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Quantum quench phase diagrams of an s-wave BCS-BEC condensate
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We study the dynamic response of an s-wave BCS-BEC (atomic-molecular) condensate to detuning quenches
within the two-channel model beyond the weak-coupling BCS limit. At long times after the quench, the condensate
ends up in one of three main asymptotic states (nonequilibrium phases), which are qualitatively similar to those
in other fermionic condensates defined by a global complex order parameter. In phase I the amplitude of the
order parameter vanishes as a power law, in phase II it goes to a nonzero constant, and in phase III it oscillates
persistently. We construct exact quench phase diagrams that predict the asymptotic state (including the many-body
wave function) depending on the initial and final detunings and on the Feshbach resonance width. Outside of
the weak-coupling regime, both the mechanism and the time dependence of the relaxation of the amplitude of
the order parameter in phases I and II are modified. Also, quenches from arbitrarily weak initial to sufficiently
strong final coupling do not produce persistent oscillations in contrast to the behavior in the BCS regime. The
most remarkable feature of coherent condensate dynamics in various fermion superfluids is an effective reduction
in the number of dynamic degrees of freedom as the evolution time goes to infinity. As a result, the long-time
dynamics can be fully described in terms of just a few new collective dynamical variables governed by the
same Hamiltonian only with “renormalized” parameters. Combining this feature with the integrability of the
underlying (e.g., the two-channel) model, we develop and consistently present a general method that explicitly
obtains the exact asymptotic state of the system.
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I. INTRODUCTION

The problem of a superconductor driven out of equilibrium
by a sudden perturbation goes back many decades. Early
studies [1–6] addressed small deviations from equilibrium
using linearized equations of motion. An important result was
obtained by Volkov and Kogan [3], who discovered a power
law oscillatory attenuation of the Bardeen-Cooper-Schriffer
(BCS) order parameter for nonequilibrium initial conditions
close to the superconducting ground state.

In the past decade it was realized that even large deviations
from equilibrium are within the reach of appropriate theo-
retical methods. Recent studies, motivated by experiments
in cold atomic fermions, focused on quantum quenches,
nonequilibrium conditions created by a sudden change in
the superconducting coupling strength. Barankov et al. [7],
in a paper that set off a surge of modern research in this
long-standing problem [8–24] in the context of quantum gases,
found that for initial conditions close to the unstable normal
state, the order parameter exhibits large anharmonic periodic
oscillations.

Subsequently, Yuzbashyan et al. [16] developed an ana-
lytical method to predict the state of the system at large
times based on the integrability of the underlying BCS model.
This work extended Volkov and Kogan’s result to large
deviations from equilibrium and showed that the oscillation
frequency is twice the nonequilibrium asymptotic value of the
order parameter, a conclusion confirmed by recent terahertz
pump pulse experiments in Nb1-xTixN films [25,26]. Later
studies [17,18] mapped out the full quantum quench “phase
diagram” for weakly coupled s-wave BCS superconductors
finding that three distinct regimes occur depending on the

strength of the quench: Volkov-and-Kogan-like behavior,
persistent oscillations, and exponential vanishing of the order
parameter. Most recent research [27–30] fueled by exper-
imental breakthroughs [25,31,32] investigates nonadiabatic
dynamics of s-wave BCS superconductors in response to fast
electromagnetic perturbations. Closely related subjects devel-
oping in parallel are exciton dynamics [33], collective neutrino
oscillations [34,35], quenched p-wave superfluids [36,37], etc.

Most existing work addressed the dynamics in the BCS
regime and, in particular, quenches such that the interaction
strength is weak both before and after the quench. This was
so that the system always remains in the BCS regime, since
the physics of the condensate beyond this regime was not
sufficiently well understood. However, a superfluid made up
of cold atoms can be as well quenched from the BCS to
the Bose-Einstein condensation (BEC) regime or within the
BEC regime. With few exceptions [23,36,37], these types of
quenches are not adequately studied in the existing literature.

Our paper aims to close this gap and analyze all possible
interaction quenches throughout the BCS-BEC crossover in a
paired superfluid, including BCS-to-BEC, BEC-to-BCS, and
BEC-to-BEC quenches. We fully determine the steady state of
the system at large times after the quench: the asymptote of the
order parameter, as well as the approach to the asymptote; the
many-body wave function; and certain observables, such as
the radio-frequency absorption spectrum and the momentum
distribution. In the BCS limit, we recover previous results.
Beyond this limit the dynamics is quantitatively and some-
times qualitatively different. For example, the power law in
the Volkov-and-Kogan-like attenuation changes in the BEC
regime, exponential vanishing is replaced with a power law,
and persistent oscillations first change their form and then
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disappear altogether after a certain threshold for quenches
from any initial (e.g., arbitrarily weak) to sufficiently strong
final coupling. We believe an experimental verification of
the predictions of this work is within a reach of current
experiments in cold atomic systems.

The long-time dynamics can be determined explicitly due
to a remarkable reduction mechanism at work, so that at large
times the system is governed by an effective interacting Hamil-
tonian with just a few classical collective spin or oscillator
degrees of freedom. In a sense, the system “flows in time” to a
much simpler Hamiltonian. This observation, combined with
the integrability of the original Hamiltonian (see below), lead
to a method originally proposed in Ref. [16] for obtaining the
long-time asymptote (steady state) of integrable Hamiltonian
dynamics in the continuum (thermodynamic) limit. Here we
improve this method as well as provide its comprehensive and
self-contained review including many previously unpublished
results and steps. We do so in the context of the s-wave
BCS (one channel) and inhomogeneous Dicke (two-channel)
models, but with some modifications the same method also
applies to all known integrable pairing models [38–44], such
as p + ip superfluids [36,37], integrable fermion or boson
pairing models with nonuniform interactions [45,46], Gaudin
magnets (central spin models), and potentially can be extended
to a much broader class of integrable nonlinear equations.

The purpose of this paper is therefore twofold. First, it
serves as an encyclopedia of quantitatively exact predictions,
new and old, for the quench dynamics of real s-wave BCS-BEC
condensates in two and three spatial dimensions. Readers
primarily interested in this aspect of our work will find most
of the relevant information in the Introduction, Sec. VII,
and Conclusion. In particular, Sec. I D concisely summarizes
our main results and provides a guide to other sections that
contain further results and details. Our second goal is to
develop and thoroughly review a method for determining the
far-from-equilibrium dynamics in a certain class of integrable
models. We refer readers interested in learning about the
method to Sec. II. Also, from this viewpoint, Secs. III and IV
should be considered as applications of our approach and
Sec. V as a related development.

A major experimental breakthrough with ultracold atoms
was achieved in 2004, when they were used to emulate s-wave
superconductors with an interaction strength that can be varied
at will [47,48]. The experimental control parameter is the
detuning ω, the binding energy of a two-fermion bound state
(molecule). This parameter determines the strength of the
effective interaction between fermions and can be varied both
slowly and abruptly with the help of a Feshbach resonance.
Moreover, it is straightforward to make time-resolved mea-
surements of the subsequent evolution of the system. Thus,
cold atoms provide a natural platform to study quenches in
superfluids and in a variety of other setups [49,50].

At large ω we have fermionic atoms with weak effective
attraction that form a paired superfluid, an analog of the
superconducting state of electrons in a metal. As ω is
decreased, the atoms pair up into bosonic molecules which
then Bose condense. It was argued for a long time that both
the paired superfluid and the Bose-condensed molecules are in
the same phase of the fermionic gas, named the BCS-BEC
condensate [51,52]. As ω decreases, the strength of the

effective interaction (coupling) between fermions increases
from weak to strong and the system undergoes a BCS-BEC
crossover. At ω � 2εF , where εF is the Fermi energy, the
system is deep in the BCS regime, while at large negative ω

it is deep in the BEC regime. It is not known how to recreate
such a crossover in a conventional solid-state superconductor
since the interaction strength cannot be easily adjusted.

In a quantum quench setup the system is prepared in the
ground state at a detuning ωi . At t = 0 the detuning is suddenly
changed, ωi → ωf . At t > 0 the system evolves with a new
Hamiltonian H (ωf ). The main goal is to determine the state
of the system at large times, t → ∞.

A. Models and approximations

We consider two closely related models in this paper in both
two and three dimensions. The first one is the well-known
two-channel model that describes two species of fermionic
atoms interacting via an s-wave Feshbach resonance

Ĥ2ch =
∑

p,σ=↑,↓
εpâ

†
pσ âpσ +

∑
q

(
ω + q2

4m

)
b̂†qb̂q

+ g
∑
pq

(
b̂†qâ q

2 +p,↑â q
2 −p,↓ + b̂qâ

†
q
2 −p,↓â

†
q
2 +p,↑

)
. (1.1)

It is convenient to think of the two types of fermions of mass
m and energy εp = p2/2m as spin-up and spin-down, created
and annihilated by operators â

†
pσ and âpσ . The interaction term

converts two fermions into a bosonic molecule and vice versa
at a rate controlled by the parameter g. Molecules are created
and annihilated by b̂

†
q and b̂q and have a binding energy ω.

The parameter g is set by the type of atoms and the specifics
of a particular Feshbach resonance and cannot be changed
in a single experiment; ω can be varied at will by varying the
magnitude of the magnetic field applied during the experiment.
This model describes atoms in the BCS regime when ω is
large, which undergo a crossover to the BEC regime as ω is
decreased.

A parameter with dimensions of energy important for our
analysis of this model is g2νF , where νF is the bulk density of
states (proportional to the total volume) at the Fermi energy
εF . A well-known parameter,

γ = g2νF

εF

, (1.2)

controls whether the resonance is narrow γ � 1 or broad
γ � 1. This parameter is the dimensionless atom-molecule
interaction strength or, equivalently, the resonance width.

A very convenient feature of the narrow resonance is that,
regardless of the regime of the system, controlled by ω, the
system is adequately described with mean-field theory [53].
This is already clear from the form of the Hamiltonian: Small
γ implies that interaction g is small.

Broad resonances, on the other hand, correspond to large
g. Under those conditions it is possible to integrate out the
molecules b̂q to arrive at a simpler Hamiltonian [53] describing
fermions interacting via a short-range attractive interaction
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with variable strength,

Ĥ1ch =
∑

p,σ=↑,↓
εpâ

†
pσ âpσ

− λ

νF

∑
pp′q

â
†
q
2 −p,↓â

†
q
2 +p,↑â q

2 +p′,↑â q
2 −p′,↓, (1.3)

where

λ = g2νF

ω
= γ εF

ω
. (1.4)

This is the single (one)-channel, or BCS, model, which is
the second model we analyze in this paper. It also describes
the BCS-BEC crossover as ω is decreased (λ is increased).
However, while in the BCS and (to some extent) in the BEC
regimes corresponding to large and small λ, respectively,
mean-field theory holds in equilibrium, for the intermediate
values of λ (neither large nor small) the mean-field theory
is known to break down. A special value of λ in the middle
of the regime unaccessible to the mean-field theory already
in equilibrium is called the unitary point. It corresponds to
the interaction strength where molecules are about to be
formed. Noncondensed molecules play an important role in
the description of the unitary point and its special properties
are a subject of many studies in the literature [52,54].

Just as in earlier work on the far-from-equilibrium su-
perconductivity, we analyze the quench dynamics in the
mean-field approximation where no molecules are transferred
into or out of the BCS-BEC condensate after the quench;
i.e., the dynamics of the condensate is decoupled from
the noncondensed modes. We analyze the validity of this
approximation for nonequilibrium steady states produced by
quenches in the two-channel model in Appendix A. We find
that the situation is similar to that in equilibrium [53]. In the
case of a broad Feshbach resonance, mean field is expected
to hold for quenches where both initial and final detunings
are far from the unitary point. A quench into the unitary point
is a very interesting problem addressed by some publications
before [55], but the method we employ here is not applicable
to this case.

Nevertheless, a variety of quenches are still accessible to
our description even when the resonance is broad, includ-
ing BCS → BCS, BCS → BEC, BEC → BCS, and BEC →
BEC, where BCS and BEC stand for the value of the interaction
strength far weaker or far stronger than that at the unitary point.
In the case of BCS-BEC superfluids formed with interactions
generated by narrow Feshbach resonances, the mean-field
theory treatment is valid even at the threshold of the formation
of the bound state and throughout the BCS-BEC crossover.
Here we consider quenches of the detuning ω for both narrow
and broad resonances within the mean field. Note that in the
case of the one-channel model we expect the mean field on the
BEC side to be valid only in the far BEC limit where the ground
state essentially consists of noninteracting Bose-condensed
molecules [56].

In the mean-field treatment the condensate is described by
the q = 0 part of the Hamiltonian (1.1), which is decoupled
from q 	= 0 terms in this approximation. The Hamiltonian

therefore becomes

Ĥ2ch =
∑

p

2εpŝ
z
p + ωb̂†b̂ + g

∑
p

(b̂†ŝ−
p + ŝ+

p b̂), (1.5)

where

ŝ−
p = âp↑â−p↓, ŝz

p = 1
2

(
â
†
p↑âp↑ + â

†
−p↓â−p↓ − 1

)
(1.6)

are Anderson pseudospin- 1
2 operators [1] and

b̂ = b̂q=0.

Hamiltonian (1.5) is also known as inhomogeneous Dicke
or Tavis-Cummings model. In a quantum quench problem
we need to solve Heisenberg equations of motion for this
Hamiltonian for given initial conditions

d 
̂sp

dt
= 
̂Bp × 
̂sp,

db̂

dt
= −iωb̂ − igĴ−,

(1.7)

̂J =

∑
p


̂sp, 
̂Bp = 2g 
̂b + 2εpẑ,

where 
̂b = b̂x x̂ + b̂y ŷ, b̂x , and −b̂y are Hermitian and anti-
Hermitian parts of the operator b̂ = b̂x − ib̂y , and x̂,ŷ,ẑ are
coordinate unit vectors.

The second step in the mean-field treatment of the two-
channel model is to replace Heisenberg operator b̂(t) in the
first equation of motion in Eq. (1.7) with its time-dependent
quantum-mechanical average, b̂(t) → 〈b̂(t)〉 ≡ b(t), which is
expected to be exact in thermodynamic limit as long as the
q = 0 state is macroscopically occupied at all times. This
replacement can be shown to be exact in equilibrium using
the exact solution for the spectrum of the inhomogeneous
Dicke model [38,57] and numerically for the time-dependent
problem [58]. Upon this replacement equations of motion be-
come linear in operators and taking their quantum-mechanical
average, we obtain


̇sp = 
Bp × 
sp, ḃ = −iωb − igJ−,
(1.8)


J =
∑

p


sp, 
Bp = 2g
b + 2εpẑ,

where 
sp = 〈
̂sp〉. These are Hamiltonian equations of motion
for a classical Hamiltonian,

H2ch =
∑

p

2εps
z
p + ωb̄b + g

∑
p

(b̄s−
p + bs+

p ), (1.9)

which describes a set of angular momenta (classical spins or
vectors) coupled to a harmonic oscillator. Here, b̄ denotes the
complex conjugate of b. These dynamical variables obey the
Poisson brackets{

sa
p ,sb

k

} = −εabcδpks
c
p, {b,b̄} = i, (1.10)

where a, b, and c stand for spatial indicies x, y, and z.
Similar steps in the case of the single-channel model (1.3)

lead to a classical spin Hamiltonian,

H1ch =
∑

p

2εps
z
p − λ

νF

∑
p,p′

s−
p s+

p′ , (1.11)

together with the corresponding equations of motion.
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An important characteristic of the system both in and out
of equilibrium is the superfluid order parameter or the gap
function defined in the two-channel model as


(t) = −g〈b̂(t)〉 = −gb(t) ≡ 
x(t) − i
y(t). (1.12)

In the one-channel limit, this expression turns into


1ch(t) = λ

νF

∑
p

〈âp↑(t)â−p↓(t)〉 = λ

νF

∑
p

s−
p . (1.13)

The magnitude |
(t)| of the order parameter is known as
the Higgs or amplitude mode for its similarity with the
Higgs boson [20,59] and its time-dependent phase represents
a Goldstone mode. Note, however, that out of equilibrium
the gap function does not entirely determine the state of the
system. It specifies the effective magnetic field acting on each
spin according to Eq. (1.8), but there is still a certain freedom
in how the spin moves in this field. For example, even for
a constant field the spin can precess around it, making an
arbitrary constant angle with its direction.

