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Testing gravity with cold-atom interferometers
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We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal
configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass.
In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a
differential acceleration sensitivity of 4.2×10−9 g/

√
Hz over a 70-cm baseline or 3.0×10−9 g/

√
Hz inferred

per accelerometer. Using the performance of this instrument, we characterize the results of possible future
gravitational tests. We demonstrate a statistical uncertainty of 3×10−4 for a proof-of-concept measurement of
the gravitational constant that is competitive with the present limit of 1.2×10−4 using other techniques. From
this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8×10−3 near the poorly
known length scale of 10 cm. Limits approaching 10−5 appear feasible. We discuss improvements that can enable
uncertainties falling well below 10−5 for both experiments.
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I. INTRODUCTION

Light-pulse atom interferometers demonstrate exceptional
inertial sensitivity. The nature of their construction lends long-
term stability and intrinsic accuracy, making them compelling
candidates for advancing our knowledge of gravitational
physics. Recent work has shown the promise of this technology
in a precision measurement of the gravitational constant [1,2]
as well as precision gradiometry [3], single-atom-force sen-
sors [4], and navigation sensors [5–9]. New experiments
aim to test the weak equivalence principle by measuring
the differential acceleration between atom species in a dual-
species accelerometer [10,11], and future missions are being
developed to deploy space-based gravity wave detectors [12].

The weakness of the gravitational coupling presents a sig-
nificant challenge for precision measurements of gravitational
forces. The 2010 CODATA values G with a relative standard
uncertainty of 1.2 × 10−4 [13]. If taken as a steady trend, the
uncertainty has improved by only 1 order of magnitude per
century since the first measurements of G by Cavendish in
1798 [14]. High-accuracy measurements following the first
CODATA adjustment in 1986 disagreed with each other at the
10−3 level, though their accuracies exceeded 10−4 [15]. New
understandings of systematic shifts in these measurements [16]
and subsequent precision measurements have lead to the
improved precision on G in 2010. Therefore an independent
evaluation of G is welcome for determining the true value of
G with greater accuracy. In this paper, we present an atom
interferometer that offers a contribution to this endeavor with
a forecast precision well below 10−5.

In a related manner, inextricably linked are the precision
of these measurements and the exploration of the dependence
of gravity on the spatial separation of the participating test
masses. A myriad of theories predict departures from the
inverse square law (ISL) model just below the resolution of
current experiments [17]. These theories often predict the
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existence of a new force mediated by a massive particle
exhibiting a characteristic range of λ = �/mγ c, where mγ

is the particle mass. In this case, the gravitational force would
arise from a Yukawa potential of the form

U (r) = −Gm1m2

r
(1 + αe−r/λ), (1)

where α is the coupling strength, m1 and m2 are the two
participating masses, and r is the spatial separation of the
masses. The work shown here offers the possibility to constrain
α near 10−5 for λ ∼ 10 cm for an improvement of 102 over
current limits [18–20].

In this paper we present preliminary gravity tests using
our technique with two experiments: a determination of the
statistical uncertainty for a measurement of the gravitational
constant and a forecast of a statistical constraint upon a putative
Yukawa-type fifth force. Our promising results motivate
further work to realize the full potential of this approach. In the
remainder of this paper we first discuss the atom interferometer
measurement, including the theoretical treatment along with
our measurement technique in Sec. II. We then describe the
apparatus and the current sensitivity in Sec. III, followed by
a characterization of the atom interferometer performance in
Sec. IV. Our evaluation of the statistical uncertainty for a
measurement of G is found in Sec. V A, and a forecast of a
constraint upon the Yukawa potential is found in Sec. V B.

II. ATOM INTERFEROMETER MEASUREMENT

The experiment measures acceleration using a pulsed-light,
π/2-π -π/2 atom interferometer [21]. The functional principle
of the interferometer can be understood with a simple model.
This model encapsulates much of the behavior exhibited by
the measurement process while neglecting several small, yet
important nuances, such as the effect of magnetic fields,
large local gradients in gravity, and wave-packet overlap, as
discussed below.

