (1), (3), (4) [69],

) = B9+ V()= AO 4 GEDeion 4 D eion,
6D — Zﬁm,nv(m,n) _ [ﬁm)]f’

m,n

w=A/h, (35

where the latter equality corresponds to the resonance con-
dition, and where the static component H© is given in
Eq. (34). We stress that any small detuning from the resonance
® = A/h can be incorporated in the formalism, by adding
a weak potential §) s(m)A, , in the on-site operator

m,n

A

Uonsite Introduced above. Note also that we have included a
spatial dependence v(m,n) in the time modulation V (1), which
will play an important role in the following [40,42,66,70].
The more general situation where the superlattice function
s(m) creates “high-order” energy offsets [2A,3A, ... ] will be
treated in Sec. VII.

B. The unitary transformation

The unitary transformation in Eq. (5) takes an explicit form
in terms of the superlattice operator S,

[¥') = RW)|Y) = exp (it5/h) ). (36)
The transformed Hamiltonian reads
() =T + Ty + Uonsite + V0), 37)

where the modified tunneling term along the x direction reads

A

To= =00 a0 L e (38)

m,n

Only the tunneling term along the x direction is affected by the
unitary transformation (36), since [Ty,S’] = 0, in the present
case where the superlattice function s = s(m) does not depend
on the y coordinate. Note also that the on-site operators Uon—sile
and V(¢) are not affected by the transformation, as they also
commute with S.

As already announced above, we simplify the discussion
by constraining the superlattice function,

s(m+1) —s(m) = x1 = 5,(m). 39)

The more general case 8;(m) € Z will be treated in Sec- VII.
We find it useful to label the sites according to the notation
m = m¥* defined as

8s(m™) =41, 3(m™) =—1, (40)
which classifies the sites along x in terms of their nearest-
neighbor offset [£A]; see Fig. 2(a). Using this notation, the
time-dependent Hamiltonian 7 (¢) in Egs. (37) and (38) can be
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eﬁ.()_i(p'm 1
xr o

(&

eff —i.n
Tt e=idmn

m m- +1

FIG. 2. (Color online) (a) Labeling of sites m = m* according
to the energy offset +A; see Egs. (39) and (40). (b) The cor-
responding plaquettes (1%, with Peierls phase factors exp(Zi,, )
along the x direction; the flux penetrating these two plaquettes are
given by 27 dF = Ot — Gt wy1 and 27 DT = - g1 — G s
respectively. The phases ¢,, ,, defined in Eq. (43), are established by
the time-periodic modulation (35).

written in the form (6)
7:{(t) = O 4§ HHED ot 4 r’f((—l)efiwr,
7:‘((0) = fy + Uon-sitea

HED =k Zﬁm’” v(m,n)

m,n

_Jx{ Z &Zl+l,n&m,n + Z &IL,H&HH-I,n } — [ﬂ(*l)]f

mt.n m—.,n
(41)

Note that the term H® does not have any contribution from
the time-dependent components H*V. In contrast, the terms
H™D have contributions from the static H® and nonstatic
H®D elements.

C. The effective Hamiltonian and flux patterns

We now compute the first-order contributions to the
effective Hamiltonian H.¢ in Eq. (8), using Eq. (41):

Lo~ A Jik R A
%[H(Jrl)’H( 1)] - _%{ Z aiﬂrl,nam,ny(m,n)
mt,n
- Z &jnJrl,n&m,nV*(m,n) + H.C.},

y(m,n) = v*(m,n) — v*(m + 1,n), (42)

which shows that tunneling can be restored between neigh-
boring sites, (m,n) <> (m £ 1,n), if and only if the time
modulation (35) generates a differential shaking v(m,n) #
v(m = 1,n). This also suggests that tailoring the time modula-
tion V(z) allows one to address different links independently,
as recently implemented in Ref. [48]; see Sec. VIC.

We now make the assumption that the modulation can be
designed so as to verify

y(m.n) = v*(m,n) — v*(m + 1,n) = p &', (43)
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so that the restored tunneling amplitude ~p is uniform over
the lattice [34,40-42,48]. This condition will be satisfied
in specific examples that we provide below. The first-order
effective Hamiltonian finally takes the form

o A 2 eff Z At A iGum.n
Heff = Ty + Uon—site - ‘-7x { am+1’nam,ne ¢

mt.n

- Z &jn-kl,n&m,ne_i(pm'" + H.C.}, (44)

where the induced tunneling amplitude is given by
T = Jokp/hw; (45)

see Fig. 2(b). The latter result (44) shows how Peierls phase
factors ¢, , are generated by the resonant modulation; their
expressions are directly dictated by the modulation functions
v(m,n), defined in Eq. (35), through Eq. (43). Second-order
corrections to the effective Hamiltonian (42)—(44), which lead
to a modification of the hopping term along the y direction, are
discussed in the Appendix. We point out that the derivation of
the effective Hamiltonian in Egs. (44) and (45) assumes that the
strength of the time modulation is sufficiently weak, ¥k < hw;
see Secs. Il and III. A generalization of this result, valid in the
strong-driving regime k ~ hw, is presented in Sec. V E, based
on the method introduced in Sec. III.