In the above models we took a free single-particle spectrum,
εp = p2/2m, and labeled states with momenta p. This choice
is not essential for our analysis. We can as well consider an ar-
bitrary spectrum εi . The pairing is then between pairs of time-
reversed states [60,61]; see also the first two pages in Ref. [13]
for more details. For example, in Hamiltonian (1.5) this results
in relabeling 
̂sp → 
̂si , âp↑â−p↓ → âi↑âi↓, â

†
p↑âp↑ → â

†
i↑âi↑,

etc., where the state |i ↓〉 is the time-reversed counterpart of
|i ↑〉. Our results below depend only on the density of the
single-particle states ν(ε) in the continuum limit regardless of
whether these states are characterized by momenta p or any
other set of quantum numbers i.

B. Ground state

In the ground state


(t) = 
0e
−2iμt , (1.14)

where the magnitude 
0 is time independent. Apart from
an overall rotation about the z axis with frequency 2μ, the
ground state is a static solution of the equations of motion that
minimizes H2ch. The minimum is achieved when each spin is
directed against its effective magnetic field, i.e.,

s−
p = 
0e

−2iμt

2E(εp; 
0,μ)
, sz

p = − εp − μ

2E(εp; 
0,μ)
, (1.15)

where

E(ε; 
,μ) ≡
√

(ε − μ)2 + 
2. (1.16)

Note that the length of the spin sp = 1/2. This is because the
ground state is a tensor product of single spin- 1

2 wave functions

and 
sp = 〈
̂sp〉.
The equation of motion (1.8) for b yields

|J−| = (ω − 2μ)
0

g2
, (1.17)

which implies a self-consistency equation for 
0

(ω − 2μ)

g2
=
∑

p

1

2E(εp; 
0,μ)
. (1.18)

Further, the Hamiltonian (1.9) conserves

n = bb +
∑

p

(
sz

p + 1

2

)
, (1.19)

which is the average total number of bosons and fermion pairs.
This number is related to 
0 and the chemical potential μ as

2n = 2
2
0

g2
+
∑

p

[
1 − εp − μ

E(εp; 
0,μ)

]
. (1.20)

The Fermi energy εF is the chemical potential of the
fermionic atoms at zero temperature in the absence of any
interaction, when only fermions are present. It provides an
overall energy scale and it is convenient to measure all energies
in units of the Fermi energy. Thus, from now on, we set
everywhere below

εF = 1. (1.21)

Below we often switch from discrete to continuum (ther-
modynamic limit) formulations. In the former version, there
are N discrete single-particle energy levels εp with certain
degeneracy each. Any quantity Ap we consider in this paper
depends on p only through εp, Ap = A(εp). For example, all
spins 
sp on a degenerate level εp are parallel at all times
and effectively merge into a single vector. There are N such
vectors, so we count N distinct classical spins.

In thermodynamic limit, energies εp form a continuum
on the positive real axis, i.e., are described by a continuous
variable ε with a density of states ν(ε) that depends on the
dimensionality of the problem

ν(ε) = νF f (ε), (1.22)

where νF is the bulk density of states (proportional to
the system volume) at the Fermi energy, f (ε) = 1 in two
dimensions (2D), and f (ε) = √

ε in 3D. Summations over
p turn into integrations,∑

p

Ap → νF

∫ ∞

0
A(ε)f (ε)dε. (1.23)

With only fermions present, the total particle number is

2n =
∫ 1

0
2ν(ε)dε = 4

d
νF , (1.24)

where d = 2,3 is the number of spatial dimensions. Interaction
redistributes this number between fermions and bosons as in
Eq. (1.20). Combining Eqs. (1.20) and (1.24) and taking the
continuum limit, we obtain

4

d
= 2
2

0

γ
+
∫ ∞

0

⎡⎣1 − ε − μ√
(ε − μ)2 + 
2

0

⎤⎦ f (ε)dε, (1.25)

where γ is the dimensionless resonance width defined in
Eq. (1.2).

Similarly, Eq. (1.18) becomes in the thermodynamic limit

2ω − 4μ

γ
=
∫ ε�

0

f (ε)dε√
(ε − μ)2 + 
2

0

, (1.26)
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-12

-8

-4

0
F

FIG. 1. (Color online) Ground-state chemical potential μ for the
two-channel model in 3D in units of the Fermi energy εF as a function
of the ground-state gap 
0 for various resonance width γ . μ(
0) is
calculated from Eqs. (1.25) and (1.26). Note that in the two-channel
model 
0 is bounded from above by 
max.

where ε� is the high-energy cutoff. In 3D it can be eliminated
by an additive renormalization of the detuning ω; see, e.g.,
Ref. [53]. This, however, does not affect our results for the
quench dynamics as they depend on the difference between
the initial and final values of the detuning.

Equations (1.25) and (1.26) contain two independent
parameters not counting the cutoff. For example, we can
choose γ and ω and determine μ and 
0 from these equations,
or choose γ and 
0 and determine μ and ω etc.; see Fig. 1 for a
plot of μ(
0) for various γ in 3D. Note also that 
2

0 = g2b̄b is
proportional to the number of bosons and is therefore limited
by the total number of particles. Equation (1.25) implies


0 �
√

2γ

d
= 
max. (1.27)

C. Quench setup and initial conditions

In a quantum quench setup we prepare the system in a
ground state at a certain detuning ωi ; i.e., the initial state is

s−
p (t = 0) = 
0i

2E(εp; 
0i ,μi)
,

(1.28)

sz
p(t = 0) = − εp − μi

2E(εp; 
0i ,μi)
,

where 
0i ,μi are the ground-state values determined by
Eqs. (1.25) and (1.26) with ω = ωi . We then quench the
detuning ωi → ωf and evolve the system with the two-channel
Hamiltonian (1.9) starting from the initial state (1.28) at t = 0.

The state of the system is fully determined by the many-
body wave function, which in the mean-field treatment is at all
times a product state of the form

|�(t)〉 = |ψ(t)〉 ⊗ (b̂†)n(t)|0〉, (1.29)

where n(t) = |b(t)|2 and |ψ(t)〉 is the fermionic part of the
wave function:

|ψ(t)〉 =
∏

p

[up(t) + vp(t)â†
p↑â

†
−p↓]|0〉. (1.30)

Bogoliubov amplitudes up(t),vp(t) obey the Bogoliubov de
Gennes (BdG) equations

i
∂

∂t

(
up(t)

vp(t)

)
=
(

εp 
(t)


̄(t) −εp

)(
up(t)

vp(t)

)
, (1.31)

with the normalization condition |up|2 + |vp|2 = 1. Apart
from an overall time-dependent phase (which is important
for certain observables), these equations are equivalent to the
classical spin equations of motion (1.8) and spins are related
to the amplitudes as

s−
p

sp
= 2upvp,

sz
p

sp
= |vp|2 − |up|2, (1.32)

where sp is the length of the spin. For quench initial conditions
sp = 1/2, as explained below Eq. (1.16).

Each quench is uniquely characterized by three parameters:
the resonance width γ = g2νF and the initial ωi and final ωf

values of the detuning in units of the Fermi energy. Indeed,
ωi and γ determine 
0i and μi and thus the initial condition,
while the equations of motion (1.7) in the thermodynamic limit
depend only on ωf and γ . To see the latter, note that model
parameters enter the equation of motion for spin 
sp ≡ 
s(εp)
only through 
 = −gb, while the equation of motion for the
bosonic field b can be equivalently written as


̇ = −iωf 
 + iγ

∫ ∞

0
s−(ε)f (ε)dε. (1.33)

Instead of ωi,ωf we find it more convenient to characterize
the quench by 
0i ,
0f , the ground-state gaps corresponding
to these values of the detuning. As discussed below Eq. (1.26),
for a given γ , the detuning ω uniquely determines 
0 and
vice versa. Note that 
0f has nothing to do with the time-
dependent gap function 
(t) and in particular with the large-
time asymptote 
(t → ∞). Whenever 
(t) goes to a constant
at large times, we denote this constant 
∞.

D. Main results

Our main result is a complete description of the long-time
dynamics of two- and one-channel models (1.9) and (1.11)
in two and three spatial dimensions following a quench of
the detuning ωi → ωf (coupling λi → λf in the one-channel
model) in the thermodynamic limit. A key effect that makes
such a description possible is a drastic reduction in the number
of effective degrees of freedom as t → ∞. It turns out that the
large-time dynamics can be expressed in terms of just a few
new collective spins plus the oscillator in the two-channel case
that are governed by the same Hamiltonians (1.9) and (1.11)
only with new effective parameters replacing εp and ω. The
number of collective spins is m = 0, 1, or 2 and m = −1, 0,
or 2 for one- and two-channel models, respectively, depending
on the quench. The difference is due to the presence of the
oscillator degree of freedom in the latter case. For example,
m = −1 means that the effective large-time Hamiltonian Hred

not only has no spins, but also the oscillator b is absent; i.e.,
Hred = 0. This reduction effect combined with integrability of
classical Hamiltonians (1.9) and (1.11) allows us to determine
the state of the system (its many-body wave function) at t →
∞. We explain this method in detail in Sec. II. This section
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provides a summary of main results obtained with the help of
this method.

In Secs. III and IV, we construct exact quench phase
diagrams shown in Figs. 2–5. Depending on the values of
ωi and ωf either system reaches one of three distinct steady
states labeled by I, II (including subregion II′), and III that can
be thought about as nonequilibrium phases with second-order
phase transition lines between them [t → ∞ limit of the order
parameter 
(t) is continuous along lines separating different
regions]. These steady states correspond to m = 0, 1, or 2
collective spins, respectively, for the one-channel model and
to m = −1, 0, or 2 in the case of two channels.

Each point in the quench phase diagrams represents a
particular quench specified by a pair of values (
0i ,
0f ).
Here 
0 is the gap that the system would have in the
ground state at detuning ω, which is a known function of
ω. Values 
0i and 
0f —ground-state gaps for ω = ωi and
ωf , respectively—uniquely determine ωi and ωf at fixed
resonance width γ . Note that 
0f is not the magnitude of the
actual steady-state gap function |
(t)|. Each quench ωi → ωf

(or λi → λf ) therefore maps to a single point (
0i ,
0f ) and
vise versa.

Steady states I, II, and III reached by the system at t → ∞
can be described in terms of the superfluid order parameter

(t). In region I of phase diagrams in Figs. 2–5 the gap
function vanishes at large times, 
(t) → 0; see Fig. 6.

In region II (including subregion II′) the magnitude of
the order parameter asymptotes to a nonzero constant 
∞
as illustrated in Fig. 7,


(t) → 
∞e−2iμ∞t−2iϕ, (1.34)

where 
∞,μ∞ are functions of ωi, ωf (or, equivalently, of 
0i

and 
0f ), and γ to be determined below, and ϕ is a constant
phase. Plots of 
∞ and μ∞ as functions of 
0f for fixed 
0i

are shown in Figs. 9, 18, and 19. The quantity μ∞ plays the
role of the out-of-equilibrium chemical potential. Subregions
II and II′ of region II correspond to μ∞ > 0 and μ∞ < 0,
respectively.

In region III of quench phase diagrams the amplitude of the
order parameter oscillates persistently at large times, as shown
in Fig. 8,


(t) →
√

�2(t) + h1e
−i�(t), (1.35)

where

�(t) = 
+dn[
+(t − t0),k′], k′ = 
−

+

, (1.36)

where dn is the Jacobi elliptic function and t0 is an integration
constant. The magnitude of the order parameter oscillates
periodically between 
b = (
2

− + h1)1/2 and 
a = (
2
+ +

h1)1/2. The phase contains linear and periodic parts [62],

�(t) = 2μt −
∫

κdt

�2(t) + h1
. (1.37)

Constants h1, 
+, 
−, μ, and κ are known functions of

0i , 
0f (or ωi,ωf ), and γ to be specified below; see also
Figs. 9 and 10 and refer to Sec. II D 2 for more information
about the periodic solution.

Previous studies of the BCS dynamics [3,7,16–19] were
performed in the weak-coupling regime when both 
0i and
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FIG. 2. (Color online) Detuning quench phase diagrams for the
two-channel model (1.1) in 2D for an assortment of resonance widths
γ . Each point represents a single quench labeled by 
0i (vertical
axis) and 
0f (horizonal axis), pairing gaps the system would have
in the ground state for initial and final detunings. At large times the
system ends up in one of three steady states shown as regions I, II
(including II′), and III. For quenches in region I the order parameter
vanishes, 
(t) → 0. In II 
(t) → 
∞e−2iμ∞t−2iϕ and in III |
(t)|
oscillates persistently. Subregions II and II′ differ in the sign of μ∞
(out of equilibrium analog of the chemical potential): μ∞ > 0 in
II and μ∞ < 0 in II′. The diagonal, 
0i = 
0f , is the no-quench
line. To the left of it are strong-to-weak-coupling quenches; to the
right are weak- to strong-coupling quenches. 
max = εF

√
γ in 2D is

the maximum possible ground-state gap and 
0× is the ground-state
gap corresponding to zero chemical potential; i.e., 
0× is given by
Eq. (1.25) for μ = 0.
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FIG. 3. (Color online) Same as Fig. 2 but in three spatial
dimensions.


0f are much smaller than a characteristic high-energy
scale (Fermi energy for cold gases and Debye energy for
conventional superconductors). This limit corresponds to an
infinitesimal vicinity of the origin 
0i = 
0f = 0 in our
quench phase diagrams in Figs. 2–5. The weak-coupling limit
is universal in that it is independent of the resonance width and
dimensionality and thus is the same in all diagrams. Critical
lines separating regions I from II and II from III are straight
lines in this case coming out of the origin with slopes


0i


0f

= e±π/2. (1.38)

Further, h1 = 0 in Eq. (1.35) and 
∞, 
± take a simpler form
given by Eqs. (3.27)–(3.29), and (3.31).

FIG. 4. (Color online) Interaction (λ) quench phase diagram for
the one-channel model (1.11) in 2D. Otherwise same as Fig. 2.

There are several qualitatively new effects beyond the
weak-coupling regime. At smaller resonance width γ < γc =
16/π2, gapless region I terminates below 
max at 
0i = γπ/4
along the vertical axis in 2D. This means that as initial coupling
gets stronger (
0i increases), even quenches to arbitrarily weak
final coupling (small 
0f ) do not result in vanishing 
(t) at
large times, in contrast to the weak-coupling regime, where
quenches with sufficiently large 
0f /
0i always do. The I-II
critical line also displays an interesting backwards bending
behavior for γ < γc = 16/π2; see the inset in Fig. 2(b) and
Eqs. (3.38) and (3.34).

Region III of persistent oscillations terminates at a threshold
value of 
0f < 
max in 3D, see Figs. 3 and 5. This means that
even quenches from an infinitesimally weak initial coupling
(λi = 0+ in the one-channel model, which corresponds to
a vicinity of the normal state) to final couplings stronger
than a certain threshold value produce no oscillations and
|
(t)| instead goes to a constant. At finite but small initial
gap 
0i (e.g., along the dashed line in Fig. 3) there is a

0 0.4 0.8 1.2 1.6 2

0f
 / 

F

0

0.4

0.8

1.2

1.6

2

0i
 / 

F

I

II

III

II′

0x

0x

FIG. 5. (Color online) Interaction quench phase diagram for the
one-channel model (1.11) in 3D (otherwise the same as Fig. 2).
Consider, e.g., quenches from fixed infinitesimal coupling λi (small

0i) to various final couplings λf . Increasing λf (
0f ) we move
through gapless (I), gapped (II), then oscillating (III) steady states.
As λf increases, further oscillations disappear and we again end up
in a steady state characterized by constant asymptotic |
(t)| (II′).
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FIG. 6. (Color online) |
(t)| in region I for a 3D two-channel
model, γ = 1, obtained from numerical evolution of N = 5024 spins
following a detuning quench ωi → ωf . Here 
0i = 0.27
max, 
0f =
4.30 × 10−2
max [cf. Fig. 3(b)]. From these two values all other
parameters obtain, e.g. μi = 0.90εF and ωf − ωi = 1.97εF .

reentrant behavior in both 2D and 3D as the final coupling
(
0f ) increases when first there are no oscillations, then
they appear, and then they disappear again. The threshold
value of 
0f where the critical line separating regions II and
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FIG. 7. (Color online) |
(t)| in regions II (top) and II′ (bottom)
for a 3D two-channel model, γ = 1, obtained from numerical
evolution of N = 5024 spins after quenching the detuning ω. 
0i =
0.27
max, μi = 0.90εF in both panels (same as in Fig. 6). The
final detuning corresponds to (a) 
0f = 0.56
max = 2.07
0i and
(b) 
0f = 0.97
max = 3.59
0i . See also Fig. 3(b).
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FIG. 8. (Color online) Amplitude (Higgs mode) and phase �(t)
of the order parameter 
(t) in region III of Fig. 3(c) after detuning
quench from deep BCS to BEC in a 3D two-channel model for γ =
10. Numerical evolution with 5024 spins vs Eqs. (1.35) and (1.37).