Consider the case of a test mass undergoing constant
acceleration. A measurement of the position of the mass
at three equispaced points in time defines the curvature or
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acceleration associated with its path as

a = x1 − 2x2 + x3

T 2 , (2)

where T is the time between successive position measurements
xi. For the atom interferometer, the test mass is the cesium
atom and the position measurements are referenced to a
pulsed, resonant optical field where the optical phase fronts
act as the ticks of a ruler. If this optical field is referenced
to a stable frame, then the final interferometer phase shift
reveals the acceleration of the atom with respect to that
frame along the direction defined by the light propagation.
Contributions from a constant velocity vanish in Eq. (2).

The detailed theory of light pulse atom interferometry is
available in Refs. [22] and [23]. In brief, to perform these
measurements, we interrogate the atoms with a velocity-
sensitive, two-photon stimulated Raman transition coupling
the 6S1/2, F = 3, and F = 4 hyperfine ground states of atomic
cesium. These transitions imprint the optical phase associated
with the Raman coupling onto the phase difference of the
hyperfine ground-state atomic wave functions. This phase is
a measure of the atom’s position during the Raman pulse. In
the limit of short, resonant pulses, the transition rules between
these two states take a simple form of

|3,p〉 → eiφ(t)|4,p + �keff〉
(3)|4,p + �keff〉 → e−iφ(t)|3,p〉,

where φ(t) = keff · x(t). Here x(t) is the mean position of
the wave packet at the pulse time t , p is the mean atom
momentum, and keff is the Raman wave vector defined by
keff = k1 – k2, where k1 and k2 are the wave vectors
of two counterpropagating Raman beams. Conservation of
momentum dictates that the atomic momentum change by �keff

for an atom undergoing a Raman transition. This amounts to a
velocity change of ≈7 mm/s in our experiment, which leads
to a macroscopic wave-packet separation of 0.6 mm over the
duration of the interferometer, which is 170 ms in this work.

These Raman pulses drive coherent Rabi oscillations
between the F = 3 and F = 4 ground states. The pulses are
characterized by the pulse area, defined here as � ≡ �R τp,
where �R is the Rabi frequency, which is assumed to be
constant, and τp is the duration of the pulse. As an example,
for an atom initially in F = 3, a � = π/2 pulse leaves
the atom in an equal superposition of F = 3 and F = 4,

analogous to an optical beam splitter. It follows that a � = π

pulse transfers an atom in F = 3 to F = 4 (and vice versa),
corresponding to a mirror. Therefore a π/2-π -π/2 pulse
sequence creates a Mach-Zehnder style atom interferometer
by splitting, redirecting, and then recombining the atom wave
packets. In practice, we employ an atomic fountain to loft
atoms vertically upward and apply keff in the lateral direction
(see Fig. 1). The force of earth’s gravitational pull causes the
atoms to arc in a parabolic trajectory, returning them to the
launch position such that they are in free fall for the entire
duration of the interferometer.

Each aforementioned position measurement is encapsu-
lated in the phase φ(t). Using the rules in Eq. (3) for a
π/2-π -π/2 interferometer, the transition amplitude for an
atom beginning in state F = 3 is

P (|4,p + �keff〉) = 1
2 [1 − cos(
φ)] , (4)
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FIG. 1. (Color online) Interferometer recoil diagram in an atomic
fountain with a gravity gradient. The prepared wave packet, |3,p〉,
interacts with the first π/2 pulse and splits in the lateral direction
into a coherent superposition of states |3,p〉 and |4,p + �keff〉 while
ascending to the apex of the trajectory. At the apex the wave packets
are redirected back toward one another by the π pulse. The final π/2
pulse recombines the wave packets near the original launch location.
The direction of keff determines that the interferometer measures gx ,
the lateral acceleration.

where


φ = φ1 − φa
2 − φb

2 + φ3, (5)

in analogy to Eq. (2). Here φ
j

i indicates the phase acquired
during the ith pulse for path j . For an atom in a uniform
gravitational field it follows that


φ = −keff · gT 2 + 
φ0, (6)

where g is the local acceleration due to gravity, T is the time
between interferometer pulses, and 
φ0 is an offset phase
which vanishes when the measurement is referenced to a stable
frame.

Additional effects contribute to the overall interferometer
phase shift. These include the phase evolution of the wave
packets in the two interferometer arms according to the
Feynman path integral approach [24], as well as a phase shift
arising from imperfect overlap of these wave packets following
the final π/2 pulse. These contributions are small relative to the
light phase shift yet are important for high-accuracy metrology
and are detailed in Refs. [23] and [1].