We now evaluate the flux penetrating the diverse plaquettes.
Using Eq. (44), we find two types of plaquettes:

(i) plaquettes (1T, characterized by sites of type m™ at
the left corners, see Eqgs. (39) and (40) and Fig. 2(b). The
corresponding flux is given by

2 q)+ = ¢m+,n - ¢m+,n+l; (46)

(ii) plaquettes 017, characterized by sites of type m~ at
the left corners, see Eqgs. (39) and (40) and Fig. 2(b). The
corresponding flux is given by

2nd” = ¢m‘,n+1 - ¢m‘,n- (47)

Here, the space dependence of the fluxes d* = dF(m,n) is
implicit. For phases of the form ¢,, , = ¢,m + cyn, the fluxes
®* = Fc, are necessarily constant along the y direction,
but potentially vary along the x direction, depending on the
superlattice function s(m).

D. Full-time evolution: The kick operator and the micromotion

The main contribution to the kick operator is given by
[Egs. (9) and (41)]

A 1 . . . .
IC(t) — o [H(Jrl)etwf _ H(fl)eﬂwt]
2K . .
~ e E A [0(m,n)| sin(wt + Oy ), (48)

where we assumed that « 3> J, in the last equation, and where
Om.n = arglv(m,n)].
We write the full-time-evolution operator (7) as

U(t;t9) = e MO Ut 19),
L (49)
0eff(t' 1) = o~ (/M —t10)Herr i M(t0)
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where ’Fleff denotes the effective Hamiltonian in Eq. (44) and
where the “micromotion” operator (11) is given by

N . 2k .
M) = an {a)ts(m) + %|v(m,n)| sin(wt + 9,,1,,1)}.

(50)

Hence, the micromotion both depends on the superlattice
(spatial) modulation s(m), Eq. (34), as well as on the function
v(m,n) characterizing the time modulation, Eq. (35). Different
micromotions will be discussed below, based on specific
examples.

E. The strong-driving regime

The effective Hamiltonian and micromotion operators can
also be evaluated in the strong-driving regime, x ~ hw.
Applying the method detailed in Sec. III to the time-dependent
Hamiltonian (34) and (35), we find the effective Hamiltonian

Y T i 51 2
Hegr ~ Uonsite + Z ()T (m,n)e i ajn+l.na"1a"

m*.n
+ Ty (m,m)al, o\ +He., 51

where ¢, , = arg[v(m + 1,n) — v(m,n)], and where the ef-
fective hopping amplitudes are now given by the expressions

Tx(m,n) = J J1[2Ko|8xv(m,n)l],

\Z’(mvn) = Jy j0[2K0|5yU(ma")|],

Here 8., denote finite-difference operations along the x and
y directions, e.g., 6, v(m,n) = v(m + 1,n) — v(m,n). We note
that the two types of Bessel functions in Eq. (52), J, o, are
associated with the presence of static energy offsets N/hw,
with N = 1,0 along the x and y directions, respectively (see
Sec. IIT). We readily verify that the effective Hamiltonian
in Egs. (51) and (52) coincides with the result in Eq. (44)
in the weak-driving limit k¥ < hw; see also the Appendix.
Additionally, the micromotion operator (21) is found to be
still well described by Eq. (50) in the strong-driving regime.

(52)
Ky = /c/ha)

VI. APPLICATIONS: FLUX RECTIFICATION AS A ROUTE
TOWARDS CHERN INSULATORS

In this section, we discuss several schemes leading to
uniform flux per plaquette ® = ®* = ®~ over the entire
lattice. This search is particularly motivated by the fact that
this uniform-flux configuration—also commonly known as
the Harper-Hofstadter model [71-73]—Ileads to topological
Chern bands with interesting features. More specifically, for
particular values of the flux &, the lowest band of the
bulk energy spectrum is associated with a nonzero Chern
number ve, # 0 and a large flatness ratio f = Ag,,/ W, where
Agap denotes the spectral gap separating the lowest band
from the upper bands, and where W denotes the bandwidth.
These topological properties, combined with a large flatness
ratio, make such Chern bands good candidates for realizing
fractional Chern insulators [54,55].