0i = 3.20 × 10−3
max, 
0f = 0.45
max, and δω = −5.86γ .

III terminates is given by Eq. (3.47) (plotted as a function
of the resonance width in Fig. 22) and Eq. (4.18) for one-
and two-channel models, respectively. For more details about
quench diagrams, such as the shape of the critical lines, various
thresholds and termination points, and values of parameters
(e.g., 
∞, μ∞, 
+, and 
−) characterizing asymptotic 
(t),
see Secs. III and IV.

The large-time asymptote of 
(t) does not fully specify
the steady state. One also needs to know the Bogoliubov
amplitudes up(t → ∞),vp(t → ∞). We calculate them in
Sec. II D in all three steady states. In terms of spin vectors, this
translates into steady-state spin distribution. Even in regions I
and II where |
(t)| goes to a constant, the steady state of the
system is far from any equilibrium state. Time-independent
|
(t)| means that in a frame that rotates around the z axis
with frequency 2μ∞ the magnetic field 
Bp that acts on spin

sp in Eq. (1.7) is constant. In equilibrium 
sp aligns with 
Bp

or − 
Bp (ground state). In steady states I and II it instead
rotates around 
Bp, making a constant angle with it. Let θp

be the angle between 
sp and − 
Bp (negative z axis in steady
state I), so that in the ground state θp = 0. Out-of-equilibrium
θp determines the steady-state spin distribution function and is
given by Eq. (3.11). This expression for cos θ (εp) applies in all
three steady states, but its interpretation in region III is slightly
different and is explained below. A plot of the distribution
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FIG. 9. (Color online) Limiting values of |
(t)| for a 3D two-
channel model at large times after a detuning quench as functions
of 
0f (or, equivalently, of final detuning ωf ) at fixed small

0i = 0.05
max (fixed initial detuning deep in the BCS regime).
This corresponds to moving along a horizontal line (not shown)
in Figs. 3(a) and 3(c) going through regions I, where |
(t)| → 0,
II, where |
(t)| → 
∞ > 0, III, where |
(t)| oscillates periodically
between 
a and 
b, and into region II′, where again |
(t)| → 
∞ >

0. Note that persistent oscillations appear and then disappear again
as we decrease ωf − ωi (i.e., increase 
0f at fixed 
0i). The same
behavior is observed in the 3D one-channel model; see Fig. 5.

function cos θp is shown in Fig. 11. We explore the asymptotic
states produced by detuning or interaction quenches in detail
in Sec. II D. In Sec. VII we provide further insight into their
physical nature and discuss their experimental signatures.

We perform detailed analysis of linearized equations of
motion that goes much beyond previous work even in the
weak-coupling regime and yields a range of new results. Small
quenches of the detuning correspond to a small neighborhood
of the diagonal in quench diagrams in Figs. 2–5; i.e., they fall
within region II, where |
(t)| → 
∞ and Eq. (1.34) applies.
We show that within linear approximation 
∞ = 
0f and
μ∞ = μf ; i.e., there are no corrections to these equations
linear in the change of detuning or, equivalently, in δ
0 =

0f − 
0i . This is, in fact, a general result that has been
overlooked by previous work; to first order in deviations from
the ground state 
(t) always asymptotes to its ground-state
form for the Hamiltonian with which the system evolves at
t > 0. Note, however, that when quadratic correction is taken
into account one gets 
∞ < 
0f . For example, in the weak-

0.2 0.4 0.6 0.8

Δ
0f

 /Δ
max

-0.1

-0.05

0

0.05

0.1

h 1 / 
Δ2

γ = 0.1

3D

_
0.1 0.2 0.3 0.4

Δ
0f

 /Δ
max

-1

-0.8

-0.6

-0.4

-0.2

0

h 1 /
 Δ

2

γ = 10
3D

_

0.2 0.4 0.6 0.8

Δ
0f

 /Δ
max

-0.1

-0.05

0

0.05

0.1

h 1 / 
Δ2

γ = 0.1

3D

_

(a)

(b)

FIG. 10. (Color online) Parameter h1 in Eq. (1.35) for asymptotic
|
(t)| in phase III as a function of 
0f at fixed small 
0i = 0.05
max

(same as in Fig. 9). For quenches within the weak-coupling limit
h1 = 0, so nonzero h1 quantifies deviations from this limit. Note that
one must have h1 � −
2

−, so that the expression under the square
root in Eq. (1.35) is non-negative.

coupling regime we find


∞ = 
0f − (δ
0)2

6
0f

. (1.39)

We obtain an exact expression for 
(t)—Eqs. (5.35)–
(5.37)—valid at all times and arbitrary coupling strength for
both one- and two-channel models. In the weak-coupling
regime this expression simplifies so that

|
(t)| = 
0f − 2δ
0

∫ ∞

0

dx

π

cos[2
0t cosh(πx/2)]

1 + x2
.

(1.40)
From here short- and long-time asymptotes follow. At short
times the order parameter amplitude rises or falls sharply as

|
(t)| = 
0i + δ
0

|ln(
0t)| . (1.41)

The long-time behavior in the weak-coupling limit is

|
(t)| = 
0f − 2δ
0

π3/2

cos(2
0t + π/4)√

0t

. (1.42)

At stronger coupling in region II (but not II′) the long-time
asymptote is still given by Eq. (1.42); only the coefficient
in front of the second term on the right-hand side is more
involved.
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FIG. 11. (Color online) Spin distribution cos θp as a function of
εp (in units of Fermi energy) at large times after the quench in a 3D
two-channel model. In phases I and II, − cos θp/2 is the projection of
the spin 
sp onto its effective magnetic field (z axis in phase I) around
which it precesses. In equilibrium cos θp = ±1 (1 in the ground
state) for all momenta and in phase I cos θp = −1 and 1 correspond
to doubly occupied and unoccupied states, respectively. Quench
parameters are γ = 1 and (a) 
0i = 0.05
max, 
0f = 0.002
max

(BCS to deep BCS quench in phase I); (b) 
0i = 0.78
max, 
0f =
0.001
max (BEC to deep BCS quench in phase I). In both cases
μ∞ ≈ εF . Note the Fermi-like shape of the distribution function in
(a). Note that cos θp → 1 as εp → ∞, as it should, indicating that
states at very high energies are empty.

Regions II and II′ differ in the sign of the phase frequency
μ∞, μ∞ > 0 in II and μ∞ < 0 in II′. We see below that
frequency (Fourier) spectrum of quench dynamics in regions
II and II′ is E∞(εp) = √(εp − μ∞)2 + 
2∞, so that the Fourier
transform of a dynamical quantity reads

∫∞
0 A(ε)e−2iE∞(ε)t dε.

For μ∞ > 0 the phase has a stationary point on the integration
path at ε = μ∞, while for μ∞ < 0 it is absent. As a result, the
long-time behavior in 3D in region II′ changes,

|
(t)| = 
0f

[
1 − c

δω

γ

cos(2Emint + π/4)

(2|μ|t)3/2

]
, (1.43)

where Emin =
√

μ2 + 
2
0, c is of order one, and δω = ωf −

ωi . The same expression holds for the one-channel model after
a replacement δω/γ → 1/λf − 1/λi . Oscillation frequency
Emin and 1/t3/2 decay are in agreement with Ref. [23] and
reflect the fact that in the absence of a stationary point, the long-
time asymptote is dominated by the end point of integration at

ε = 0, E(0) = Emin, and the density of states in 3D vanishes
as

√
ε at small ε.

In 2D linear analysis yields a different approach to the
asymptote in region II′

|
(t)| = 
0f

[
1 − δω

γ

sin(2Emint)

|μ|t ln2 t

]
, (1.44)

because of a constant density of states and ln ε divergence
of the Fourier amplitude of |
(t)| at small ε (see below).
We also determine the time-dependent phase of the order
parameter �(t) in all cases corresponding to Eqs. (1.40)–
(1.44), asymptotes of individual spins 
sp(t) as t → ∞, and
many other new results for the linearized dynamics in Sec. V.

Finally, we extend some of the above results for the long-
time behavior of |
(t)| to the nonlinear regime, though, unlike
the linear analysis, these results are not rigorous. In region II

|
(t)| = 
∞ + c′ cos(2
∞t + π/4)√

∞t

, (1.45)

where c′ is a dimensionless coefficient. This answer holds for
both one- and two-channel models in either dimension.

For region II′ we argue that the answer depends on
dimensionality similarly to the linear analysis and

|
(t)| = 
∞

[
1 − c1

sin
(
2Emin

∞ t
)

t ln2 t

]
in 2D, (1.46)

|
(t)| = 
∞

[
1 − c2

cos
(
2Emin

∞ t + π/4
)

t3/2

]
in 3D, (1.47)

where Emin
∞ = √μ2∞ + 
2∞.

The approach to the gapless steady state (region I) is
expected to be

|
(t)| = c4

t lnr t
in 2D, (1.48)

where r = 1 or r = 2, and

|
(t)| = c3

t3/2
in 3D. (1.49)

We discuss these nonlinear large-time asymptotes in more
detail in Sec. VI.

II. METHOD

Here we describe a method that allows one to determine
the asymptotic state of the system at long times. Both
the quantum (1.5) and classical (1.9) two-channel models
are integrable meaning that there are as many nontrivial
conservation laws as there are degrees of freedom. There
is an exact Bethe ansatz-type solution for the quantum
spectrum [38]. In the classical case integrability implies a
formal inexplicit solution of the equations of motion in terms of
certain multivariable special (hyperelliptic) functions [15] that
can be helpful for understanding certain general features of the
dynamics. Evaluating specific dynamical quantities of interest
for realistic initial conditions with this solution is, however,
roughly equivalent to just solving the equations of motion
numerically. However, the latter could be as well done directly
without the formal exact solution. This is a typical situation in
the standard theory of nonlinear integrable systems.
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Fortunately, it was realized that, at least for the BCS-type
models, the large-time dynamics dramatically simplifies in the
thermodynamic limit, so that the number of evolving degrees
of freedom effectively drops to just a few spins. Building on
this insight, Yuzbashyan et al. [16] were able to develop a
method that goes beyond the standard theory and explicitly
predicts the long-time dynamics in the thermodynamic limit.

The main idea of this method is as follows. First, we
construct a special class of reduced solutions of the classical
equations of motion for the two-channel model such that the
dynamics reduces to that of just few effective spins. Then we
choose a suitable reduced solution and fix its parameters so
that its integrals of motion match those for a given quench
in the thermodynamic limit. Reduced solutions have only few
additional arbitrary constants and cannot generally satisfy all
of the quench initial conditions (1.28). There are 2N + 2 initial
conditions (two angles per spin plus two initial conditions
for the oscillator mode b) and only N + 1 correspond to the
integrals of motion.

Next, exploiting the fact that for fixed 
(t) BdG equa-
tions (1.31) are linear in the amplitudes up and vp, we derive
the most general t → ∞ asymptotic solution that has the
same 
(t) as the reduced one. It has the same integrals as
the quench dynamics by construction and, in addition, N + 1
arbitrary independent constants to match the remaining initial
conditions. We conjecture that the so-constructed asymptotic
solution is the true large-time asymptote of the actual quench
dynamics. To verify this few spin conjecture it is sufficient to
show that the large-time asymptote of the actual 
(t) matches
that of the reduced (and therefore general asymptotic) solution.
We do so numerically in the nonlinear case and analytically for
infinitesimal quenches when the dynamics can be linearized.

We consider the two-channel model in this and the
following sections and then obtain similar results for the
one-channel (BCS) model in Sec. IV by taking the broad
resonance, γ → ∞, limit.

A. Integrability and Lax vector construction

An object called Lax vector plays a key role in our approach.
It encodes all the information about the integrals of motion
and turns out to be especially useful in analyzing the quench
dynamics in the thermodynamic limit. The Lax vector is
defined as


L(u) =
∑

p


sp

u − εp
− (ω − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

],

(2.1)

where u is an auxiliary complex variable and 

 ≡ 
x x̂ + 
y ŷ.
Poisson brackets of components of 
L(u) satisfy the following
Gaudin algebra:

{La(u),Lb(v)} = εabc

Lc(u) − Lc(v)

u − v
. (2.2)

This implies an important equality,

{ 
L2(u), 
L2(v)} = 0. (2.3)

Explicit evaluation of 
L2(u) yields


L2(u) = (2u − ω)

g4
+ 4Hb

ωg2
+
∑

p

[
2Hp

g2(u − εp)
+ s2

p

(u − εp)2

]
,

(2.4)

where

Hp = g2
∑
q 	=p


sp · 
sq

(εp − εq)
+ (2εp − ω)sz

p + g(bs−
p + bs+

p ),

Hb = bb +
∑

p

sz
p. (2.5)

It follows from Eq. (2.3) that these spin Hamiltonians mutually
Poisson commute, i.e.,

{Hp,Hp′ } = {Hp,Hb} = 0. (2.6)

Moreover, the two-channel Hamiltonian (1.9) is

H2ch = ωHb +
∑

p

Hp. (2.7)

This implies that Hp and Hb are conserved by H2ch and
establishes the integrability of the two-channel Hamiltonian.
Note that 
L2(u) is also conserved for any value of u and serves
as a generator of the integrals of motion for the two-channel
model. The same construction works in the quantum case as
well; one only needs to promote classical dynamical variables
to corresponding quantum operators and replace Poisson
brackets with commutators.

Equations of motion can be conveniently and compactly
written in terms of the Lax vector as


̇L = (−2 

 + 2uẑ) × 
L. (2.8)

Comparing the residues at the poles at both sides of this
equation, we see that it is equivalent to the equations of motion
for spins (1.8).

The square of the Lax vector is of the form


L2(u) = Q2N+2(u)

g4
∏

εp
(u − εp)2

, (2.9)

where N is the total number of distinct single-particle energies
εp, the product is similarly over nondegenerate values of εp,
and Q2N+2(u) is a polynomial in u of degree 2N + 2. The
roots of this spectral polynomial [or equivalently of 
L2(u)]
play an important role in the further analysis of the asymptotic
behavior. Note that since 
L2(u) is conserved, so are its roots.
They thus constitute a set of integrals of motion alternative to
Eq. (2.5). Since 
L2(u) � 0 for real u, its roots come in complex
conjugate pairs.

B. Reduced solutions

Let us look for special solutions of equations of motion (2.8)
such that the Lax vector factorizes into time-dependent
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and -independent parts,


Lred(u) =
∑

p


σp

u − εp
− (ω − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

]

=
(

1 +
∑

p

dp

u − εp

)

Lm(u), (2.10)

where 
σp (not to be confused with Pauli matrices) denote spins
in this solution that can have arbitrary length to distinguish
them from spins 
sp for the quench dynamics that have
length 1/2. Further, dp are time-independent constants to be
determined later and 
Lm(u) is the Lax vector for an effective
m-spin system,


Lm(u) =
m−1∑
j=0


tj
u − ηj

− (ω′ − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

].

(2.11)

Here 
tj are new collective spin variables placed at new arbitrary
“energy levels” ηj . Note that the bosonic field 
b and therefore


 are the same in the original and reduced models.

Substituting Eq. (2.10) into the equations of motion (2.8),
we see that 
Lm(u) satisfies the same equation of motion.
This means that variables 
tj obey Bloch equations (1.8) with
εp → ηj and ω → ω′, and are therefore governed by the same
Hamiltonian,

H red
2ch =

m−1∑
j=0

2ηj t
z
j + ω′bb + g

m−1∑
j=0

(bt−j + bt+j ). (2.12)

We need at most m = 1 for analyzing the quench dynamics,
so we are able solve the equations of motions for 
tj directly.

Matching the residues at u = εp on both sides of Eq. (2.10),
we express original spins in terms of 
tj


σp = dp 
Lm(εj ). (2.13)

Constants dp are determined from the above equation using

σ 2

p = σ 2
p , where |σp| is the length of spin 
σp. Note that σp can

be of either sign (for future convenience). We have

dp = − σp√

L2

m(εp)
. (2.14)

It is important to note that σp are arbitrary constants at this
point. We determine them later so that the integrals of motion
for the reduced solution match those for quench dynamics.