III. APPARATUS

Two simultaneous acceleration measurements at different
spatial locations typically constitute a gravity gradiometer.
Such a measurement approximates the spatial rate of change
in the gravity field. Accordingly, our gradiometer employs
two spatially separated gravimeters based on atom interfer-
ometry. Each gravimeter is configured to measure the lateral
component of gravity and the gravimeters are as well spatially
separated in the lateral direction (see Fig. 2). A key feature
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FIG. 2. (Color online) A scaled schematic of the Raman laser delivery in the experiment. (Note that the sensor separation is reduced for
the gravitational tests.) The Raman light enters the low-vacuum enclosure through optical fiber vacuum feedthroughs. Two collimated Raman
beams counterpropagate in free space through both sensors and reflect from a corner cube, giving two tiers for optical excitation. The schematic
shows the relative locations of the two UHV chambers in which the atom interferometers occur. The fountain trajectories are exaggerated
horizontally to depict motion.

of this technique is that both gravimeters are interrogated
with a common measurement laser, which ideally propagates
undisturbed between the gravimeters. Since both gravimeters
reference this laser, common mode platform noise is highly
suppressed in the differential acceleration measurement, as
discussed below.

Each gravimeter is a compact package with supporting
optomechanical hardware densely arranged around an in-
dependent ultrahigh-vacuum chamber of <10−9 Torr [25].
This package is surrounded by two layers of magnetic
shielding to isolate the measurement. To eliminate spurious
noise associated with beam steering as discussed below, the
entire gradiometer is enclosed in a low-vacuum chamber of
≈50 mTorr. The structure of the low-vacuum chamber is
carefully designed using finite-element analysis to avoid
significant misalignment of the Raman beams due to the large
forces experienced by the structure from evacuation.

Using atomic fountain techniques, we prepared a
2.3-μK [26], 3-mm 1/e2 radius cloud of ≈108 cesium atoms
in the 6S1/2F = 3,mf = 0 hyperfine ground state moving
upward at 1 m/s. The atoms are in darkness during the fountain,
except for three temporally separated pulses of resonant
Raman light which interrogate the trajectory as previously
described. Following the interferometer, the atoms return back
to approximately the same location from which they were
launched. At this point acceleration information is encoded in
the probability distribution between the two ground states.
In order to determine these two populations, and thus the
probability distribution, we project the superposition and spa-
tially separate the atoms according to their state with radiation
pressure. We then measure the respective populations of the
two states with a simultaneous fluorescence detection tech-
nique described in Ref. [27]. Counting the number of atoms in
both states enables the computation of a normalized transition
probability to |F = 4〉,PF=4 = N4/(N4 + N3), where Ni is the
number of atoms measured in state |F = i〉. This immunizes
the result against shot-to-shot atom number fluctuations. An
alternative use of this apparatus as an atomic clock is presented
in [28].

Due to the equivalence principle, it is impossible to
distinguish between acceleration of the atoms and the reference
mirror. In practice, platform vibrations cause spurious phase
shifts [
φ0 �= 0 in Eq. (6)], which severely limit the measure-
ment sensitivity if not properly controlled [29]. In the present
setup, this noise randomizes the phase of the interferometer at
levels larger than π radians. However, our instrument uses two
interferometers that share this noise in common such that the
difference phase is preserved with high fidelity. Plotting the
two transition amplitudes parametrically (see Fig. 3) reveals a
well-defined phase relationship between the sinusoidal outputs
of the two interferometers characterized by the ellipticity [30].
Accordingly, we use ellipse-specific fitting to determine the
differential phase and therefore the differential acceleration
signal between the two sensors as discussed further in Sec. IV.

The Raman laser is sourced from a cavity-locked diode
laser. This system consists of a New Focus Vortex 6017
laser locked to an optical cavity via the Pound-Drever-Hall
technique [31]. The cavity is built from low-expansion Zerodur
and has a hemispherical mirror geometry with a 10-cm
separation and a finesse of 8000. The cavity length is piezo-
controlled and in this manner locked to a Cs resonance to
eliminate drift and reduce low-frequency acoustic noise. The
cavity output has a linewidth of ≈15 kHz, and calculations
show that the gradiometer noise floor associated with this laser
is below the current sensitivity, as is discussed below.