For a square lattice with uniform flux ® = 1/4, as realized
in current experiments [40,48], the lowest band has a Chern
number v, = 1, with a flatness ratio f ~ 7 and a band gap
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Agap ~ 1.53J, where J/h < 100 Hz is the typical hopping
amplitude over the lattice. Similar Chern bands with v, = 1
are obtained for generic flux ® =1/g, with ¢ € Z, see
Refs. [74,75]. We note that while the flatness ratio f increases
with g, the band gap A, is maximized for g = 5; for this
optimized value, we find Ag, ~ 1.55J and a large flatness
ratio f =~ 24. The strong reduction of the band gap as ¢
is further increased is clearly revealed in the well-known
Hofstadter butterfly [71]. More exotic configurations with
|ven| > 1 can also be generated with flux of the form ® = p/q,
where p,q are integers: the Chern number of the lowest band
satisfies the Diophantine equation [74,75]

l=pven+qgo, |val <q/2, o €. (53)
For instance, setting ® = 4/9, the Chern number of the lowest
band is v, = —2, the flatness ratio is large, f ~ 13, and
the band gap Ag,, ~ 0.3/ is still reasonable (i.e., of the
order of current experimental temperatures). More complex
settings leading to flat bands with arbitrary Chern numbers
were discussed in Ref. [54].

A. The main time modulation, Peierls phase factors,
and the micromotion

In this section, we will mainly consider the simple time-
periodic modulation used in the Munich and MIT experiments
[34,40,42], which is generated by a single pair of laser
beams with frequency difference w; — w, = w, and wave
vector difference k; — k, = ¢. This configuration essentially
provides a moving potential of the form

V() =2 Zﬁ’"*” cos(wt +¢q-R),R/a=ml, +nl,,

(54)

where a is the lattice spacing. This corresponds to the on-site
energy modulation in Eq. (35) with

v(m,n) = exp(iq.ma) exp(igyha). (55)

We note that this laser configuration also leads to a displace-
ment of the lattice sites, and potentially to a deformation of
the corresponding wells; these additional effects are assumed
to be small compared to the on-site modulation in Eq. (54),
which is a reasonable assumption for the schemes realized
so far [34,40,42,48]. Besides, we remind that a time-periodic
displacement of the sites’ position r ;(f) can be reformulated
in terms of an on-site energy modulation through a unitary
(change-to-a-moving-frame) transformation [21,22,27].

We will describe the effects of the time modulation (54),
based on different superlattice configurations with offsets A =
hw. Using Egs. (43) and (45), we can already state that the
restored tunneling amplitude 7¢ and Peierls phase factors
®m.n associated with the time modulation (54) and (55) are
necessarily given by

V2 T :
jxeff _ h_w"[l —cos(agy)l, ¢mn = 5 q-R- %

(56)
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Moreover, the flux associated with the plaquettes (0%, Egs. (46)
and (47), are given by

2 d* = +g,a. (57

Summarizing, independently of the form given to the static
superlattice potential [i.e., s(m)], the tunneling amplitude is
controlled by ¢,, while the effective flux per plaquette is dic-
tated by g,, which can be tuned, e.g., by changing the relative
angle between the two laser beams. In particular, tunneling is
restored whenever g, # (27/a) x integer, assuming that the
frequency w is resonant with the static energy offset A. Note
that the case ¢, = (27 /a) x integer corresponds to an on-site
modulation that is in phase between neighboring lattice sites,
which precludes tunneling restoration. In the following, we
will generally consider the case g, = g, = 7/2a, as in the
experiment [40]. This yields [Eqgs. (56) and (57)]

T = V2J.k i <

1
- — =), o =+1/4.
ho O™ \mtr 2) /
(58)
Finally, considering the time modulation (54) and (55), the

micromotion operator (50) takes the more explicit form

M) =) i {a)ts(m) + % sin[g - R + wt]}, (59)

m,n

where we remind that the function s(m) is determined by the
static superlattice potential S.

B. The Wannier-Stark ladder

In the case of the Wannier-Stark ladder, Fig. 1(c), the
superlattice function is given by s(m) = m so that all the sites
are of the type m = m™; see Egs. (39) and (40) and Fig. 2. The
effective Hamiltonian is thus given by

0 2 2 eff Z AT Py i@
Hefr = Ty + Usn-site — jx A1 nGmin€ # + H.c.,

mt,n

where we remind that the induced tunneling amplitude 7° and
the Peierls phase factors ¢, , are given in (56). In particular,
since all the plaquettes (1 = [JF, the flux is uniform over the
lattice ® = ®*; see Eq. (57). Using this Wannier-Stark-ladder
scheme, uniform-flux configurations were realized in Munich
[40] and at the MIT [42], with fluxes ® = 1/4 and ® = 1/2,
respectively.