To satisfy Eq. (2.10), we also need to match the residues at
u = ηk and the u → ∞ asymptotic. This leads to the following
m + 1 equations:

1 +
∑

p

dp

ηk − εp
= 0 k = 0, . . . ,m − 1,

ω = ω′ − 2
∑

p

dp.
(2.15)

Equations (2.15) constrain the coefficients of the spectral
polynomial

Q2m+2(u) = g4 
L2
m(u)

m−1∏
k=0

(u − ηk)2, m � 0, (2.16)

of the m-spin system. Indeed, using Eq. (2.14), we can cast
these constraints into the following form:∑

p

σpε
r−1
p√

Q2m+2(εp)
= −δrm

g2
, r = 1, . . . ,m,

(2.17)

ω′ = ω + 2
m−1∑
k=0

ηk +
∑

p

2σpg
2εm

p√
Q2m+2(εp)

.

Here m � 0. These equations can be viewed as equations for
determining the lengths of the collective spins 
tj .

We thus constructed a class of solutions such that the
dynamics reduces to that of a smaller number of spins. These
few-spin solutions, however, do not match the quench initial
conditions, but, as we will see, the long-time asymptote of 
(t)
after the quench coincides with 
(t) of an appropriately chosen
few-spin solution. Specifically, m = −1, 0, and 1 are realized
depending on the magnitude and the sign of the change in the
detuning ω. Let us therefore consider these particular cases.

1. m = −1 spin solutions

m = −1 refers to the case when there are no collective
spins and b = 0; i.e., the oscillator (which can be viewed as an
infinite length limit of a spin) is effectively absent as well. In
other words, Hred = 0 and 
Lm(u) = 2u−ω′

g2 ẑ. Equation (2.13)
then implies that all spins in the reduced solution are along the
z axis pointing in either a positive or a negative direction. It is
convenient to redefine the sign of σp (only for m = −1) so that

σp = −σpẑ. We see directly from the equations of motion (1.8)
that this configuration together with b = 0 is indeed a solution,
a stationary one in the present case.

2. m = 0 spin solutions

In this case the reduced problem consists of a free classical
oscillator as there are no collective spins; i.e., Hred = ω′b̄b.
Equations of motion reduce to ḃ = −iω′b. Therefore,


(t) = −gb = ce−2iμt , (2.18)

where c is a complex constant and we defined μ = ω′/2.
Expressions for the original spins follow from the reduced

Lax vector


Lm(u) = − 2

g2
[ 

 − (u − μ)ẑ]. (2.19)

Equations (2.13) and (2.14) imply


σp = σp

E(εp; 
,μ)
[ 

 − (εp − μ)ẑ], (2.20)

where E(εp; 
,μ) = √(εp − μ)2 + |
|2. We see that the
ground state (1.15) is a one-spin solution with c = 
0 and
σp = 1/2 (to minimize the energy). Excited states are also
one-spin solutions with different parameters.
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There is only one (last) constraint among Eqs. (2.17) for
m = 0, which we recognize as a generalization of the gap
equation (1.18).

3. m = 1 spin solutions

This example is substantially more involved than the
previous two. Now there is one collective spin 
t coupled to
an oscillator,

Hred = 2ηtz + ω′bb + g(bt− + bt+), (2.21)

making the dynamics rather nontrivial. Our main goal
presently is to derive a differential equation for |
(t)| =
g|b(t)| and to relate its coefficients to the spectral polynomial
Q4(u) of the reduced m = 1 problem given, in general, by
Eq. (2.16).

Hred conserves b̄b + t z. It follows that t z can be expressed
through |b|2 as t z = c1�

2 + c2, where c1,2 are constants and
we introduced a notation


 = �e−i�. (2.22)

Equation (2.13) then implies that the z component of the orig-
inal spins in the reduced solution can be similarly expressed
through |
| as

σ z
p = ap�

2 + bp. (2.23)

Note that constants ap and bp are inversely proportional to√ 
L2
m(εp) and therefore to

√
Q4(εp). It turns out that an efficient

strategy to derive an equation for � and relate its coefficients
to those of Q4(u) is somewhat indirect. First, we use equations
of motion for 
σp together with Eq. (2.23) to obtain an equation
for � and expressions for ap and bp. Identifying

√
Q4(εp) in

the latter with the help of Eq. (2.14), we relate the coefficients.
Bloch equations (1.8) for spins in the reduced solution,


s red
p ≡ 
σp, can be written as

σ̇ z
p = −i(σ−

p 
̄ − σ+
p 
), σ̇−

p = −2iσ z
p
 − 2iεpσ

−
p .

(2.24)

Substituting σ z
p from Eq. (2.23) into the first equation, we

obtain

σ−
p ei� − σ+

p e−i� = 2iap�̇. (2.25)

Multiplying the second equation in Eq. (2.24) by ei� and
adding the resulting equation to its complex conjugate, we
get

d

dt
(σ−

p ei� + σ+
p e−i�) = 4apεp�̇ − 2ap�̇�̇, (2.26)

where we also used Eq. (2.25). Integrating this and adding the
result to Eq. (2.25), we obtain

σ−
p ei� = 2apεp� − apA + iap�̇, (2.27)

where A = ∫ dt�̇�̇. Equation (2.27) implies

|σ−
p |2 = (2apεp� − apA)2 + a2

p�̇
2. (2.28)

Equations (2.28) and (2.23) combined with the conservation of
the length of the spin, (σ z

p )2 + |σ−
p |2 = σ 2

p , yield a differential

equation for �

(ap�
2 + bp)2 + (2apεp� − apA + cp)2 + a2

p�̇
2 = σ 2

p .

(2.29)

Dividing the last equation by a2
p and rearranging, we obtain

�̇2 + �4 + �2

(
2
bp

ap
+ 4ε2

p

)
− 4εpA� + A2

+ b2
p − σ 2

p

a2
p

= 0. (2.30)

It turns out that A is a certain function of �. To see this, let xp
be a set of numbers such that

∑
p xp = 0, multiply Eq. (2.30)

by xp, and sum over p. This yields

A = 2μ� + κ

�
, (2.31)

where μ and κ are arbitrary real constants. Substituting
Eq. (2.31) into Eq. (2.30), we obtain

�̇2 + �4 + 2�2

[
bp

ap
+ 2ξ 2

p

]
+ κ2

�2
+ b2

p − σ 2
p

a2
p

− 4κξp = 0,

(2.32)

where ξp = εp − μ. Note that the same equation obtains in the
reduced problem with ap → c1, bp → c2, etc. It follows that
coefficients must be p independent; i.e.,

bp

ap
+ 2ξ 2

p = 2ρ,
b2

p − σ 2
p

a2
p

− 4κξp = 4χ, (2.33)

where ρ and χ are p-independent constants. We find

bp = −2
(
ξ 2

p − ρ
)
ap,

(2.34)

ap = −σp

2
√(

ξ 2
p − ρ

)2 − κξp − χ

.

As mentioned above ap and bp are inversely proportional
to
√

Q4(εp). Equation (2.34) therefore implies

Q4(u) = [(u − μ)2 − ρ]2 − κ(u − μ) − χ, (2.35)

while the differential Eq. (2.32) for � reads

�̇2 + �4 + 4ρ�2 + κ2

�2
+ 4χ = 0. (2.36)

This equation can be solved in terms of elliptic function. Let
w = �2. We have

ẇ2 + 4w3 + 16ρw2 + 16χw + 4κ2 ≡ ẇ2 + 4P3(w) = 0.

(2.37)
Further, let P3(w) = (w − h1)(w − h2)(w − h3), where h3 �
h2 � h1, and define

ω = �2 + h1, 
2
+ = h3 − h1, 
2

− = h2 − h1. (2.38)

We get

�̇2 = (
2
+ − �2)(�2 − 
2

−), (2.39)

with the solution

� = 
+dn[
+(t − t0),k′], k′ = 
−

+

, (2.40)
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where dn is the Jacobi elliptic function and t0 is an arbitrary
integration constant.

It also follows from Eq. (2.31) and the definition of A below
Eq. (2.27) that the phase of the order parameter is determined
as

�̇ = dA

d�
= 2μ − κ

�2 + h1
, 
 =

√
�2 + h1e

−i�. (2.41)

C. Matching integrals of motion

Given the quench initial conditions, we can evaluate all
integrals of motion. This is equivalent to evaluating 
L2(u) in
the initial state as it is conserved and contains all the integrals
as residues at u = εp. It turns out that in the thermodynamic
limit it is possible to find a reduced (few-spin) solution that has
the same 
L2(u), i.e., exactly the same integrals as the quench
dynamics.

In the thermodynamic limit single-particle energies εp form
a continuum on the positive real axis and 
L2(u), therefore, has
a continuum of poles at u > 0. Additionally, 
L2(u) also has a
continuum of roots along the u > 0 half line, as we show in

Appendix B. Thus,
√ 
L2(u) has a branch cut along u > 0 in the

continuum limit. There can also be several isolated roots whose
imaginary parts remain finite in this limit. Isolated roots play
an important role in the dynamics; we determine them below
and see that there are at most four such roots (two pairs of
complex conjugate roots) for our quench problem.

Equation (2.10) implies

1 +
∫

dε′ d(ε′)ν(ε′)
u − ε′ = −z(u)

√

L2(u)

L2

m(u)
, z(u) = ±1, (2.42)

where 
L2(u) is evaluated for the quench initial conditions. Our
task is to find the parameters for the reduced problem—d(ε)
and 
L2

m(u)—so that this equation holds. Then the reduced
problem has the same integrals of motion as the quench
dynamics.

Both sides of Eq. (2.42) have a branch cut along the positive
real axis and tend to 1 as u → ∞ for an appropriate choice
of the sign z(∞). Further, provided that the isolated roots of

L2(u) coincide with the roots of 
L2

m(u), there are no more
branching points and both sides are analytic away from the
shared branch cut at u > 0. If we further ensure that the left-
and the right-hand sides of Eq. (2.42) have the same jump
across the branch cut, then their difference is an entire function
that vanishes at infinity. It is therefore identically zero by
Liouville’s theorem from complex analysis, and Eq. (2.42)
holds.

To equate jumps across the branch cut, we take u →
ε ± i0, apply the well-known formula 1/(x ± i0) = P(1/x) ∓
iπδ(x), and subtract one result from another. This fixes d(ε),

d(ε) = − z(ε)

2iπν(ε)

√

L2(ε−) −

√

L2(ε+)√


L2
m(ε)

, (2.43)

where ε± = ε ± i0. According to expression (2.14) for dp ≡
d(εp) this is equivalent to fixing the lengths of the spins, |σp| ≡

|σ (εp)|, in the few-spin solution so that

σ (ε) = z(ε)

√

L2(ε−) −

√

L2(ε+)

2iπν(ε)
. (2.44)

Thus, the few-spin solution with this σ (ε) and 
L2
m(u), whose

roots are the same as the isolated roots of 
L2(u), has the same
integrals of motion as the quench problem.

D. Asymptotic solution for the quench dynamics

There are altogether 2(N + 1) initial conditions: two angles
for each classical spin and two initial conditions for the
oscillator. So far, we constructed a reduced m-spin solution that
matches N + 1 integrals of motion. This satisfies N + 1 initial
conditions. The dynamics of the reduced m-spin Hamiltonian
contains 2(m + 1) constants, m + 1 of which (integrals of
motion for Hred) are already fixed since we fixed 
L2

m(u).
The remaining m + 1 constants are not sufficient to match the
remaining N → ∞ initial conditions for the quench dynamics
at finite m. This is resolved as follows. We use the known
m-spin solution to derive a general asymptotic (i.e., valid
at t → ∞) solution of the equations of motion for spins

sp with the same 
(t) and the same integrals of motion as
the m-spin solution. Integrals of motion therefore are those
for the quench dynamics. In addition, this general solution
contains the correct number N + 1 of independent constants.
We therefore conjecture that this is the true solution for
the quench dynamics at large times after the quench. By
construction, to verify this few-spin conjecture, it is sufficient
to show that the true asymptote of 
(t) coincides with 
(t)
in the m-spin solution because given 
(t) we obtain the most
general asymptotic solution of equations of motion.

As discussed above Eq. (1.33), each quench is characterized
by three parameters: the resonance width γ and the final ωf

and initial ωi values of the detuning. We determine in the next
section that 
L2(u) for the quench dynamics can have zero, one,
or two pairs of isolated complex roots for any γ depending on
ωi and ωf . These, by construction, must also be all the roots
of 
L2

m(u), which has m + 1 pairs of complex conjugate roots
according to Eq. (2.16). Cases relevant for the quench phase
diagram are therefore m = −1, 0, and 1.

It is worthwhile to consider the m = −1 case separately
in some detail to illustrate this procedure. Suppose 
L2(u)
evaluated for the quench initial condition has no complex
(isolated) roots away from the real axis. Then there is an
m = −1 spin solution constructed above that in the N → ∞
limit has the same values of the integrals of motion as the
spin dynamics. Spins in this solution are all along the z axis,

σp = −σpẑ, and 
(t) = −gb(t) = 0. It is a particular solution
of the equations of motion (1.8) such that b(t) = 0.

The general solution of the spin part of the equations of
motion in Eq. (1.8) with b(t) = 0 is as follows: spins 
sp precess
around the z axis (or equivalently around the reduced spins σp)
with frequencies 2εp, i.e.,

sz
p = σ z

p

σp

cos θp

2
, s−

p = sin θp

2
eiαp(t), (2.45)
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where θp is the angle 
sp makes with −ẑ and αp = −2εpt + δp.
Equivalently, this can be expressed as


sp = 
σp

σp

cos θp

2
+ 
s⊥

p , (2.46)

where 
s⊥
p is the component transverse to 
σp, which rotates

around 
σp with frequency 2εp. Note that the length of spin 
sp
is 1/2, as it should be for the quench initial conditions.

This spin configuration has N additional constants δp, but
it does not satisfy the equation of motion for b(t) in Eq. (1.8)
because b(t) = 0, while J−(t) =∑p s−

p =∑p fpe
−2εpt 	= 0,

where 2fp = sin θpe
iδp . However, in the thermodynamic limit

J−(t) = ∫ f (ε)ν(ε)e−2εt → 0 as t → ∞ and this solution
becomes self-consistent.

Next we set 2σp = cos θp and substitute 
sp = 
σp + 
s⊥
p into

the Lax vector,


L(u) = 
Lred(u) +
∑

p


s⊥
p

u − εp
. (2.47)

The second term vanishes by the Riemann-Lebesgue lemma
(dephases) as t → ∞ in the thermodynamic limit for u away
from the real axis similarly to J−(t) and therefore 
L(u) →

Lred(u). Constants σp are given by Eq. (2.44) to match the
integrals of motion. Then the solution given by Eq. (2.45) with
2σp = cos θp has the same integrals of motion as the quench
dynamics and the right number of additional constants to match
the remaining initial conditions. As explained above, to verify
that this is indeed the true asymptote of the quench dynamics,
we only need to show that asymptotic 
(t) coincides with 
(t)
of the m = −1 spin solution, i.e., that 
(t) → 0 at large times
after the quench whenever 
L2(u) has no isolated complex roots
(region I in quench phase diagrams above). We confirm this
numerically; see, e.g., Figs. 5 and 12 and Refs. [16,18]. There
is also a justification of this statement based on the general
theory of integrable Hamiltonian dynamics. It works for both
m = −1 and m = 0 and we present at the end of the m = 0
case below Eq. (2.65).

To summarize, if 
L2(u) has no isolated complex roots
for given (quench) initial conditions, then 
(t) → 0 at large
times in the thermodynamic limit and the steady-state spin
configuration is

sz
p = −cos θp

2
, s−

p = sin θp

2
e−2iεpt+iδp , (2.48)

where

cos θ (ε) = z(ε)

√

L2(ε−) −

√

L2(ε+)

iπν(ε)
, (2.49)

and θp ≡ θ (εp). This expression evaluates explicitly for quench
initial conditions; the answer is given by Eq. (3.11). The sign
z(ε) = ±1 is fixed by requiring that cos θ (ε) be smooth and
spins 
sp point in the negative z direction at εp → ∞ (so that
corresponding single-particles states be empty).