The scrubbed output from the cavity is fiber coupled and
routed into the vacuum enclosures after further amplification
and frequency control. We use Photline fiber modulators
to generate the required 9.192 6-GHz hyperfine splitting
frequency difference between the two counterpropagating
Raman beams. The final amplification is performed inside the
low-vacuum enclosure with an Eagleyard tapered amplifier.
The tapered amplifier output is spatially filtered and then
collimated to a radius of r1/e = 6 mm. We achieve an intensity
of ≈100 mW/cm2 per beam with a single-photon detuning of
670 MHz blue of the |6P3/2,F

′ = 5〉 resonance, resulting in
a two-photon Rabi frequency of �R = 2π × 100 kHz. These
two beams are routed through a periscope and the two-level
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FIG. 3. (Color online) (a) An example of the measured normal-
ized transition probability PF=4 of the two interferometers, sensor 1
and sensor 2, which comprise the gradiometer. Common-mode
noise in the optical delivery system masks the phase information
in the individual sensors while the difference phase is preserved. (b)
Common-mode acceleration noise is suppressed when the normalized
transition probabilities of sensor 1 and sensor 2 are plotted parametri-
cally. 200 data points form this example of a low-phase-noise ellipse.
The shot-to-shot fluctuations of the phase readout indicate a noise of
1.6 mrad per 20-point ellipse.

Raman beam configuration shown in Fig. 2. A corner cube
reflector (PLX HM-25-1G) guarantees the parallelism of the
two beam levels to within 5 μrad, which is essential for good
interferometer contrast. In this configuration, the atoms inter-
act with the first π/2 pulse immediately after the launch via
the lower beam tier. The second pulse (π pulse) is applied with
the upper beam tier at the apex of the fountain, and the final
π/2 pulse again uses the lower tier as the atoms travel down
to the detection region. A crossed linear polarization Raman
excitation geometry is used to reduce susceptibility to parasitic
reflections, which give rise to standing-wave ac Stark noise.

Using this apparatus, we observe continuous time records
with a short-term phase noise of 3.1 mrad/

√
Hz inferred per

interferometer. For our system parameters, this corresponds to
a differential acceleration sensitivity of 4.2 × 10−9 g/

√
Hz or

3.0 × 10−9 g/
√

Hz inferred per accelerometer. It is noteworthy
that Bayesian techniques can be applied to the ellipse phase

n(r)
g

Raman beam

S1

S2

FIG. 4. Index of refraction variations in the air between the
sensors (S1 and S2) result in an angular deviation of the Raman
beam. Stochastic variations cause shot-to-shot fluctuations in the
differential projection of the two measurement axes onto g, which
limits sensitivity if not properly controlled.

estimation routine to reduce the noise and systematic offset
associated with simple ellipse fitting [32].

Although many parameters are explored to achieve this per-
formance, two key experimental factors bear discussion here:
intersensor beam steering effects and Raman laser frequency
stability. Perturbations to the Raman beam between the sensors
produce a differential projection of each sensor’s measurement
axis onto g (see Fig. 4). Considering that |keff|gzT

2 ≈ 106 rad

Se
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FIG. 5. Ellipse plots representing key noise limits. The normal-
ized transition probabilities, PF=4, of sensor 1 and sensor 2 are
plotted parametrically for three exemplary cases: (a) typical data
with air between the sensors, giving a differential phase noise of
190 mrad/

√
Hz; (b) typical data after evacuating the air but generating

the Raman beams with a DBR diode laser, giving a differential phase
noise of 38 mrad/

√
Hz, and (c) typical data using a cavity-locked

laser, giving a differential phase noise of 4.4 mrad/
√

Hz.
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for typical instrument parameters, it is clear that beam steering
at the nrad level will produce mrad interferometer phase shifts,
commensurate with the device noise floor. We find that in
practice, stochastic index of refraction variations in the air
between the sensors pose a severe limitation for horizontal
gradient measurements such as this where keff is perpendicular
to g [see Fig. 5(a)]. In our system, this effect limits the
differential phase noise to >190 mrad/

√
Hz. Although phase

readout below 1 mrad is routine in optical interferometers [33],
heat sources in our apparatus such as magnetic field coils
frustrate conventional solutions. We find that enclosing the
entire gradiometer in a low-vacuum chamber eliminates the
associated differential phase noise.