Having obtained the effective Hamiltonian ﬂeff, which
describes the motion on a square lattice pierced by an effective
uniform flux & per plaquette, we now evaluate the micro-
motion for the Wannier-ladder scheme. The micromotion
operator is readily obtained by setting s(m) = m in Eq. (59).
Considering that wt > «/hw, the main contribution to the
micromotion operator reads

M(1) ~ ot an m = wtf/a, (60)

and we point out that this contribution stems from the
superlattice function s(m) = m associated with the Wannier-
Stark ladder; see Eq. (59). In this case, the full time-evolution
operator (49) can be approximated as

Ut;to) ~ e "1 Upge(t; 1), (61)
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where we remind that Ueff(t; tp) essentially describes the
long-time dynamics due to the effective Hamiltonian, preceded
by the initial kick exp[iM(to)]. The result (61) expresses the
fact that the micromotion is associated with a drift Ak, = wt/a
in quasimomentum space. Hence, if the system is initially
prepared in the ground state of the effective Hamiltonian,
the corresponding momentum-density peaks [76] will travel
across the first Brillouin zone (FBZ) within each period of
the driving T'. Note that this micromotion does not depend on
the wave-vector difference ¢ in Eq. (54), and in this sense, it
exists for all values of the effective flux ®. For & = 1/4, one
can define the magnetic FBZ as k, , € [~n/2a,7/2al. This
reduction of the FBZ, together with the fact that exp[iM(t)]
is time-periodic with period 7, implies that the peaks will
travel rwice across the FBZ during each period. This rapid
motion in momentum space, which can be interpreted as Bloch
oscillations due to the strong gradient, potentially complicates
any analysis based on time-of-flight images. Note that this
micromotion is similar to the situation encountered in the
well-known off-resonant-shaken one-dimensional (1D) optical
lattice [21,27], where the micromotion operator reads M(t) =
(k/hwa)x sin(wt): here ¥ and w also denote the modulation
amplitude and frequency respectively; see Ref. [22]. However,
in the latter case, the position of the momentum-density peaks
oscillate within a period, instead of performing a constant drift.

Additionally, we observe that the micromotion described
by the full operator M(r) in Eq. (59) is also accompanied
with discrete kicks Ak = £q X integer, which generate addi-
tional peaks in the momentum distribution. We find that the
amplitudes of all these momentum peaks oscillate within the
micromotion, in addition to the drift Ak, = wt/a described
above. The generation of additional peaks due to M(¢) will be
illustrated in the next section, Sec. VIC.

The full-time dynamics of the modulated Wannier-
Stark ladder has been recently investigated by Bukov and
Polkovnikov in Ref. [77], where a special emphasis has been
set on the wiggling cyclotron orbits undergone by atoms at the
plaquette level.

C. Two-site square superlattices and local addressing
of the tunneling

We now perform the same analysis for the two-site
superlattice, Fig. 1(a), for which s(m) = 1/2(—1)™. In contrast
with the Wannier-Stark ladder, this superlattice displays both
types of plaquettes [JF, arranged in alternating columns.
Hence, considering the time modulation in Eq. (54), we
find that the effective Hamiltonian ﬂeff is of the form (44),
where the indices m* correspond to alternating columns
along the x direction. As discussed in Sec. VI A, the hopping
amplitude Jfff, the Peierls phase factors ¢, ,, and the fluxes
per plaquette ® are given by Egs. (56) and (57). Altogether,
in the present case, the flux pattern is staggered, with fluxes
27 ®* = +q, /a in alternating columns; see Eqs. (46) and (47)
and Refs. [34,41].

This staggered-flux configuration, which naturally arises
in the two-site superlattice, can be rectified so as to generate
a uniform-flux pattern over the whole superlattice. This can
be realized by modifying the simple modulation’s spatial
dependence v(m,n) in Eq. (55). Specifically, we consider the
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following twofold partition:
vm,n) = 3{fi(m)e™ ™ + fom)e' =),
film +1) = fi(m) #0, folm 4 1) — fa(m) = 0 form™,
fim +1) = fitm) =0, folm +1) — fo(m) # 0 form™.
(62)

In this case, the restored tunneling is independently addressed
in alternating columns; see Eq. (42). In particular, the fluxes
associated with alternating columns m™ are individually con-
trolled by the functions g; »(n), respectively. Let us consider
the specific functions

f1(m) = cos (mz — 5) . ai(n) = —nr/2,

z o2 (63)
folm) = cos (mZ+Z) . galm) = (n = /2.

which correspond to the scheme implemented in Ref. [48].
These satisfy the conditions in Eq. (62) and generate a uniform
flux 27 ® = +7/2 over the whole lattice. Note that the two
functions g, are typically associated with distinct pairs of
laser beams [48].

It is straightforward to generalize this local-addressing
procedure to more complex superlattices, in which case the
function v(m,n) in Eq. (62) could be split into more different
parts. Additionally, we point out that this local addressing
could also be exploited to generate other flux patterns,
potentially richer than the staggered or uniform patterns.