The logic for m � 0 is similar, but the calculation is a
bit more involved. To derive the analog of Eq. (2.45), it is
convenient to work with the BdG equations (1.31). In addition,
there is an equation of motion for b in Eq. (1.8), which can be
viewed as a self-consistency condition. In terms of 
 = −gb
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FIG. 12. (Color online) Order parameter 
(t) vanishes whenever
the square of the Lax vector 
L2(u) has no isolated roots. Panel
(a) shows real, Re[c], and imaginary, Im[cm], parts of the roots
cm, and panel (b) shows the corresponding |
(t)| for a detuning
quench in a 3D two-channel model with γ = 0.1 and N = 1024
spins. There are N + 1 pairs of complex conjugate continual roots
whose imaginary parts scale as 1/N so that in the N → ∞ limit they
form a continuum on the real axis. Here 
0i = 0.34
max, 
0f =
8.1 × 10−3
max, μi = 0.91εF , and δω = 3.45γ .

and Bogoliubov amplitudes it reads


̇ = −iω
 + ig2
∑

p

2spupv̄p. (2.50)

The reduced m-spin solution is a particular solution (Up,Vp) of
the BdG equations that also satisfies the above self-consistency
condition (with sp → σp). It is straightforward to check that
(V̄p,−Up) is also a solution of the BdG equations with the
same 
(t). Since for any fixed 
(t) these equations are linear
in the amplitudes, their most general normalized solution with
this 
(t) is a linear combination of these two independent
solutions,(

up
vp

)
= cos

θp

2

(
Up
Vp

)
+ sin

θp

2

(
V̄p

−Ūp

)
. (2.51)

The coefficients are made real by dropping an unimportant
overall time-independent phase and including the relative
phase into the common phase of Up and Vp. At this point θp
is an arbitrary angle. This solution does not generally satisfy
the self-consistency condition (2.50) at finite t , but, as we see
below, becomes self-consistent as t → ∞.
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Let us now determine the spins corresponding to this
solution. Equation (2.51) implies

|vp|2 − |up|2 = (|Vp|2 − |Up|2) cos θp

− sin θp(ŪpV̄p + UpVp), (2.52)

upv̄p = UpV̄p cos θp + sin θp

2

(
V̄ 2

p − U 2
p

)
.

True spins 
sp are related to up, vp through Eq. (1.32) with
sp = 1/2. Spins 
σp are similarly related to Up,Vp. Let

Up = |Up| exp

[
i
αp − φp

2

]
,

(2.53)

Vp = |Vp| exp

[
i
αp + φp

2

]
.

We can express the absolute values of the amplitudes and their
relative phase through the spin components

|Vp|2 = 1

2
+ σ z

p

2σp
, |Up|2 = 1

2
− σ z

p

2σp
, e−iφp = σ−

p

|σ−
p | ,
(2.54)

while their common phase αp needs to be determined sepa-
rately from the BdG equations.

We obtain in this notation

sz
p = σ z

p

σp

cos θp

2
− |σ−

p |
σp

sin θp

2
cos αp,

(2.55)

s−
p = σ−

p

σp

cos θp

2
+ sin θp

2
e−iφp

(
σ z

p

σp
cos αp − i sin αp

)
.

Note that σ z
p/σp and σ−

p /σp are components of the unit vector
along the spin in the reduced solution 
σp. Geometrically,
Eq. (2.55) says that 
sp makes a constant angle θp (or π − θp
for negative σp) with 
σp and rotates around it with an angular
velocity α̇p,


sp = 
σp

σp

cos θp

2
+ 
s⊥

p . (2.56)

To see this, consider a body set of axis for 
σp. Take z′ along

σp, x ′ axis along the intersection of the zz′ plane with the
plane perpendicular to 
σp, and y ′ normal to x ′z′ to form a
right-handed coordinate system as usual. Then αp is the angle
between 
s⊥

p and the x ′ axis and Eq. (2.55) follows.
The contribution of the second terms on the right-hand side

of Eqs. (2.55) and (2.56) (terms containing αp) to 
L(u) at u

away from the real axis and to J−(t) vanishes (dephases) at
large times at least for m = 0 and 1 in the thermodynamic
limit, the same as in the m = −1 case considered above. For
this to be true it is sufficient that αp contain a dispersing linear
in t term, i.e.,

αp = −2ept + Fp(t), (2.57)

where ep is a continuous nonconstant function of εp and Fp(t)
is a bounded function of t . Note that for m = −1, ep = εp and
Fp(t) = δp = const.

To derive the asymptotic state, we follow the same pro-
cedure as for m = −1 above. We set 2σp = cos θp, where
cos θp ≡ cos θ (εp) is given by Eq. (2.49). Then 
L(u) →


Lred(u), 
(t) is described by this m-spin solution at large times
and satisfies the self-consistency condition (2.50), and the
asymptotic spin configuration (2.55) and the m-spin problem
have the same integrals of motion as the quench dynamics.
The remaining N + 1 constants required to match the initial
conditions are in αp (see below) and in the phase of 
(t).

To determine αp, rewrite the BdG equations as

i∂t (ln Up) = εp + 

Vp

Up
, i∂t (ln Vp) = −εp + 
̄

Up

Vp
.

(2.58)
Adding these equations and using Eqs. (2.53) and (2.54), we
get, after some algebra,

α̇p = −σp(
̄σ−
p + 
σ+

p )

|σ−
p |2 . (2.59)

1. m = 0

Suppose 
L2(u) has a single pair of isolated complex roots at
u = μ∞ ± i
∞. The 0-spin expression (2.18) for 
(t) reads


(t) = 
∞e−2iμ∞t−2iϕ. (2.60)

The notation 
∞ and μ∞ anticipates that this is also the
long-time asymptote for the quench dynamics. Equation (2.20)
implies

σ−
p

σp
= 
(t)

E∞
p

,
σ z

p

σp
= − ξp

E∞
p

, (2.61)

where E∞
p = E(εp; 
∞,μ∞) = √(εp − μ∞)2 + 
2∞ and

ξp = εp − μ∞.
Equation (2.59) obtains α̇p = −2E∞

p . We see that αp is of
the form (2.57) and therefore the large-time asymptote of 
(t)
according to the few-spin conjecture is given by Eq. (2.60). The
asymptotic spin configuration is then Eq. (2.55) with cos θp ≡
cos θ (εp) given by Eq. (2.49). Explicitly, using Eq. (2.61) and
αp = −2E∞

p t − δp, we obtain

sz
p = − ξp

2E∞
p

cos θp − 
∞
2E∞

p
sin θp cos(2E∞

p t+δp),

s−
p e2iμ∞t+2iϕ = 
∞

2E∞
p

cos θp − sin θp

2
e2iE∞

p t+iδp (2.62)

−
(

ξp

E∞
p

− 1

)
sin θp

2
cos(2E∞

p t + δp).

In a reference frame rotating with frequency 2μ∞ around z

axis, 
(t) → 
∞ meaning that magnetic field acting on spin

sp is time independent. In this frame 
sp rotates around the field
or, equivalently, around the reduced spin 
σp with frequency
2E∞

p as described by Eq. (2.62).
We can also determine the Bogoliubov amplitudes corre-

sponding to the 0-spin solution from Eqs. (2.53) and (2.54),

Up =
√

1

2
+ ξp

2E∞
p

e−iE∞
p t−iμ∞t−iϕ,

(2.63)

Vp =
√

1

2
− ξp

2E∞
p

e−iE∞
p t+iμ∞t+iϕ.

033628-16



QUANTUM QUENCH PHASE DIAGRAMS OF AN s-WAVE . . . PHYSICAL REVIEW A 91, 033628 (2015)

0.4 0.6 0.8 1 1.2
Re[c] / 

F

-1

-0.5

0

0.5

1

Im[c   ]/
0f

Im[c
m

]/0.1
0f

+_

0 20 40 60 80 100

0f
 t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|
(t

)|/
0f

0f8
(b)

(a)

FIG. 13. (Color online) Roots of 
L2(u) (top) and |
(t)| for a
detuning quench in a 3D two-channel model for N = 1024 spins,
γ = 1.0. There is one pair of isolated roots c± = μ∞ ± i
∞ whose
imaginary part remains finite in the large N limit and N − 1 continual
roots cm close to the real axis (Im[cm] is magnified by 10). Observe
|
(t)| → 
∞ in agreement with the few-spin conjecture. Here

0i = 0.18
max, 
0f = 0.78
max, and δω = −2.26γ .

These in turn determine the “real” asymptotic amplitudes
according to Eq. (2.51) and therefore the many-body wave
function (1.29), which allows one to calculate various few-
particle Green’s functions.

As before, to verify the few-spin conjecture in the present
case it is enough to check that the large-time asymptote of 
(t)
after the quench is given by Eq. (2.60) as long as 
L2(u) has
one pair of isolated complex conjugate roots (regions II and
II′ in quench phase diagrams above). We do so numerically;
see, e.g., Figs. 7 and 13 and Refs. [16,18]. The large-time
asymptote of |
(t)| is in excellent agreement with 
∞ derived
as the imaginary part of the isolated root; see, e.g., Fig. 2 in
Ref. [18]. This is, however, guaranteed by conservation laws
without reliance on the few-spin conjecture. Indeed, suppose
we find 
(t) → 
̃∞e−2iμ̃∞t−2iϕ̃ . Starting with this, one can
retrace the steps that lead to Eq. (2.62) backwards and show
that 
L2(u) has a single pair of isolated complex conjugate roots
at μ̃∞ ± i
̃∞. In other words, μ̃∞ = μ∞,
̃∞ = 
∞, and the
constant ϕ is arbitrary in the 0-spin solution, so we can always
set ϕ̃ = ϕ. Let us prove this somewhat differently using Bloch
rather than BdG equations.

Going to a reference frame rotating around the z axis with
frequency 2μ̃∞ eliminates time dependence in the asymptotic


(t). In this frame, the effective magnetic field acting on
each spin 
sp in Eq. (1.8) is 
Bp = −2
̃∞x̂ + 2(εp − μ̃∞)ẑ
and is time independent. The spin therefore rotates around
the field, making a constant angle (call it π − θp) with it. It is
straightforward to determine spin components in this situation.
They are given by Eq. (2.62) with μ∞ → μ̃∞, 
∞ → 
̃∞,
and absent e2iμ∞t+2iϕ on the left-hand side in the rotating
frame.

Next we evaluate Lax vector (2.1) for this spin configura-
tion. For u away from the real axis, summations over p can be
safely replaced with integrations in the continuum limit and
contributions from oscillating terms on the right-hand side of
Eqs. (2.62) vanish at t → ∞. The same cancellation occurs in
the gap equation of motion (1.33), so that it becomes Eq. (5.4)
that we will later also need in a different context. Using this
gap equation to simplify the expression for 
L(u), we obtain


L(u) = [
̃∞x̂ − (u − μ̃∞)ẑ]L∞(u), (2.64)

where

L∞(u) = 2

g2
−
∑

p

1

2(u − εp)E∞
p

. (2.65)

We see that 
L2(u) = [
̃2
∞ − (u − μ̃∞)2]L2

∞(u) has a pair of
isolated roots at u = μ̃∞ ± i
̃∞; i.e., the parameters of the
asymptotic 
(t) must coincide with those of an isolated root.

Finally, there is a general argument explaining why the
actual quench dynamics at t → ∞ should be described by
the above asymptotic solutions derived from −1 and 0
spin solutions at least when 
L2(u) has none or only one
isolated root pair (m = −1 and 0). The general motion of
a classical Hamiltonian integrable model with N degrees of
freedom is quasiperiodic with N independent frequencies,

ω = (ω1, . . . ,ωN ), which are determined solely by the values
of its integrals of motion [63,64]. There are two types of
(quasi)periodic motion: libration and rotation [65]. Let us
explain this terminology with a 1D example. In libration, the
coordinate returns to its initial value after each period, such
as, e.g., the coordinate of a harmonic oscillator. In rotation, it
increases each time by a fixed amount, such as, e.g., the angle
of a rotating pendulum. Dynamical variables of libration type
can be decomposed in a multidimensional Fourier series as

Q(t) =
∑


m
c 
mei 
ω· 
mt , (2.66)

where 
m = (m1, . . . ,mN ) is a vector with integer components.
Dynamical variables of rotation type contain an additional
linear term, i.e.,

Q(t) = c0t +
∑


m
c 
mei 
ω· 
mt ; (2.67)

see, e.g., Ref. [65] for further details. In our case, the absolute
value of the order parameter, |
(t)| is of libration type, while
its phase is of rotation type.

The frequency spectra of asymptotic solutions con-
structed above are ω(εp) = 2εp for m = −1 and ω(εp) =
2
√

(εp − μ∞)2 + 
2∞ for m = 0. Important for us is that
the spectra are continuous with no isolated frequencies in
the thermodynamic limit. Since setting 2σp = cos θp ensures
that the quench dynamics has the same integrals as this
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solution (lives on the same invariant torus), it also must
have an identical frequency spectrum. Assuming |
(t)| is
continuously distributed over the spectrum as a collective
variable, i.e., the discrete summation in Eq. (2.66) turns into a
continuous Fourier transform, it must dephase at large times,
|
(t)| → const. Under the same assumption, the phase of
the order parameter according to Eq. (2.67) must tend to a
linear-in-time function as t → ∞. Therefore, 
(t) at large
times is of the form 
∞e−2iμ∞t−2iϕ . Since finite 
∞ also
implies an isolated root at μ∞ ± i
∞, while for m = −1 there
are no isolated roots by definition, we must have 
∞ = 0, i.e.,

(t) → 0 in this case.

We also prove the few-spin conjecture for infinitesimal
quenches in Sec. V D independently of above arguments and
numerics.

2. m = 1

Suppose we found that for some initial condition (quench
parameters) 
L2(u) has two pairs of isolated complex conjugate
roots c,c̄,c′,c̄′. Given c and c′, the above method allows us to
determine the long-time asymptote of 
(t), asymptotic spin
configuration, and time-dependent Bogoliubov amplitudes
up(t),vp(t) for the dynamics of the two-channel model (1.9)
starting from this initial condition at t = 0.

By construction, c,c′ are also the roots of 
L2
m(u) furnishing

the spectral polynomial for the reduced problem Q4(u) =
(u − c)(u − c̄)(u − c′)(u − c̄′) and therefore the parameters
μ,ρ,κ,χ through Eq. (2.35). We further obtain from Eq. (2.41)


(t) =
√

�2 + h1 exp

(
−2iμt − i

∫
κdt

�2 + h1

)
, (2.68)

where � is the Jacobi elliptic function dn,

� =
√

h3 − h1dn

[√
h3 − h1(t − t0),

√
h3 − h2

h3 − h1

]
, (2.69)

t0 is a constant, and h3 � h2 � h1 are the roots of the third-
order polynomial P3(w) = w3 + 4ρw2 + 4χw + κ2. The am-
plitude |
(t)| oscillates between a minimum 
b = √

h2 and
a maximum 
a = √

h1. Plots of 
a, 
b, and h1 for various
quenches are shown in Figs. 9 and 10. As we now see, the
parameter h1 also quantifies the deviation from the weak-
coupling limit, where h1 = 0.

Of interest is the particular case when the parameter
κ = 0. As we see below, this is realized for quenches deep
within the weak-coupling BCS regime in the broad resonance
limit when the two-channel model is equivalent to the
BCS Hamiltonian (1.11). κ = 0 implies h1 = 0, 4χ = h2h3,
4ρ = −h2 − h3, and Q4(u) = [(u − μ)2 − ρ]2 − χ . Let h3 =

2

+,h2 = 
2
− in accordance with the notation of Eq. (2.38).

The roots of Q4(u) in this case take a simple form with shared
real part. Namely, they are

μ ± i

+ ± 
−

2
, (2.70)

and the expression (2.68) simplifies as well,


(t) = 
+dn[
+(t − t0)]e−2iμt−2iϕ. (2.71)

This expression for 
(t) and the corresponding m = 1 spin
solution were constructed in Ref. [7].

The general expression for the reduced spins obtain from
Eqs. (2.23), (2.27), and (2.34),

σ z
p

σp
= −|
|2 − 2ξ 2

p + 2ρ

2
√

Q4(εp)
,

(2.72)
σ−

p

σp
= −2ξp
 − 2μ
 + i
̇

2
√

Q4(εp)
,

where ξp = εp − μ and 
 is given by Eq. (2.68). Bogoliubov
amplitudes corresponding to the 1-spin solution can now be
derived from Eq. (2.58). The imaginary and real parts of
the right-hand sides determine the absolute values of the
amplitudes and their phases, respectively,

Up =
√

2c+
p − |
|2

2Q
1/4
4 (εp)

e−iμt+iξpt exp

[
i

∫
κ − 4ξpc

+
p

2c+
p − |
|2 dt

]
,

Vp =
√

2c−
p + |
|2

2Q
1/4
4 (εp)

eiμt−iξpt exp

[
i

∫
κ + 4ξpc

−
p

2c−
p + |
|2 dt

]
,

(2.73)
where c±

p = √Q4(εp) ± (ξ 2
p − ρ).