To a lesser degree, we find that Raman laser frequency
noise limits the differential phase noise, as shown in Ref. [3]
and later in Ref. [34]. To illustrate this effect, consider that a
discrete laser frequency change for one interferometer pulse
results in a phase error of δφ = 4πδνL/c, where δν is the
laser frequency change, c is the speed of light, and L is
the separation distance of the two interferometers. We have
measured that for a midinterferometer frequency jump of 1.161
MHz, a phase jump of 71.57 mrad results, corresponding to an
optical path length of L = 72.29 ± 0.09 cm after accounting
for the effect of the vacuum windows. This agrees with our
physical measurement of 72.39 ± 0.25 cm. In general, the
interferometer phase noise is a function of the laser frequency
noise spectrum up to a cutoff frequency commensurate
with the Rabi frequency [34]. We find that sourcing the
Raman laser with a δν ≈ 1 MHz linewidth distributed Bragg
reflector (DBR) diode limits the differential phase noise to
38 mrad/

√
Hz, as shown in Fig. 5(b). In contrast, a

δν ≈ 15 kHz linewidth cavity-locked laser enables a noise
of 3.1 mrad/

√
Hz inferred per interferometer [see Fig. 5(c)].

Calculations show that this cavity-laser performance is not a
limit for the current device performance.

IV. GRADIOMETER SENSITIVITY

In this section, we present the current performance of
the gradiometer including an evaluation of short- and long-
term noise performance. As previously discussed, the highly
common-mode noise shared by the interferometers allows the
use of ellipse-specific fitting to extract the differential phase
signal between the two interferometers. In our experiment, an
optimal fit is typically achieved with 20 data points. For a larger
sample, the fit gains a susceptibility to slight drifts in detection
offsets and interferometer phase during the collection of the
ellipse points, which typically takes 8 s for the 20 points. We
find that more than ten points are needed to achieve a good fit
and at times corresponding to more than 100 points, system
drifts degrade the ellipse fit performance.

We determine the short-term sensitivity of the interferom-
eters from the rms of a double, 3 σ outlier cut on a version
of the time record with drift removed as briefly elaborated
here. We log a time record of the ellipse phase values with 20
points per ellipse and calculate the mean values of successive
groupings of 20 ellipse phases. We subtract the slow drift from
the original time record using a shape-preserving piecewise
cubic interpolation of the mean value time record. We calculate
the rms of this smoothed record to reveal 3 σ outliers that we

g

FIG. 6. An Allan deviation analysis of the phase stability from
the differential acceleration measurement shows that the system can
integrate as white noise for periods of 2.5 × 103 s. Here 0.1 mrad
corresponds to 96 ×10−12 g. No attempt is made to correlate the data
with system environmental parameters.

then remove. We then smooth the resultant data set a second
time following the same procedure and again remove 3 σ

outliers. This protects the smoothing routine from the effects
of very large outliers, and the second cut removes much fewer
points than the first.

With this technique we observe continuous time records
with a short-term noise of 1.6 mrad per ellipse. In this case
T = 85 ms and our repetition rate was 2.55 Hz, giving a
differential acceleration sensitivity of 4.2 ×10−9 g/

√
Hz or

3.0 ×10−9 g/
√

Hz inferred per accelerometer. The long-term
performance shows white noise averaging for 2 × 103 s (see
Fig. 6). Electronic noise and noise caused by intensity and
frequency fluctuations of the detection laser are negligible.
The long-term noise is likely caused by environmental factors
such as temperature drift.

V. GRAVITATIONAL TESTS

In this section we explore the suitability of the device
for gravitational tests using a laboratory source mass. We
first show the instrument’s viability for a measurement of
G with a precision approaching 10−4. Second, we interpret
this measurement as a test of the inverse-square law. In both
cases we provide an outlook for future gravity tests using atom
interferometers.

A. Gravitational constant

In our measurement of the gravitational signal, we take
advantage of a symmetric source mass configuration to reduce
sensitivity to atom-source positioning (see Fig. 7). Relative
positioning of the source mass and atoms is a significant
source of error in previous measurements of G using atom
interferometry [1]. By placing the source mass between the
sensors, we make second-order the dependence of the field
on source position deviations along x̂. For technical reasons,
our experiment is performed with a small asymmetry in the
distance of the two sensors from the source masses. This does
not inhibit the present demonstration, as calculations show that
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FIG. 7. (Color online) Mass-sensor configuration for G measure-
ment where S1 and S2 are the positions of the atom interferometer
ensembles. The source masses are chopped between positions I and
II, subfigures (a) and (b), respectively. A side view is shown in (c),
depicting the ≈8” horizontal by ≈6” vertical opening to allow Raman
beam propagation between the sensors.

our position repeatability of <5 μm is sufficient for a precision
approaching 10−5, nor do the results indicate the presence of
any slow drifts in the mass signal.