We now discuss the micromotion in the driving schemes
involving a two-site superlattice. First, let us consider the
simple time modulation in Eq. (54) leading to the staggered-
flux configuration. Using Eq. (59), we obtain the micromotion
operator

M) = man {%(—1)'" + ,21—; sin [wf + ¢ - R]} . (64)

(a) Ground-state (b) time=T/8
(o] ] (] (o] ® L] ® ]
. .
e e o} e @ o ® o
(o] e (] (o] ® o] (2] ]
L . .
e (c] © e @ o ® o

FIG. 3. (Color online) (a) Momentum distribution associated
with the ground state |g.s.) of the effective Hamiltonian ﬂeff,
corresponding to a staggered-flux lattice with flux ®* = £1/4. (b)
Momentum distribution of the time-evolved state |y (¢)), at time
t = T/8, when initially starting the evolution with the ground state
[ (tr)) = |g.s.). The amplitudes of the density peaks oscillate within
a period of the driving, but the position of the peaks remain constant.
Here k = 8J and w = 20J, where J is the hopping amplitude.
This latter figure is to be compared with the experimental data
shown in Fig. 2(b) in Ref. [34], which corresponds to ®* = +1/4
and 2« /(hw) =~ 0.48. The reduced FBZ, k, € [—m/2a,7/2a[ and
k, € [—m/a,m/al, is highlighted in all figures.
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The first part in Eq. (64), which is due to the superlattice
s(m) = 1/2(—1)", is essentially trivial. Thus, focusing on the
second part in Eq. (64), we find that the effects attributed to the
micromotion operator mainly consists in kicks Ak = ¢ X
integer, potentially generating new peaks in quasimomentum
space. This is similar to the situation encountered in the
Wannier-Stark ladder in Sec. VIB. However, in contrast
to the latter case, the momentum peaks do not travel in
k space within a period: these peaks are well defined at
specific k points, at all times, and they simply oscillate in
amplitude over each period, as described in Sec. IVB. We
illustrate this effect in Fig. 3, where we show the time-evolved
momentum distribution, starting with the ground state = |g.s.)
of the effective Hamiltonian ﬂeff. Here the effective staggered
flux is chosen to be 27 &+ = +m/2, as in the experiment
[34], namely g, = g, = w/2a. The corresponding ground
state’s momentum distribution displays two sharp peaks within
the FBZ; see Fig. 3(a). We set the initial state to be this

J
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ground state, | (7)) = |g.s.), and compute the momentum
distribution of the evolving state |y(#)) according to the
time-evolution operator in Eq. (49). Figure 3(b) shows the
corresponding distribution at some arbitrary time t = 7/8,
where two additional peaks are observed. As discussed above,
these two extra peaks are obtained by translating the two initial
peaks according to the vectors Ak = +q = +(r/2a)(1, +
1,). A comparison with the time-of-flight image shown in
Ref. [34] indicates that this four-peak pattern is indeed robust
and observable in experiments. In summary, we point out that
the experimental data cannot be interpreted in terms of the
effective Hamiltonian ﬂeff alone, as some of its features are
specifically captured by the micromotion operator M(t) in
Eq. (64).

To conclude this subsection, we present the expression for
the micromotion operator (50) in the case of the rectified-
flux scheme, which is based on the time modulation (62)
and (63),

- 2
M@B) = finn [%’(—D’" + = {sinlor + g1()]fi(m) + sin [of + g2(n) fz(m)}}

m,n

This micromotion operator leads to a similar behavior as
the one related to the staggered-flux scheme [Eq. (64) and
Fig. 3]: the momentum distribution of the evolving ground
state shows a series of peaks shifted by Ak = 7 /2a along
both directions; these peaks oscillate in amplitude, but their
position in k space remains constant at all times. Again, this
is in sharp contrast with the Wannier-Stark-ladder case, where
the distribution peaks travel in k space within a period of
the driving (Sec. VIB). Consequently, we have demonstrated
that two schemes leading to a uniform-flux configuration—the
uniformly modulated Wannier-Stark ladder and the locally
modulated two-site superlattice—could present radically dif-
ferent micromotions.

D. Modulated honeycomb lattices: A momentum-space analysis

We finally present an explicit application of the momentum-
space approach presented in Sec. [V, by analyzing the dynamic
superlattice introduced in Ref. [44]. This modulated optical-
lattice scheme generates a model closely akin to the Haldane
model [78], a lattice model displaying nearest-neighbor (NN)
and next-nearest-neighbor (NNN) hopping terms, and leading
to nontrivial Chern bands.