The common phase of the amplitudes αp is the sum of their
phases in the above equations; i.e.,

αp =
∫ [

κ − 4ξpc
+
p

2c+
p − |
|2 + κ + 4ξpc

−
p

2c−
p + |
|2

]
dt. (2.74)

The integrand is a periodic function of time. Therefore, αp
is of the form (2.57), which is seen, e.g., by expanding the
expression under the integral in Fourier series. The linear
part ept comes from the zeroth harmonics. We only need to
show that ep is a nonconstant (dispersing) function of εp. For
this, we expand the integrand for large εp, ep = εp + O(1).
Therefore, ep is indeed dispersing and the contribution of
second terms on the right-hand sides of Eq. (2.55) to 
L(u)
and J−(t) dephases similarly to m = −1,0 cases. By few-
spin conjecture the asymptotic behavior of 
(t) is then
given by Eqs. (2.68). The asymptotic spin configuration
obtain by substituting Eqs. (2.74) and (2.72) into Eq. (2.55),
where cos θp ≡ cos(εp) is given by Eq. (2.49) and e−iφp =
σ−

p /|σ−
p | straightforwardly derives from the second equation

in Eq. (2.72).
As before, to verify the few-spin conjecture, it is sufficient

to check that 
(t) at large times after the quench is described
by Eq. (2.68) whenever 
L2(u) has two pairs of isolated roots.
We do this numerically; see Figs. 8 and 14–16. In these plots
we compare 
(t) from direct numerical evolution of 5024
spins to Eq. (2.68), where parameters h1,h2,h3, and μ obtain
from the isolated roots of 
L2(u). Note that there are no fitting
parameters apart from an overall shift t0 along the time axis.

III. QUENCH PHASE DIAGRAM AND ASYMPTOTIC SPIN
DISTRIBUTION FOR THE TWO-CHANNEL MODEL

We established in the previous section that the long-time
dynamics of the system after a quench are determined by
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FIG. 14. (Color online) Roots of 
L2(u) (top) and |
(t)| for a
detuning quench in a 3D two-channel model with N = 1024 spins
and γ = 1.0. There are two pairs of isolated roots (c,c̄) and (c′,c̄′) and
N − 2 continual roots close to the real axis. The large-time asymptote
of |
(t)| is described by Eq. (2.68), where parameters hi are extracted
from the isolated roots, in agreement with the few-spin conjecture.
The phase of 
(t) is also in excellent agreement; see, e.g., Figs. 8
and 15. Quench parameters are 
0i = 2.68
max, 
0f = 0.76
max,
and δω = −4.13γ .

the isolated complex roots of 
L2(u). We now proceed to
evaluate the roots and thus construct the quench phase diagram:
identify all possible steady states for quenches throughout the
BCS-BEC crossover. We find that, depending on the quench
parameters, 
L2(u) has zero, one, or two pairs of complex
conjugate roots and the long-time behavior is therefore that
described in Secs. II D, II D 1, or II D 2, respectively. Imaginary
and real parts of the roots determine the parameters of the
asymptotic behavior. For example, in the Volkov and Kogan
regime (region II in our quench phase diagrams) where

(t → ∞) → 
∞e−2iμ∞t−2iϕ , the roots are μ∞ ± i
∞. We
first derive general equations for the roots, lines separating
distinct regimes, and the asymptotic distribution function
and then consider various cases, such as 2D and 3D, wide
(one-channel) and narrow resonance limits, and deep BCS and
BEC regimes.

After the quench the system evolves with the Hamilto-
nian (1.9), where ω = ωf starting from the spin configura-
tion (1.28), which is the ground state for ω = ωi . Since 
L2(u)
is conserved, we can evaluate it at any t . It is convenient to do
so at t = 0. The Lax vector at t = 0 obtains by plugging the
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FIG. 15. (Color online) Magnitude and phase of 
(t) in region III
(two pairs of isolated roots) after detuning quench from deep BCS to
BEC in a 3D two-channel model for γ = 1. Numerical evolution with
5024 spins against Eq. (2.68). Parameters h1,h2, etc., are obtained
from isolated roots of 
L2(u) as described in the text. 
0i = 2.65 ×
10−2
max, 
0f = 0.80
max, μi = 1.00εF , δω = −4.59γ .

initial condition into the definition (2.1)


L(u)|t=0 = [
0i x̂ − (u − μi)ẑ]L0(u) − δω

g2
ẑ, (3.1)

where δω = ωf − ωi and

L0(u) = − 2

g2
+
∑

p

1

2(u − εp)Ei(εp)
, (3.2)

Ei(εp) = E(εp; 
0i ,μi) =
√

(εp − μi)2 + 
2
0i and we also

used the gap equation (1.18).
Taking the square of the above expression for 
L(u) and

equating it to zero, we obtain an equation for the roots

(u − μi ∓ i
0i)

[
2

g2
−
∑

p

1

2(u − εp)Ei(εp)

]
= δω

g2
. (3.3)

Suppose first that the single-particle levels εp are discrete and
there are N � 1 distinct εp. Then this is a polynomial equation
with N + 1 pairs of complex conjugate roots. Most of the
pairs are close to the real axis, at distances of the order of
the spacing between εp, which is inversely proportional to N

(system volume) and goes to zero in the thermodynamic limit.
In the thermodynamic limit most of the roots of 
L2(u) coalesce
to the real axis merging with its poles to form a branch cut along
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FIG. 16. (Color online) Postquench |
(t)| for a 3D two-channel
model in region III, where 
L2(u) has two pairs isolated roots.
Numerical evolution with 5024 spins against Eq. (2.68). γ = 0.1,

0i = 0.035
max in all three panels. 
0f /
max = 0.54,0.67, and
0.85 in (a)–(c), respectively.

the real axis. We fully verify this picture in this section and in
Appendix B. Here we consider the roots whose imaginary part
remains finite as N → ∞ and in Appendix B we evaluate the
roots with vanishing imaginary parts to order 1/N .

Consider first the ground state. This corresponds to δω = 0
in Eq. (3.3) and 
L2(u) = [(u − μ)2 + 
2

0]L2
0(u). There is a

pair of complex roots at c± = μ ± i
0. The remaining 2N

roots solve L0(u) = 0 and are double degenerate and real;
see Fig. 17. This is because L0(u) goes from +∞ to −∞
as u goes from the left vicinity of one pole at u = εp to
the right vicinity of the next one along the real axis, always
crossing zero between consecutive εp’s. In the thermodynamic
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FIG. 17. (Color online) Roots of 
L2(u) for the ground state of a
3D two-channel model for N = 54 spins and γ = 1.0. There are N

doubly degenerate real roots cm (shown as circles and squares), N − 1
of them located between discretized energy levels εp → εm, and two
isolated complex roots c± = μi ± 
0i . Here 
0i = 0.1εF .

limit, spacings between εp’s vanish and real zeros and poles
merge into a continuous line. For δω 	= 0 the real roots acquire
imaginary parts, each degenerate root splitting into a complex
conjugate pair, as shown in Figs. 12–14. The imaginary parts,
however, scale as 1/N .

We first take the continuum limit in Eq. (3.3) for u away
from the real axis. Then only isolated complex roots remain
and we find that there are only zero, one, or two pairs of
such roots depending on δω. At δω = 0 there are two isolated
complex conjugate roots at u = μi ± i
0i . One pair of roots
persists for sufficiently small |δω|, but beyond a certain
threshold the number of isolated roots changes, as we now
demonstrate. The continuum limit of Eq. (3.3) reads

2

u − μi ∓ i
0i

δω

γ
+
∫ ∞

0

f (ε)dε

(u − ε)Ei(ε)
= 4

γ
, (3.4)

where, as always, we measure energies in units of εF and f (ε)
is the dimensionless density of states defined in Eq. (1.22).

As δω is decreased or increased, the single pair of roots
can collapse to the real axis or a new pair of isolated roots
can emerge from it. The threshold (critical) value of δω when
this occurs is determined by looking for roots of Eq. (3.4)
with an infinitesimal imaginary part. Replace u → u ± iδ in
Eq. (3.4) and use (u − ε ± iδ)−1 = P (u − ε)−1 ∓ iπδ(u − ε)
to separate its real and imaginary parts. The latter yields critical
values of δω when the number of roots changes

|δω|
γ

= πf (u)Ei(u)

2
0i

, (3.5)

where u is real positive and obtains from the real part of
Eq. (3.4),∫ ∞

0
− f (ε)dε

(u − ε)Ei(ε)
+ sgn(δω)

π (u − μi)f (u)

Ei(u)
0i

= 4

γ
, (3.6)

where the dashed integral indicates principal value.
The last two equations determine critical lines in quench

phase diagrams shown in Figs. 2, 3, 20, and 21. We construct
the diagrams in the (
0f ,
0i) plane, ground-state gaps at
final and initial detunings ωi and ωf . The resonance width
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(dimensionless interaction strength) γ is fixed throughout the
diagram. 
0i , 
0f , and γ uniquely determine μi , ωi , and
ωf through ground-state Eqs. (1.25) and (1.26). Each point
in this plane represents a particular quench of the detuning
ωi → ωf . We choose 
0i (or, equivalently, the ratio μi/
0i)
and the sign of δω and solve Eq. (3.6) for real u. Equation (3.5)
then yields the final detuning ωf and therefore 
0f . We thus
obtain a critical line, 
0f as a function of 
0i , in the (
0f ,
0i)
plane. The number of isolated root pairs changes by one as one
crosses this line.

It turns out there is one critical line for either sign
of δω. There are therefore three nonequilibrium phases or
regimes, qualitatively different long-time behaviors, indicated
as regions I, II (including subregion II′), and III in Figs. 2, 3, 20,
and 21. Region II contains the 
0f = 
0i or, equivalently,
ωf = ωi line, which corresponds to no quench, i.e., to the
system remaining in the ground state at all times. Therefore,
in region II Eq. (3.4) yields a single pair of isolated complex
roots u = μ∞ ± i
∞. This, in turn, implies that 
(t) →

∞e−2iμ∞t−2iϕ as t → ∞. For all quenches in region II
the system thus goes into the asymptotic state described in
Sec. II D 1.

Negative δω corresponds to 
0f > 
0i . As we cross the
critical line going from region II into region III the number
of isolated root pairs changes by one. It can be shown
both analytically and numerically by analyzing Eq. (3.4) that
this number increases; i.e., there are two pairs of complex
conjugate isolated roots in region III. For quenches in this
part of the diagram the large-time asymptote of 
(t) is given
by Eq. (2.68) and the large-time state of the system is that
obtained in Sec. II D 2. Plots of 
∞ and μ∞ as functions of

0f at two fixed values of 
0i are shown in Figs. 18 and 19.

Similarly, as we enter region I from region II, 
∞ → 0 and
the single pair of isolated roots collapses to the real axis at the
critical line. There are hence no isolated roots in region I and
therefore 
(t) → 0 for quenches in this regime and the system
goes into the gapless steady state detailed at the beginning of
Sec. II D.

Of interest is the line along which the real part of the root
pair μ∞ ± i
∞ in region II vanishes, i.e., μ∞ = 0 (the line
separating subregions II and II′ in quench phase diagrams).
This can be thought of as a nonequilibrium extension of
the BCS-BEC crossover going from a positive to a negative
chemical potential. Out of equilibrium, as we see below, the
change of sign of μ∞ affects the approach of 
(t) to its
asymptote. For example, in 3D the approach changes from
1/t1/2 in II to 1/t3/2 in II′. Setting u = ±i
∞ in Eq. (3.4) and
separating the real and imaginary parts, we obtain equations
determining this line,

μi


0i − 
∞
ImF + ReF = 4

γ
,

(3.7)
δω

γ

2(
∞ − 
0i)

μ2
i + (
∞ − 
0i)2

= ImF ,

where

F =
∫ ∞

0

f (ε)dε

(i
∞ − ε)Ei(ε)
. (3.8)
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FIG. 18. (Color online) 
(t) → 
∞e−2iμ∞t−2iϕ as t → ∞ after
a detuning quench ωi → ωf in a 3D two-channel model in region II
of the quench phase diagram in Fig. 3. 
∞ extracted from the single
isolated root pair of the Lax vector norm is shown as a function of 
0f

(ground-state gap for ωf ) at two fixed values of 
0i (ground-state gap
for the initial detuning ωi). Note that 
∞ > 
0f for BEC to BCS
quenches 
0i = 0.99
max for γ = 0.1.

Equation (3.7) determines the μ∞ = 0 line via a procedure
similar to that for critical lines separating region I from II and
II from III. For a given 
0i , the first equation yields 
∞. We
then find δω and consequently ωf and 
0f from the second
equation.

Note the intersection of the μ∞ = 0 line with the 
0i =

0f (no-quench) line. Along the latter line we also have 
∞ =

0i and, therefore, at the intersection point μi = μf = 0 or
the first term in the first equation in Eq. (3.7) would blow up.
In equilibrium μ = 0 corresponds to a certain ground-state
gap 
0 = 
0×, which obtains from Eq. (1.25) and provides a
characteristic energy scale for the crossover from the BCS to
BEC regime. Vanishing of μi and μf at the intersection point
implies that straight lines 
0i = 
0×, 
0f = 
0×, and 
0i =

0f and the μ∞ = 0 line must cross at the same point, which
is indeed seen in all quench phase diagrams in Figs. 2, 3, 20,
and 21.

Let us also obtain an explicit expression for the asymptotic
spin distribution function Eq. (2.49) in all three regimes.
Equation (3.1) implies


L2(u) = 
2
0iL

2
0(u) +

[
(u − μi)L0(u) + δω

g2

]2

. (3.9)
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FIG. 19. (Color online) 
(t) → 
∞e−2iμ∞t−2iϕ as t → ∞ after
a detuning quench ωi → ωf in a 3D two-channel model in region II
of the quench phase diagram in Fig. 3, where μ∞ plays the role of
the out-of-equilibrium analog of the chemical potential. Here μ∞ is
extracted from the single isolated root pair of the Lax vector norm
and is shown as a function of 
0f (ground-state gap for ωf ) at two
fixed values of 
0i (ground-state gap for the initial detuning ωi). Note
that μ∞ behaves similarly to the ground-state chemical potential in
Fig. 1.

In the thermodynamic limit,

L0(u) = − 2

g2
+
∫ ∞

0

f (ε)dε

2(u − ε)Ei(ε)
. (3.10)

We evaluate L0(ε±) using (ε − ε′ ± iδ)−1 = P (ε − ε′)−1 ∓
iπδ(ε − ε′). This results in

cos θ (ε) = z(ε)

iπf (ε)

√
A2−
2

0i +
[

(ε − μi)A− + δω

γ

]2

− z(ε)

iπf (ε)

√
A2+
2

0i +
[

(ε − μi)A+ + δω

γ

]2

,

(3.11)

where

A∓ = − 2

γ
± iπf (ε)

2Ei(ε)
+
∫ ∞

0
− f (ε′)dε′

2(ε − ε′)Ei(ε′)
. (3.12)

The integral here is the same as in Eq. (3.6). We evaluate
it in elementary functions in 2D, in the weak-coupling BCS
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FIG. 20. (Color online) Detuning quench phase diagrams for
two-channel model in 2D for various resonance widths γ obtained
from Eqs. (3.16) and (3.17). Each point represents a single quench
labeled by 
0i and 
0f , pairing gaps the system would have in the
ground state for initial and final detunings. At large times the system
ends up in one of three steady states shown as regions I, II (including
II′), and III. For quenches in region I the order parameter vanishes.
In II 
(t) → 
∞e−2iμ∞t−2iϕ and III |
(t)| oscillates persistently.
Subregions II and II′ differ in the sign of μ∞ (out-of-equilibrium
analog of the chemical potential): μ∞ > 0 in II and μ∞ < 0 in II′. The
diagonal, 
0i = 
0f , is the no-quench line. 
0× is the ground-state
gap corresponding to zero chemical potential; i.e., 
0× is given by
Eq. (1.25) for μ = 0.

regime, and in BEC regime in Secs. III A and III B below;
see also Eqs. (B4) through (B7) for explicit expressions.
Note cos θ (ε) = 1 for δω = 0 (no quench) as it should.
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FIG. 21. (Color online) Detuning quench phase diagrams for a
two-channel model in 3D for various resonance widths γ obtained
from Eqs. (3.40) and (3.41) (otherwise, the same as Fig. 20).

Representative plots of the spin distribution function for two
quenches appear in Fig. 11. For future use we also write the
first two terms in large ε expansion of Eq. (3.11),

cos θ (ε) ≈ 1 −
(

δω

γ

)2 2
2
0i

E2
i (ε)[H 2(ε) + π2f 2(ε)]

, (3.13)

which are also independently the first two terms in its small
δω expansion. The function H (ε) is defined in Eq. (B8).

Next, we consider 2D and 3D separately, as well as various
special cases such as wide (single-channel limit) and narrow
resonance and deep BCS and BEC regimes.