In the setup shown in Fig. 7, each of the two 540-kg
source masses consists of 45 securely stacked laboratory
lead bricks (2”×4”×8”) strapped firmly to a LinTech 174630
precision positioning table. The positioning system enables
rapid relocation of the source mass between the two end
points or a 70-cm travel in less than 8 s. The table, motors,
and drivers are specifically chosen to manage the torque
and linear accelerations required for this motion profile. The
positioning achieves this repeatability with simple mechanical
limit switches at either end triggered by sloped flags. These
switches are approached slowly at ≈1 mm/s to avoid overshoot
due to the large inertia of the system. To modulate the
gravitational field, the source masses are chopped between
positions I and II at regular intervals (see Fig. 7). The signal at
each position is averaged for 40 s, which is empirically chosen
to minimize the introduction of noise from slow drifts in the
gradiometer phase. The mass motion is synchronized with the
interferometer timing system and data collection procedure.

Using the technique described above, we measure the
signal associated with modulating the gravity field between
two values, giving a square wave output [see Fig. 8(a)].
Slow, systematic drifts contaminate this signal such that
simple subtraction of adjacent values is inadequate to de-
termine the wave amplitude. We use three adjacent values
to approximate the local linear rate of drift and largely
remove this perturbation. Explicitly, for the kth value we
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FIG. 8. (Color online) (a) The gravity potential is chopped be-
tween two values to remove the sensitivity to long-term drifts in phase.
This modulates the differential gravity vector along keff by (64.93 ±
0.02) ×10−9 g at a repetition rate of 0.01 Hz. (b) The difference signal
of the chopped gradiometer phase for a 2.6-day averaging interval.
The resulting phase shift is determined to be 
θ = 67.85 ± 0.02 mrad.

report 
θk = �II
i − 1

2 (�I
i + �I

i+1), where k = i, measurement
i is the average of five consecutive ellipse phase values
and the superscript refers to the mass position in Fig. 7.
Our simulations show that this analysis underestimates the
short-term noise by 13% but does not affect the interpretation
of the long-term sensitivity. We remove occasional sections
of data that are excessively noisy due to the loss of Raman
laser cavity-lock. The resulting time records are concatenated
as shown in Fig. 8(b). An Allan deviation of this record (see
Fig. 9) reveals that the brick chop signal integrates as τ−1/2 for
105 s. Extrapolating the τ−1/2 trend to the full length of the data
set gives a phase resolution on the gravitational square wave
of 
θ = 67.85 ± 0.02 mrad. This is equivalent to a resolution
of 20 × 10−12 g. We therefore determine that this system can
perform a measurement of the gravitational constant with a
precision of δG/G = 3 × 10−4.

This demonstrates that our system has the potential to pro-
duce a measurement of the gravitational constant competitive
with the current precision of 1.2 × 10−4 [13]. Achieving
atom shot-noise limited sensitivity can enhance this result
20-fold [27]. Using a higher-density material such as tungsten
for the source mass, and arranging the source mass closer to the
atoms with an optimized source mass geometry as discussed in
Sec. V B can increase the signal more than 6-fold. Furthermore,
increasing the averaging time to 1 month can improve the result
3-fold. Combining these possibilities, we forecast a precision
of 1 × 10−6. For comparison, an evaluation of the sensitivity
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g

FIG. 9. Allan deviation of the difference phase. The local (three-
point) dedrift algorithm results in a signature rise in the signal between
102 and 104 s. At longer times, the accuracy of the Allan deviation is
restored, giving an uncertainty of ±0.02 mrad when extrapolated to
the end of the data set, corresponding to 20 × 10−12 g.

of a vertical gradiometer approach for measuring G [1,2]
can be found in [35]. A unique possibility for the horizontal
configuration is that the sensitivity can be further enhanced by
increasing the interrogation time and extending the vertical
dimension of the source mass, giving the potential for an
additional order-of-magnitude improvement. Finally, intrinsic
sensitivity improvements via large momentum transfer atom
optics [36,37] offer avenues for further investigation.