This scheme involves a static optical lattice formed from
three in-plane waves, with wave vectors

k1=k(0,1), ko =k(—~/3/2, — 1/2), k3=k(~/3/2, — 1/2),

which is designed to form a distorted honeycomb lattice, where
the two inequivalent sites A and B are separated by an energy
offset I8 = hw + hd’, see Ref. [44]; note that we allow de-
tuning from resonance, 8’ # 0. This configuration determines
two sectors, & = {0,1}, which are associated with the sites of
type A and B, respectively; see Sec. IV. The reciprocal-lattice

—Zﬁ wt(_])m+ 2 sin[wt—nn]cos[n
N "2 ) 2

—m—z]—l—sin [wt+%(n—l)]cos [%m—i—z] ” (65)

4 4

(

vectors are the momentum transfers K;; = «; — k;, from
which one can construct the next-nearest-neighbor (i.e., A-A
and B-B) vectors,

a, = 2—”(@, —1), ay= 4—”(0,1), a== (—/3,1).
3k 3k 3k

(66)
The static Hamiltonian is characterized by the energy offset,
hé, the nearest-neighbor (A-B) tunneling, #y, and the next-
nearest neighbor tunnelings, oy (A-A) and #;; (B-B). Working
to second order in #o; [Eq. (30)], the static Hamiltonian leads
to dispersions for particles moving on the (decoupled) A and
B sublattices of

b s

colk) = —3% — (o0 + ) £ (k) 67)

1 1

(k) =he' +3-2L — (111 — 2L ) falk),  (68)
hw huw

where fa(k) =2 Z?:, cos(a; - k) is the characteristic disper-

sion for a triangular lattice. The A-B tunneling is restored by

a dynamic modulation of the potential on the B sites [44],

I:II(}) — VD(e”“" +jeilcz-r+j26ilc3-r)ﬁ17 jzei(Zn/3)'

This causes wave vector transfers of ¢ = « j_; 3 3, all of which
are equivalent since k; — k ; are reciprocal-lattice vectors; see
Sec. IV. An explicit calculation of the terms (31) leads to

toVp
how

fhc (k),
(69)

—1 A1y 50
vio(k) = (1,k +q|%Hfl VAD10,k) =

where fi.(k) = ), exp(—ik - R;)is the characteristic disper-
sion for the honeycomb lattice with nearest-neighbor (A-B)
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vectors
47 47
R, = 1,0), R, = —1/2,4/3/2),
1= 550 ZSﬁK</f/>
4
Ry = ——(—1/2, —/3)2).
3 3«/§K( / /2)

Combining the dispersions (67) and (68) with the coupling (69)
in the effective Hamiltonian (32) gives a complete description
of the band structure for this model, and allows the topology
of the bands to be readily determined. Indeed, for a 2 x 2
Hamiltonian matrix of the form (32), the Chern number of
the bands [74,75] can be simply evaluated by analyzing the
vortex structure associated with singular points K. of the
Brillouin zone, where the (complex) off-diagonal component
v1o vanishes [78,79]. Here, we find that the complex function
v10 in Bq. (69) indeed vanishes at the special points K™ and K~
located at kx+ = k(0,1) and kg- = k(0, — 1), respectively,
and that it accumulates a phase +27 when circulating around
them. If the difference of the diagonal elements €y(k) — €;(k +
q) is nonzero and of opposite sign at these points kx and ki,
then a spectral gap opens and the two separated energy bands
will have Chern numbers of +1 and —1; see Refs. [78,79]. It
is straightforward to show that the physical parameters can be
chosen to achieve this goal.

VII. GENERALIZATION TO SCHEMES USING MORE
DRIVING FREQUENCIES

In the previous Sec. VIC, we have shown how the
restoration of the tunneling can be controlled locally by
tailoring the spatial function v(m,n), which characterizes the
time-periodic modulation V(r), Eq. (35). Another strategy
consists of designing static superlattices with higher-order
energy offsets, Ay = NA where N > 1 are some integers,
as illustrated in Fig. 1(b) for N = 2; see also Ref. [43].
In this scenario, links associated with an offset Ay are
reactivated by higher-harmonic components of the time-
periodic modulation V (1), with resonant frequency wy = Nw;
here, we keep w = A /h as the fundamental harmonics, so that
V(t +T7T)= V(t) with T = 27 /w. Importantly, to first order
in the amplitude of the dynamic modulation, links associated
with different offsets can be addressed individually, which is
due to the fact that the effective Hamiltonian ﬂeff in Eq. (8)
has decoupled contributions from the different harmonics, at
this order of the perturbative expansion [22].