A. 2D

In 2D the dimensionless density of states f (ε) = 1 and all
integrals above in this section can be evaluated in terms of
elementary functions. It is convenient to introduce a notation:

x = μi


0i

, v = u − μi


0i

. (3.14)

Equation (3.4) reads

ln

[
− (v + x)(v + √

1 + v2)√
1 + x2

√
1 + v2 − xv + 1

]
= −2δω(v ∓ i)

γ
√

1 + v2
+ 4
0i

γ

√
1 + v2. (3.15)

The critical lines separating the three asymptotic regimes are
determined by Eqs. (3.6) and (3.5), which become

|δω|
γ

= π

2

√
1 + v2, (3.16)

ln

[
(v + x)(v + √

1 + v2)√
1 + x2

√
1 + v2 − xv + 1

]
= −sgn(δω)πv + 4
0i

γ

√
1 + v2, (3.17)

where v is real and v > −x. It is straightforward to analyze
Eq. (3.17) graphically and to find v and thus the critical lines
numerically.

Positive δω mean 
0f > 
0i and the corresponding v

determine the critical line separating regions I and II. In this
case, for γ above a certain threshold γc to be determined below,
there is a single root for any 
0i . This means that a horizontal

0i = const line intersects the I-II line once for any value of the
const and region I therefore extends all the way up to 
0i =√

γ = 
max as seen in Figs. 2(c), 20(b), and 20(c). When
γ < γc, the number of roots for positive δω changes from one
to two and then to zero as 
0i increases. The I-II line then
displays peculiar reentrant behavior; see the inset in Fig. 2(b).

Negative δω means 
0f < 
0i . The roots v in this case
yield the II-III critical line. There are two roots for 
0i below
a certain threshold and no roots above it, implying that a
horizontal 
0i = const line intersects the II-III critical line
twice for a sufficiently small value of the const.

The shape of the critical lines as well as the complex roots
of Eq. (3.15) can be determined analytically when the initial
and/or final value of the detuning ω is deep in the BCS or BEC
regime. The BCS limit corresponds to detuning ω → +∞.
For the ground state this implies μ → εF = 1, 
0 → 0. The
gap equation (1.26) then yields

ln
4ε�


2
0

= 2ω − 4

γ
. (3.18)

The deep BEC regime obtains when ω → −∞. In this case
μ → −∞ in the ground state. The gap and chemical potential
equations switch roles in the sense that the former determines
the chemical potential and the latter the ground-state gap.
Equation (1.26) becomes

ln
ε�

|μ| = 2ω + 4|μ|
γ

(3.19)
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and Eq. (1.25) reads in this limit


0 =
(

1

γ
+ 1

4|μ|
)−1/2

. (3.20)

First, we consider quenches originating deep in the BCS
regime; i.e., ωi → +∞ and, therefore, 
0i → 0, μi → 1.
Such initial states correspond to x → +∞. Equation (3.17)
becomes

ln

[
(v + x)(

√
1 + v2 + v)

x(
√

1 + v2 − v)

]
= −sgn(δω)πv. (3.21)

The roots are v → 0 for either sign of δω and v → −x + 0
for δω < 0. This translates into

u ≈
{
μi, δω > 0,

μi or +0, δω < 0.
(3.22)

For v → 0 Eq. (3.16) yields δω/γ = ±π/2. Therefore, both

0f and 
0i are deep in the BCS regime. The gap equation
Eq. (3.18) implies 
0 ∝ exp(−ω/γ ) and, hence,


0i


0f

= e±π/2. (3.23)

This result has been already obtained in Refs. [17,18], which
studied quenches within the single-channel model in the weak-
coupling (BCS) limit. Weak coupling means small 
0i and

0f , which corresponds to a vicinity of the origin, 
0i =

0f = 0, in our phase diagrams. Equation (3.23) is the slope
of the I-II and II-III critical lines at the origin in Figs. 2, 3, 20,
and 21.

As we see below, Eq. (3.23) also holds in 3D. This is
expected on general grounds because, in the BCS limit,
superconducting correlations come from a narrow energy
window around the Fermi energy. The main contribution to
integrals determining the roots comes from these energies.
The density of states is then well approximated by a constant
rendering the 2D and 3D cases equivalent.

The second root at δω < 0, v → −x + 0, yields δω/γ ≈
−πx/2. This means that the initial state is deep in the BCS
regime, while ωf → −∞ and the ground state at ωf is in the
BEC limit. Further, μi → εF = 1, so x ≈ 1/
0i . Subtracting
Eq. (3.18) from Eq. (3.19), we obtain

ln

2

0i

4|μf | = − π


0i

+ 4|μf |
γ

+ 4

γ
. (3.24)

Here we assume that γ is finite and treat the single-channel
limit γ → ∞ separately below. Since the 1/
0i term diverges
much faster than the logarithm in the above equation, we get
4|μf | ≈ πγ/
0i . Equation (3.20) now obtains


0f


max
= 1 − 
0i

2π
. (3.25)

This equation shows that the II-III critical line terminates
at (
0f ,
0i) = (
max,0) linearly with a slope 
0i/(
0f −

max) = −2π/

√
γ .

Simpler expressions can also be derived for complex roots
for quenches within the BCS regime, i.e., in the vicinity of
the of the origin in the phase diagrams. By Eq. (3.22) the real
parts of the roots in this regime Re[u] ≈ μi ≈ εF . Then v is
purely imaginary and also |v| � x because Im[u] is related to

the asymptotic value of order-parameter amplitude, which is
much smaller than εF . Equation (3.15) becomes

ln

[
v + √

1 + v2

v − √
1 + v2

]
= − v ∓ i√

1 + v2

2δω

γ
. (3.26)

This equation is symmetric with respect to complex conjuga-
tion and with respect to v → −v. The latter symmetry reflects
emergence of the particle-hole symmetry in the BCS limit.
Note that when there is only one root, these two symmetries
together require that it be purely imaginary.

Let v = −i cosh φ in Eq. (3.26), where φ is either purely
real or purely imaginary, so that v is purely imaginary.
Equation (3.26) yields, depending on the sign choice on the
right-hand side,

φ = −δω

γ
coth(φ/2), (3.27)

φ = −δω

γ
tanh(φ/2). (3.28)

Note that in this regime δω/γ = ln(
0i/
0f ). It is straightfor-
ward to analyze these equations graphically and to determine
when they have solutions. We summarize the results.

Region I: 
0i/
0f > eπ/2. There are no isolated roots and,
hence, 
(t) → 0 at large times.

Region II: e−π/2 < 
0i/
0f < eπ/2. There is a single pair
of isolated roots at μ∞ ± i
∞,

μ∞ = εF , 
∞ = 
0i cosh φ, (3.29)

where φ is real for δω < 0 and imaginary for δω > 0 and is the
solution of Eq. (3.27). One can show 
∞ � 
0f for any δω,
where the equality is achieved only at δω = 0. The long-time
dynamics is that described in Sec. II D 1.

It is instructive to evaluate 
∞, the asymptotic value of
the magnitude of the gap, for infinitesimal quenches, when
|
0f − 
0i | � 
0i . Expanding Eqs. (3.27) and (3.29) in small
φ, we obtain, after some calculation,


∞ = 
0f − (
0f − 
0i)2

6
0f

. (3.30)

Note that within linear analysis 
∞ = 
0f . As we show
in Sec. V, this is a general feature of linearized dynamics
around the ground state regardless of coupling strength
or initial conditions: |
(t)| tends to its ground-state value
corresponding to the Hamiltonian with which the system
evolves at t > 0.

Region III: 
0i/
0f < e−π/2. There are two pairs of
complex conjugate roots,

εF ± i
0i cosh φ1, εF ± i
0i cosh φ2, (3.31)

where φ1 is the solution of Eq. (3.27) and φ2 is the solution of
Eq. (3.28); φ2 is real when δω/γ = ln(
0i/
0f ) � −2 and
imaginary otherwise. We see that the roots are indeed of the
form Eq. (2.70). The asymptotic state is that of Sec. II D 2,
while 
(t) takes the simplified form Eq. (2.71).

Just as in Eq. (3.23), the above results starting with
Eq. (3.26) are universal in that they hold for quenches within
the BCS regime independent of the dimensionality and also
hold for the single-channel model.
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Next, consider quenches originating deep in the BEC,
which corresponds to μi → −∞, 
0i → √

γ , and x → −∞.
Since v > −x in Eq. (3.17), we also have v → ∞ provided a
real root exists. Equation (3.17) for δω > 0 simplifies to

ln

[
v + x

|x|
]

= v

(
4
0i

γ
− π

)
. (3.32)

For 4
0i/γ < π , there is a single root at v → −x, which
corresponds to u ≈ 0. Since 
0i � √

γ = 
max, the condition

0i < πγ/4 can be fulfilled only if γ > γc, where

γc = 16

π2
. (3.33)

For γ � γc Eq. (3.17) at δω > 0 has a single root for any 
0i

and, in particular, for 
0i → 
max. This means that the I-II
critical line extends all the way up to 
0i = 
max, terminating
at (
0i ,
0f ) = (
max,0).

It is interesting to work out the shape of the I-II critical
line near its termination point. First, let γ > γc. Since v ≈
−x, Eq. (3.16) implies δω/γ ≈ π |x|/2. Using Eqs. (3.19)
and (3.20) to determine 
0i and μi and Eq. (3.18) for 
0f , we
get


0f


max
= 1√

2ε
exp

(
− α

2ε

)
,

(3.34)

ε = 
max − 
0i


max
, α =

√
γ

γc

− 1.

This behavior is seen in Figs. 2(c), 20(b), and 20(c). Note the
difference between γ = 5 and γ = 50 in Figs. 20(b) and 20(c)
that correspond to α ≈ 0.8 and α ≈ 4.6, respectively.

Next, let γ < γc. In this case, the I-II critical line goes up,
then bends backward, reaching a maximum, goes down, and
terminates on the 
0i axis below 
max; see, e.g., the inset in
Fig. 2(b). Near the termination point μi and ωi are finite since

0i < 
max, while ωf → ∞ since 
0f → 0. Equation (3.16)
implies v → ∞ and δω/γ ≈ πv/2. In this limit, Eq. (3.17)
becomes

ln

[
2v√

1 + x2 − x

]
= v

(
4
0i

γ
− π

)
. (3.35)

We see that v diverges as 
0i → πγ/4 = π
√

γ
max/4 ≡

th. Therefore, the I-II critical line terminates at (
0i ,
0f ) =
(
th,0). For 
0i above 
th and below a certain upper value,
which we do not determine explicitly, Eq. (3.17) has two roots.
For 
0i below 
th there is one root.

The shape of the I-II critical line as it approaches the
termination point for γ < γc obtains from Eq. (3.35). Let
ε = (
0i − 
th)/
th � 1. Equation (3.35) implies

v ≈ 1

πε
ln

[
2(

√
1 + x2 + x)

πε

]
. (3.36)

The gap equation (1.26) yields in 2D√
1 + x2 + x = 2

(
γ − 
2

0i

)
γ
0i

. (3.37)

Since ωf → ∞ corresponds to the BCS limit, we have 
0f ∝
e−ωf /γ ∝ e−πv/2. Combining this with the last two equations

and using 
0i ≈ 
th = πγ/4, we get


0f = C exp

(
− 1

2ε
ln

[
γc − γ

γ ε

])
, (3.38)

where C is independent of ε.
The I-II critical line for γ < γc is shown in Figs. 2(a), 2(b),

and 20(a), which correspond to 
th/
max ≈ 0.25,0.78, and
0.18, respectively. 
th appears somewhat larger in these plots
since exponentially small, but finite, 
0f in Eq. (3.38) is not
noticeable; the critical line effectively goes down along the 
0i

axis. In the same way, the I-II critical line appears to terminate
below 
max in Fig. 20 for γ = 50 due to exponential smallness
of 
0f in Eq. (3.34).

B. 3D

Three-dimensional diagrams for various values of reso-
nance width γ are shown in Figs. 3 and 21. Overall, they are
qualitatively similar to 2D diagrams. A notable difference is
that, in 3D, region III of the oscillating order parameter 
(t) for
sufficiently large γ terminates at 
0f < 
max = √

2γ /3. This
means that quenches from infinitesimally weak to sufficiently
strong coupling produce no oscillations. Also, in contrast to
the 2D case, the critical line separating the gapless region I,
in principle, always extends all the way up to 
0i = 
max and
terminates at 
0f = 
I-II

0f > 0. This is, however, not noticeable
at small γ because in this case the value of 
I-II

0f is exponentially
small.

In 3D the dimensionless density of states f (ε) = √
ε and

Eq. (3.4) becomes∫ ∞

−x

dy
√


0i(x + y)

(v − y)
√

y2 + 1
= − 2δω

γ (v ± i)
+ 4
0i

γ
, (3.39)

where y = ε/
0i − x, and x and v are defined in Eq. (3.14).
Similarly, Eqs. (3.6) and (3.5) determining critical lines read

|δω|
γ

= π

2

√

0i(x + v)(v2 + 1), (3.40)

∫ ∞

−x

− dy
√


0i(x + y)

(v − y)
√

y2 + 1
+ sgn(δω)

πv
√


0i(x + v)√
v2 + 1

= 4
0i

γ
,

(3.41)

The integral here is a complete elliptic integral. Substitution
y = 1/t − x reduces it to one of the Carlson elliptic integrals
with known asymptotic behaviors in various regimes [66,67].
We, however, find it more convenient to evaluate the limiting
behaviors by a direct analysis of the integral.

First, we consider initial states deep in the BCS regime,
i.e., ωi → +∞, which implies 
0i → 0, μi → 1, and x →
1/
0i → +∞. To evaluate the integral in Eqs. (3.39)
and (3.41) in this regime, we split the integration range into
three intervals—(−x,−y�),(−y�,y�), and (y�,∞)—where
y� is such that 1 � y� � x. Let the corresponding integrals
be I1, I2, and I3. To the leading order in 1/y� and y�/x

we can replace
√

y2 + 1 → |y| in I1 and I3 and replace√
x + y → √

x in I2. The resulting integrals evaluate in terms
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of elementary functions

I1 + I3 = 2
√

x

v
ln

4x

y�

−
√

x + v

v
ln

4x(
√

x + v + √
x)2

y2
� − 4x(

√
x + v − √

x)2
,

I2 =
√

x√
1 + v2

ln
(
√

1 + v2
√

1 + y2
� + vy�)(v + y�)

(
√

1 + v2
√

1 + y2
� − vy�)(v − y�)

,

where we used 1 � y� � x to simplify expressions. The
dependence on y� should, of course, cancel from I1 + I2 + I3

to the leading order in 1/y� and y�/x.
The gap equation (1.26) in the BCS regime is handled

similarly by splitting the integral into three, resulting in

ω

γ
− 2

γ
= √

ε� − 2 + ln
8


0
. (3.42)

Suppose the final detuning is also in the BCS regime. The
above equation then implies

δω

γ
= ln


0i


0f

, (3.43)

the same as in 2D. Because δω/γ must remain of order one
as x → +∞, it follows from Eq. (3.40) that v is also of order
one for quenches within the BCS regime. Therefore, |v| �
y� in the above expressions for I1 + I2 and I3. We obtain
|I1 + I2| � 1 and

I1 + I2 + I3 ≈ I3 ≈ 1

1 + v2
ln

[
v + √

1 + v2

v − √
1 + v2

]
. (3.44)

Equation (3.39) now turns into the 2D Eq. (3.26), and
Eq. (3.40) yields |δω|/γ = π/2 and therefore Eq. (3.23). Thus,
quenches within the BCS regime in 3D are identical to those
in 2D and all results from Eq. (3.26) to Eq. (3.31) also hold in
3D. As we already commented above, this is expected since
in the BCS regime superconductivity comes from the vicinity
of the Fermi energy, making the dependence of the density of
states on the energy and thus the dimensionality inessential.

The horizontal 
0i = const line for infinitesimal values of
the const intersects the II-III critical line twice, once near the
origin and the second time near the termination point of the
II-III critical line. The former intersection corresponds to small
v, as we saw above, and the latter to v of order x. To determine
the termination point, we therefore take |v| � y� in the above
expressions for I1 + I3 and I2. Equation (3.39) becomes

√
x + v√

x
ln

(
√

x + v + √
x)2

−(
√

x + v − √
x)2

= −2

[
δω

γ
+ ln

8


0i

− 2v
0i

γ

]
± 2iδω

vγ
. (3.45)

The real root of this equation is v ≈ −x ≈ −1/
0i , yielding

δω

γ
= − ln

8


0i

− 2

γ
. (3.46)

0 10 20 30 40 500

1
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6

0f

max

II-III

FIG. 22. (Color online) Termination point of the II-III critical
line as a function of resonance width γ in units of Fermi energy for
a 3D two-channel model. This line encloses region III of persistent
oscillations in Figs. 3 and 21. It starts at the origin and ends at

II-III

0f along the 
0f axis. This reflects an interesting phenomenon:
There are no persistent oscillations for quenches to couplings stronger
than a certain threshold (i.e., quenches to detunings ωf such that the
corresponding ground-state gaps 
0f � 
II-III

0f ) no matter how weak
the initial coupling is (i.e., for any initial detuning). At γ → ∞
(one-channel limit) 
II-III

0f saturates at 1.49εF , in agreement with
Eq. (4.19).