B. Testing the inverse square law

This experiment may also be configured as a test of
Newton’s inverse square law by directly measuring the spatial
dependence of the gravitational field. In this section we
characterize a test that is possible with the current apparatus
and then describe an optimized test using upgrades to the
sensitivity and the mass configuration.

To place constraints on the strength and length scale of a
Yukawa-type force, it is convenient to form ratio quantities
in which both the absolute value of the mass as well as
the gravitational constant cancel, leaving only the spatial
dependence of the force law [38]. This avoids the necessity of
comparison with the poorly known value of G and an absolute
mass reference.

In our experiment we measure relative quantities, chopping
the test mass between a null reference position and a position
of interest, to eliminate slow drifts in the interferometer phase.
We therefore construct the ratio


 ≡ (a1 − ar ) − (a2 − ar )

a2 − ar

= a1 − a2

a2 − ar

, (7)

where ai are acceleration measurements performed at different
positions and ar is a reference position. In Eq. (7) the
numerator and denominator quantities can be considered
as two independent measurements with a statistical error
equivalent to that described in Sec. V A. Using this measured
error, we predict the performance of a Yukawa test with our
apparatus by forming the constraint


Y − 
N � σm, (8)

where the subscripts Y and N refer to the Yukawa and
Newtonian quantities, respectively, and σm is calculated using
error propagation of the measured 2σ precision in Sec. V A or
40 ×10−12 g. We note that this precision was attained with
a short, 2.6-day averaging duration which can in principle be
increased.

We carefully choose the positions of the three measure-
ments in order to optimize the constraint. The reference
measurement ar is taken at position II noted in Fig. 7,
while a1 is taken at position I. The optimal constraint on α

occurs when (a2 − ar ) = (a1 − a2). This equates to locating
the intermediate point a2 at 
y = 21 cm offset from position
I, which gives roughly half of the acceleration signal when
compared to a1. Note that in this prediction the demonstrated
experimental precision is reasonably assumed to hold at an
intermediate point.

For a Yukawa force, the acceleration is given by

ai = Gm

r2
i

[1 + αe−ri /λ(1 + ri/λ)]. (9)

Using this, Eq. (8) may be solved for α to determine an
ISL constraint. However, due to our complicated source mass
geometry, we numerically evaluate the terms in Eq. (8) for
comparison with the value of σm implied by our precision.
Specifically, in our experiment the Yukawa acceleration is
given by

aY
x =

∑
i

Gmixi

r3
i

[
1 + αe−ri /λ

(
1 + ri

λ

)]
, (10)

where ri = (x2
i + y2

i + z2
i )1/2, while the Newtonian accelera-

tion is given by

aN
x =

∑
i

Gmixi

r3
i

, (11)

where the subscript i refers to a particular voxel in the mass
distribution. Figure 10 shows parametric curves for which
Eq. (8) would be satisfied for our device, along with the present
limits from [18–20]. We predict a 2σ statistical constraint
on α of 8 × 10−3 with this apparatus. This suggests that this
experiment is currently within a factor of 6 of improving the
limits on α near λ = 20 cm.

In future experiments, significant improvements to this
constraint are possible. We explore this by highlighting an
optimized source mass geometry. To begin, we note that the
constraint is limited by the weakest of the two signals, a1

and a2, since the acceleration uncertainty is absolute. In an
experiment of this type, it is common practice to increase the
source mass with increasing distance, to mute this effect [38].
Furthermore, we consider an enhanced gravitational signal due
to increased source mass density (tungsten instead of lead) and
reduced proximity. The proposed setup is shown in Fig. 11. We
choose a cylindrical source mass geometry to allow derivation
of an analytic model. For simplicity, this analysis assumes the
ensemble is stationary in time.