A. Higher-order energy offsets and driving frequencies

We now explicitly show how the formalism of Sec. V
generalizes to this situation. First, we extend our site-labeling
notations [Egs. (39) and (40)] as

m™ )y =+j,  &m7)=—], (70)
where §;(m) = s(m + 1) — s(m), j > Ois an arbitrary integer,
and where we remind that s(m) denotes the superlattice
function [Eq. (34)]. Namely, the neighboring sites (m™/,n)
and (m™/ + 1,n) are now allowed to be separated by an energy
offset A; = +jA. We then include higher harmonics in the
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time modulation
V)= Hexplijor). (71)
J#0
where the components are defined as

AYD =iy i yvjm,n) = [H),

m,n

w=A/h (72

Performing the unitary transformation (36) and using Eq. (38),
we obtain the transformed time-dependent Hamiltonian

7:[(t) = HO 4 Zﬂ(ﬂ)eijwf + ﬂ(fj)efijwt’ (73)
Jj>0
7:[(0) = 7Awy + 0on—site»
H(Jrj) =K Zﬁm,n vj(m,n) - Jx{ Z a,];H_l,n&mA,n
m,n

mtin
m=i,n

which straightforwardly generalizes the Hamiltonian in
Eq. (41).

The effective Hamiltonian ﬂeff is computed using the
general definition in Eq. (8), which yields

JiK 1 o R
hw Z ;{ Z alln-‘rl,namvnyj(m’n)

j>0 mti.n

Hesr = Ty + Uonsite —

At ~ «
o Z am+],nal11,ny]‘ (m,n) + H.C.},

m=/,n

where y;(m,n) = v;f(m,n) - v;f(m + 1,n). This shows that
links associated with different offsets A; = jA are individu-
ally addressed by the related harmonic components. Assuming

that y;(m,n) = p; ¢i®nn | we obtain a simple form for the
effective Hamiltonian,

» a 7 Z eff Z At A i
Heff = Ty + Uon-site — ‘-Y)c,j{ am+1‘nam,ne om.
J

mti.n
— 3" al . mae T Hc} (74)
m=/.,n
where the induced tunneling amplitude is now given by
Ti5 = Jekps/jho. (75)

Let us apply this scheme to the three-site superlattice [43]
shown in Fig. 1(b). In this case, the sites are all of type
m =m*! or m = m~2. Therefore, using Eq. (74), we find
that a uniform flux @ is readily obtained by considering a
two-harmonic modulation satisfying

¢r}1.n = _¢r2n,n’ 2rd = ¢r1nn - ¢rln,n+l’ (76)

namely, e.g., a moving potential of the form

V(t) =2k Zﬁm,n {cos(wt +¢q - R)+2cos 2wt — q - R)}.

m,n
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Note the additional factor of 2 in the second term, which
allows us to restore a uniform tunneling amplitude 7 over
the lattice; see Eq. (75).

B. Driving the hopping along x and y

Finally, we discuss the possibility to induce and control the
tunneling matrix elements along both spatial directions. This
can be realized by adding two superlattices, one for each
direction. In order to address these two directions individually,
we follow the same reasoning as above and consider different
energy offsets

S =A Z ﬁm,n{sx(m) + Sy(l’l)},

m,n

(77)

sem + 1) —s,(m) = £1, sy(n+1) —s,(n) = 2. (78)

J

V() =« Zﬁm,n{vl(m,n)ei“” + va(m,n)e*® + H.e.).

m,n

The time-dependent Hamiltonian is then written as
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Performing the unitary transformation (36), we obtain the
transformed Hamiltonian
H(6) =T + Ty + Uonsite + V1), (79)

where the hopping terms are now modified along both
directions:

To= =0 a0 L B (80)
m,n
/f,V = _JY Z&;,nJrlam,neiwtls)’(wrl)7%(”)] + H.c. (81)

m,n

In order to restore the hopping, we consider a two-harmonic
modulation of the form

(82)

FUt) = HO 4 TV 4 D gmion L ()i | fy(=2) p=idor

~ 0 ~
H( ) = Uonssites

HED =« Zﬁmn vi(m,n) — Jx{

m,n m*.n

&LJFLH&m,n + Z &jn’n&m-&-l,n} = [H(il)]Ta

m-,n

H(+2) =k Zﬁm’” UZ(m’n) - JY{ Z &jn,n+l&mv” + Z &;,n&m,n+l} = [H(_Z)]T’
m,n m,n—

m,n*

where we used the site-labeling convention &, (m*) = %1 and ds, (n*) = %2, which generalizes Eqs. (39) and (40) to two spatial

directions.

Finally, the effective Hamiltonian H.¢ is computed using the general definition in Eq. (8), and it reads

A A

Heff = Uon-site -

hw

mt,n

" 2hw

m,nt

where

yi(m,n) = vi(m,n) — vi(m + 1,n),

The result in Eqgs. (83) and (84) shows how the tunneling
matrix elements associated with the two spatial directions
can be individually controlled by the two different harmonic
components of the time modulation in Eq. (82). This can
potentially generate very rich flux patterns in two-dimensional
lattice systems. Generalization to three dimensions is straight-
forward, as it would simply require a superlattice along z,
together with an additional (resonant) harmonic component in
the time modulation V (¢).