We use a bounded minimum search to find optimal values
for all parameters shown in Fig. 11. These values are listed in
Table I for three chosen cases: a mass limit of 1000 kg with a
nearest approach of d1 = 1 cm, and a mass limit of 5000 kg with
a nearest approach of d1 = 1 and 0.1 cm. The results of these
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FIG. 10. (Color online) Statistical atom interferometer (AI)
Yukawa constraint using 2-σ confidence bounds (shaded dark gray)
is compared with the present limits from [18–20] (shaded light gray).
This apparatus could be used to constrain α at the 8 × 10−3 level
for λ near 20 cm. Three forecast curves are shown for the tungsten
configurations detailed in Table I. With upgrades to the test mass
configuration, the demonstrated sensitivity can exceed current limits
with a source-to-atom distance of 10 mm and mass of 1000 kg.
Achieving atom shot-noise limited sensitivity and increasing the
mass to 5000 kg predicts limits approaching the 10−5 level for
source-to-atom distances of 10 and 1 mm (see Fig. 11).

projections are shown in Fig. 10. We note that the prediction
for configuration A is readily achievable using an optimized
geometry with the demonstrated sensitivity of the apparatus.

1

(a)

II

t
(b)

Position I

Position II

x

y

S1 S2
I2

R

d

Raman Beams

Top view

L

t

I

1

1 d1

1

S1 S2

2
R

d L
II

End view

R

2 d2

2

2

y

z

FIG. 11. (Color online) Proposed cylindrical mass configuration
for an improved ISL measurement. The source mass positions
alternate between a null position and configuration I or II, (a) and
(b), respectively. The parameter d1 represents the distance of closest
approach to the atoms and L is chosen to be much larger than the
spatial extent of the source masses. Parameter values are given in
Table I for three configurations.

TABLE I. Optimized tungsten source mass parameters for pro-
posed ISL tests in Fig. 11 found by limiting the nearest source-
mass-to-atom ensemble distance to either 0.1 or 1.0 cm, and limiting
the largest mass to either 1000 or 5000 kg. Predictions using these
parameters are shown in Fig. 10.

Configuration A B C

Position I d1 [cm] 1.0 1.0 0.1
t1 [cm] 12.7 21.5 21.3
R1 [cm] 13.6 22.5 21.4
m1 [kg] 117 660 588

Position II d2 [cm] 15.0 24.3 22.4
t2 [cm] 26.3 45.3 45.8
R2 [cm] 25.1 42.7 42.5
m2 [kg] 1000 5000 5000

Plotted also are the constraints achievable using configurations
B and C, and our demonstrated atom shot-noise limited
detection [27]. Reducing the atom-mass proximity to d1 =
0.1 cm significantly extends the constraint to shorter λ. Further
avenues for improvement as discussed in Sec. V A apply
equally here, prompting forecast exclusions of α below 10−5.

Bringing the source to a distance of 0.1 cm from the
atoms represents a significant experimental challenge, as
this is equivalent to the size of the cloud in the current
apparatus. However, recent progress in atomic fountains has
demonstrated atom cooling and launch techniques that can be
modified to achieve high localization and low expansion [39].
Recent theoretical work indicates that further refinements can
provide a measurement at the 10-cm length scale exceeding
well beyond the 10−5 level [40]. At this proposed precision
level, many sources of error can limit the accuracy. Possibilities
include edge effects from the finite source mass extent, surface
flatness, and launch angle with respect to the source mass
surface. Furthermore, the extended baseline of L 
 1 m will
place an additional constraint on the frequency stability of the
Raman laser which scales with baseline. Refinements to both
the source mass and source mass modeling will be necessary
for these measurements.

VI. CONCLUSION

We have presented here a horizontal gravity gradiometer
for precision gravitational tests. Using this apparatus, we have
demonstrated a statistical uncertainty of 3 × 10−4 for a proof-
of-concept measurement of the gravitational constant that is
competitive with the present limit of 1.2×10−4. Improvements
can enable uncertainties falling well below 10−5. We have
also interpreted this work as a constraint on a Yukawa-type
fifth force and project a 102 improvement over current known
constraints near λ = 10 cm. The horizontal configuration
offers the potential for superior tests of gravitational physics.
The free-fall nature of the atom interferometer technique
benefits from maximizing the inertially relevant dwell time
of the atoms near the proof mass. As a result, a surface
oriented normal to gravity and probed in the same direction
will achieve this goal. However, this approach presents a new
challenge in implementation, namely, a first-order sensitivity
to Raman laser beam steering, which couples to the signal from
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earth’s gravitational force. We have shown that evacuation
of the Raman beam path overcomes this challenge. We also
clearly show the importance of stabilization of the Raman laser
frequency for low phase-noise measurements with meter-scale
baselines. Incorporating the former into a reimagined test mass
geometry as well as reducing the separation of the atoms and
the proof masses can result in a significant improvement to our
knowledge of gravity.
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