VIII. CONCLUSIONS

This work proposed a framework to investigate the physics
of time-periodic modulated systems presenting resonant
features. Rooted in the formalism of Refs. [20,22], this

Jik . . K .
- { Z ajn+1,,1am,i1)/l (m,n) — Z a,|n+1,nam,n]/1*(man) + H'C~}

m=,n

J, K . R At ~ "
- { Y al lmaya(mn) = Y ab v mon) + Hc} (83)

m,n-

ya(m,n) = vy(m,n) — vy(m,n + 1). (84)

(

approach offers a systematic way to calculate the effective
Hamiltonian H.g and kick operator K () for such resonant-
driving situations. The motivations for obtaining the effective
Hamiltonian and its corresponding (Floquet) spectrum is
well established [4,5,21], however, the effects associated
with the kick operator are also found to be crucial for
the analysis of driven systems [22,23,77]. In particular,
the micromotion can potentially produce large and rapid
oscillations of experimental observables—e.g., momentum
distributions or spin populations—precluding any instructive
measurement of these quantities. In this work, we highlighted
the simple but important fact that the micromotion can be
different for time-modulated systems leading to the same
effective Hamiltonian. This aspect was illustrated by compar-
ing the modulated Wannier-Stark ladder (Sec. VIB) with the
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modulated two-site square superlattice (Sec. VI C), for which
the time-evolving peaks in the momentum distribution showed
drastically different behaviors.

This work also showed the possibility to generate a large
variety of flux patterns in two-dimensional lattice systems
through the local restoration and control of tunneling. This
can be achieved by tailoring the space-dependent features of
the time modulation (Sec. VI C) and/or using superlattices with
different energy offsets (Sec. VII). Applying these schemes to
more spatial directions and spin structures offers a versatile
toolbox to generate a wide variety of lattice models and gauge
fields, suggesting interesting avenues in the field of quantum
simulation.

We stress that a single-band tight-binding approximation
has been assumed in the examples considered in this work. We
note that multiband systems subjected to periodic modulations
could permit multiphoton processes that promote atoms to
high-energy untrapped states, endangering the stability of
these engineered models at very long times.

The interplay between time-periodic modulations and
interparticle interactions is conjectured to be the source of
heating in experiments [42,47,48]. Recently, several works
investigated the effects of interactions in time-modulated
lattices [80—84], where regimes of dynamical instabilities
were identified. The thermodynamics of driven systems was
also explored in Refs. [85-91]. A general understanding of
these heating sources still constitutes an important issue to be
addressed in this framework, for instance, in view of creating
novel (topological) strongly correlated states with cold atoms.

Note added. Recently we became aware of a similar work
by Eckardt and Anisimovas [92], where equivalent expressions
for the effective Hamiltonian and micromotion operators were
obtained through an alternative method.
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APPENDIX: SECOND-ORDER CORRECTIONS

In this Appendix, we provide second-order corrections to
the effective Hamiltonian ﬂeff obtained in Sec. V C. Following
Ref. [22], the second-order corrections to the general effective
Hamiltonian in Eq. (8) are given by

1

o —
2(hw)*

| N "
> j—Z[[H(”),H‘O)],H"”] +He, (Al
Jj>0

where the operators /) were defined in Sec. II.

We now apply this expression (A1) to the specific operators
in Eq. (41). In order to highlight the main effects, we make two
simplifications. First we omit the on-site terms Uon-sne, whose
contributions to second-order effects are typically weak; this
yields H® ~ 7. Then, since k >> J,, we approximate

HED ~ Zﬁ’”v” v(m,n). (A2)

We then ﬁndA that the main corrections to the effective
Hamiltonian H,¢ are given by [Eq. (A1)]

2
@ _ Kk Jy

= G Z&m’nﬂam,nw(m,n) —v(m,n + 1))* + Hec.,

m,n

which corresponds to a renormalization of the hopping along
the y direction. Including the zeroth-order term, the total
hopping operator along the y direction is modified as

f"y — ieﬁ =-J, Zu(m,n)&;,1+l&m,n + H.c.,
m,n

(A3)

1= (5) ) = o + P,

wu(m,n)

where w(m,n) captures the possible inhomogeneity of the
hopping. As realized in Ref. [70], this may be particularly
problematic in schemes where v(m,n) — v(m,n + 1)is propor-
tional to one of the spatial coordinates (m,n), in which case the
hopping can be strongly reduced in large regions of the system.
However, we note that this inhomogeneity effect is limited for
the schemes discussed in Secs. VIB and VIC. Finally, we
note that the corrections in Eq. (A3) are in agreement with the
strong-driving result in Eq. (52).
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