Combining this with Eq. (3.42), taking the limit 
0i → 0, and
plugging into the gap equation (1.26), we obtain

4 + 4μf

γ
=
∫ ∞

0

[
1

ε
− 1√

(ε − μf )2 + 
2
0f

]√
εdε, (3.47)

where we sent the cutoff ε� to infinity. Equation (3.47),
together with the chemical potential equation (1.25), determine
the value of 
II-III

0f , where the II-III critical line terminates on
the 
0f axis. 
II-III

0f is a function of γ only; see Fig. 22.
We also note that it follows from the above analysis that,

just as in 2D, for initial states deep in the BCS regime, there
are three roots: v → 0 for either sign of δω and v → −x + 0
for δω < 0. Therefore, Eq. (3.22) holds in 3D as well.

Second, consider quenches from deep BEC to larger
detuning ωf > ωi , i.e., ωi → −∞,δω > 0,μi → −∞,x →
−∞,
0i → 
max. Since y � |x| � 1 in Eq. (3.41), we can
replace

√
y2 + 1 → y. The principal value integral evaluates

to −π
√|x|/v and Eq. (3.41) becomes

−π
√|x|
v

+ π
√

v − |x| = 4
√


0i

γ
, (3.48)

where we also took into account that we need v � |x| so that
Eq. (3.40) yields real δω. The solution for large |x| is

√
v − |x| ≈ 4

√

0i

πγ
+ 1√|x| . (3.49)

Equation (3.40) now yields

δω

γ
≈ 2|μi |

γ
+ π

2

√
|μi | + 32
2

max

π2γ 3
, (3.50)
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FIG. 23. (Color online) Unlike 2D, in 3D 
0f tends to a finite
value 
I-II

0f along the I-II critical line as the initial detuning ωi → −∞
(
0i → 
max) for quenched two-channel model; see, e.g., Fig. 21.
The gapless regime thus persists even for quenches from arbitrarily
large negative ωi to finite ωf . Here we compare 
I-II

0f (in units of the
Fermi energy) as a function of the resonance width γ extrapolated
from actual phase diagrams with that obtained from Eqs. (3.51)
and (3.52). Note that 
I-II

0f is exponentially small at small γ , so that
the I-II critical line appears to close earlier at zero 
0f in Fig. 21(a).

where we replaced 
2
0i → 
2

max = 2γ /3 up to terms of order
|μi |−1/2. The overall correction to this expression is also
proportional to |μi |−1/2 at large |μi |.

Similar simplifications occur in the gap equation (1.26). We
replace the square root with ε − μi to obtain

ωi

γ
≈ √

ε� − 2|μi |
γ

− π

2

√
|μi |.

The last two equations determine ωf and from the gap
equation (1.26) for ω = ωf we obtain

128

3π2γ 2
− 4μf

γ
=
∫ ∞

0

⎡⎣ √
ε√

(ε − μf )2 + 
2
0f

− 1√
ε

⎤⎦ dε,

(3.51)

where we eliminated the cutoff similar to Eq. (3.47). This
equation combined with Eq. (1.25) determines the termination
point (
0i ,
0f ) = (
max,


I-II
0f ) of the I-II critical line. The

plot of 
I-II
0f as a function of γ is shown in Fig. 23.

Note that, in contrast to the 2D case, this critical line
formally always extends up to 
0i = 
max and 
I-II

0f does not
vanish as 
0i → 
max. This means that the gapless regime
persists even for quenches to finite final detunings from initial
states lying arbitrarily deep in the BEC regime. But for small
γ the value of 
I-II

0f is exponentially small and the critical
line appears to have closed at smaller 
0i ; see Figs. 3(a)
and 21(a). Small γ implies a large left-hand side in Eq. (3.51)
and therefore the final state deep in the BCS regime. In this
regime μf → 1 and the integral in Eq. (3.51) is twice the
right-hand side of Eq. (3.42) without

√
ε� resulting in


I-II
0f = 8 exp

[
− 64

3π2γ 2
+ 2

γ
− 2

]
. (3.52)

We see from Fig. 23 that 
I-II
0f becomes noticeable for γ �

0.45. For smaller γ the gapless region I appears to close at
smaller 
0i and zero 
0f . Figure 23 also shows that Eq. (3.52)
provides a reasonable estimate of 
I-II

0f even for large γ , which
is useful in our analysis of the one-channel model below.

IV. ONE-CHANNEL MODEL

In this section we collect for reference purposes analogous
results for the asymptotic steady state after a quench λi → λf

in the one-channel model given by Eqs. (1.3) and (1.5).
As explained in Sec. I A, the one-channel model obtains in

the broad resonance limit via replacements,

ω

γ
= ω

g2νF

→ 1

λ
, γ = g2νF → ∞ (4.1)

(in units of εF ). Our task is to go over equations of
previous sections performing these replacements. All essential
reasoning and methods are the same.

Chemical potential and gap Eqs. (1.25) and (1.26) now read

4

d
=
∫ ∞

0

⎡⎣1 − ε − μ√
(ε − μ)2 + 
2

0

⎤⎦ f (ε)dε, (4.2)

and

2

λ
=
∫ ε�

0

f (ε)dε√
(ε − μ)2 + 
2

0

, (4.3)

respectively.
The Lax vector becomes


L(u) =
∑

p


sp

u − εp
− ẑ

λνF

. (4.4)

Gaudin algebra, i.e., Eqs. (2.2) and (2.3), as well as the Lax
equation of motion (2.8) are the same. The numerator of the
conserved 
L2(u) is now a polynomial of degree 2N ,


L2(u) = Q2N (u)

(λνF )2
∏

p(u − εp)2
, (4.5)

where N is the number of nondegenerate εp.
Reduced solutions are constructed in the same way with

minor modifications. Specifically, the expressions for 
Lred(u)
in terms of 
σp and 
Lm(u) in terms of 
tj are replaced in
Eqs. (2.10) and (2.11) with the corresponding one-channel Lax
vectors according to Eq. (4.4). The Hamiltonian governing the
collective spin variables 
tj is

H red
1ch =

m−1∑
j=0

2ηj t
z
j − λνF

m−1∑
j,k=0

t−j t+k . (4.6)

Equations (2.13) and (2.14) as well as constraints (2.15) are
the same, except that the last equation relating ω and ω′ is
absent. In terms of the m-spin spectral polynomial Q2m(u) the
constraints become∑

p

σpε
r−1
p√

Q2m(εp)
= − δrm

(λνF )2
, r = 1, . . . ,m. (4.7)
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Further, since the degree of the m-spin spectral polynomial is
2m rather than 2(m + 1), an m-spin solution of the two-channel
model becomes an (m + 1)-spin solution of the one-channel
model. This name change reflects the fact that the oscillator
mode b in the two-channel model is effectively an additional
spin, which was not counted as such.

All remaining equations in Sec. II, i.e., Eqs. (2.18)
through (2.74), are identical for the one-channel model, except
Eq. (2.21) is replaced with Eq. (4.6) for m = 2 and the
self-consistency condition (2.50) is now given by Eq. (1.13).

Equations determining isolated roots, critical lines, and
μ∞ = 0 line for the one-channel model are Eq. (3.4), Eqs. (3.6)
and (3.5), and Eq. (3.7), respectively, with replacements

δω

γ
→ 1

λf

− 1

λi

≡ β,
1

γ
→ 0. (4.8)

Asymptotic spin distribution—the constant angle the spin

s(ε) makes with the spin 
σ (ε) in the corresponding m-spin
solution—is

cos θ (ε) = z(ε)

iπf (ε)

√
A2−
2

0i + [(ε − μi)A− + δβ]2

− z(ε)

iπf (ε)

√
A2+
2

0i + [(ε − μi)A+ + δβ]2, (4.9)

where

A± = ± iπf (ε)

2Ei(ε)
+
∫ ∞

0
− f (ε′)dε′

2(ε − ε′)Ei(ε′)
. (4.10)

Equation (4.9) is in excellent agreement with the actual
spin distribution obtained from direct simulation of spin
dynamics [18]; see Fig. 3 therein.

A. Quench phase diagram

Quench phase diagrams for one-channel model in 2D and
3D are shown in Figs. 4 and 5. There is only one diagram in
each case extending to positive infinity in both 
0i and 
0f

directions because γ → ∞ and therefore 
max → ∞.
As we commented below Eqs. (3.23) and (3.31), the weak-

coupling part of the diagrams (the region of small 
0i and

0f near the origin) is independent of the dimensionality and
is exactly the same for the one-channel model. In other words,
all results contained in Eqs. (3.26) through (3.31) and the
surrounding text apply to the one-channel model in both 2D
and 3D; one only needs to replace δω/γ → δβ.

When either the initial or final coupling is outside the deep
BCS regime, we need to treat 2D and 3D cases separately.

1. 2D

It is straightforward to take the broad resonance limit
in Eqs. (3.15) to (3.21). In particular, the critical lines are
determined by taking this limit in Eqs. (3.16) and (3.17),

|δβ| = π

2

√
1 + v2, (4.11)

ln

[
(v + x)(v + √

1 + v2)√
1 + x2

√
1 + v2 − xv + 1

]
= −sgn(δβ)πv. (4.12)

Equation (3.22), describing quenches originating in deep BCS,
remains as is, except the sign of δω translates into the sign of

δβ. The two roots u ≈ μi for either sign of δβ correspond
to quenches also terminating in deep BCS, so they are in the
universal regime given by Eqs. (3.26) through (3.31), which is
shared by both models regardless of the dimensionality.

The analysis for the root u ≈ +0 at δβ < 0 leading to
Eq. (3.25) requires some modifications. The γ → ∞ limit
in Eqs. (3.24) and (3.20) yields 4|μf | = 
2

0ie
π/
0i , 
0f =√

4|μf |, and finally


0f = 
0ie
π/2
0i , 
0i → 0. (4.13)

This equation gives the asymptotic form of the II-III critical
line in the (
0i ,
0f ) plane in Fig. 4. We see that this line never
terminates in the 2D one-channel model.

Finally, let us work out the shape of the I-II critical line
for large 
0i , i.e., for quenches originating deep in the BEC
regime. Equation (3.32) becomes

ln

[
v + x

|x|
]

= −πv. (4.14)

Now there is always a single root v → −x (u ≈ 0). Equa-
tion (4.11) implies

δβ = 1

λf

− 1

λi

= π |x|
2

= π |μi |
2
0i

. (4.15)

We also need the gap equation in BCS and BEC limits and
the chemical potential equation in the BEC limit. Sending γ

to infinity in Eqs. (3.18)–(3.20), we obtain

ln
4ε�


2
0i

= 2

λi

, ln
ε�

|μf | = 2

λf

, 
0i =
√

4|μi |. (4.16)

Combining these equations with Eq. (4.15), we get


0f = 
0ie
−π
0i /8, 
0i → ∞. (4.17)

We see that 
0f exponentially vanishes along the I-II critical
line (gapless regime closes) as 
0i increases. The vertical
range of Fig. 4 is not enough to fully display this behavior,
though we see that I-II line does incline towards the 
0i axis
at large 
0i .

2. 3D

In addition to quenches that fall within the universal weak-
coupling regime described in Eqs. (3.26) to (3.31) and the
corresponding text, let us derive the termination point of the
II-III critical line and analyze the I-II line at large 
0i .

First, we consider the II-III line. The termination point is
given by Eq. (3.47). In the γ → ∞ limit we have

4 =
∫ ∞

0

⎡⎣1

ε
− 1√

(ε − μf )2 + 
2
0f

⎤⎦√
εdε. (4.18)

Chemical potential equation (4.2) provides another relation
between μf and 
0f . Numerical solution of these two
equations is

μII-III
f ≈ −1.4602εF , 
II-III

0f ≈ 1.4875εF . (4.19)

This value of 
II-III
0f agrees with Fig. 22. Unlike 2D, in 3D

region III encloses a finite area, resembling a dome between
the origin and the point (
0i ,
0f ) = (0,
II-III

0f ).
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Next we turn to the critical line separating the gapless region
I from region II. For finite γ we analyzed the termination point
(
0i ,
0f ) = (
max,


I-II
0f ) of this line at the end of Sec. III B.

In the single-channel case, 
max → ∞, so the I-II line does
not close. As 
0i → ∞, the value of 
0f for a point on this
line tends to 
I-II

0f , which is determined by the γ → ∞ limit
of Eq. (3.51),

0 =
∫ ∞

0

⎡⎣ 1√
(ε − μf )2 + 
2

0f

− 1

ε

⎤⎦√
εdε, (4.20)

together with Eq. (4.2). The solution of these equations is

μf ≈ 0.5906εF , 
I-II
0f ≈ 0.6864εF . (4.21)

V. TRANSIENT DYNAMICS: LINEAR ANALYSIS

Here we solve the dynamics for small deviations from the
ground state. Linear analysis for the one-channel model in
the weak-coupling BCS regime was performed by Volkov and
Kogan [3]; see also Ref. [18]. Gurarie [23] extended this study
to strongly coupled superconductors. Both these studies of the
linearized dynamics conclude that


(t) → 
∞e−2iμ∞t−2iϕ (5.1)

as t → ∞, but the approach to this asymptote is different.
Our analysis adds several new results to this prior work.
We demonstrate that within linear analysis the amplitude
of the order parameter asymptotes to its ground-state value
for the Hamiltonian with which the system evolves after
nonequilibrium conditions are created, i.e., 
∞ = 
0f , a point
that seems to have been missed by the earlier work. Also,
μ∞ = μf , the ground-state chemical potential. In other words,

∞ − 
0 and μ∞ − μf are second order in the deviation. This
is a general result that holds for both one- and two-channel
models and is independent of the type of perturbation that
drives the system out of equilibrium.

Further, we solve linearized equations of motion using the
machinery of the exact solution [13,15], which provides much
more detailed information. For example, we also determine
the short-time behavior, normal modes, full explicit long-time
form 
(t), and individual spins with all prefactors and phases,
etc., unavailable to conventional linear analysis. Note that
in quench phase diagrams constructed above small quenches
correspond to the vicinity of the diagonal 
0i = 
0f ; see, e.g.,
Figs. 20 and 21.

A. Asymptotic �(t) and spins

Consider an infinitesimal quench of the detuning δω =
ωf − ωi . More generally, δω can be any small parameter
that measures the deviation from the ground state in the
two- or one-channel model. We work to linear order in
δω. Suppose 
(t) → 
∞e−2iμ∞t−2iϕ . For the detuning or
interaction quenches, this follows from the few-spin conjecture
and quench phase diagrams derived above and we also verify
it independently below. Let us go to a reference frame that
rotates with frequency 2μ∞ around the z axis. In this frame

(t) = 
∞ and the magnetic field 
Bp = (−2
∞,0,2εp −
2μ∞) acting on spin 
sp in Eq. (1.8) is time-independent. Note

that transformation to the rotating frame results in shifts to εp

and ωf . Then the spin rotates around 
Bp, making a constant
angle π − θp with it. This is, in fact, the asymptotic solution
described in Sec. II D 1,


sp(t) = 
np

2
cos θp + 
s⊥

p (t), (5.2)

where 
np is a unit vector along − 
Bp,

nx
p = 
∞

E∞
p

, ny
p = 0, nz

p = −εp − μ∞
E∞

p
. (5.3)

Equation (1.8) with ḃ = 0 further implies 
∞ = −gb =
g2J−/(ωf − 2μ∞). The contribution of 
s⊥

p to J− dephases
as t → ∞. The latter is therefore

∑
p nx

p/2, the sum of

components of 
sp along 
Bp projected onto the xy plane,


∞ = g2

ωf − 2μ∞

∑
p


∞ cos θp

2
√

(εp − μ∞)2 + 
2∞
. (5.4)

In the ground state 
sp is aligned with − 
Bp; i.e., θp = 0. This
implies that θp must be proportional to δω and therefore
corrections to cos θp = 1 are second order in δω. However, for
cos θp = 1, Eq. (5.4) is the ground-state gap equation (1.18)
for ω = ωf . Moreover, applying the same argument to Jz

and Eq. (1.19), we find that 
∞ and μ∞ also satisfy the
ground-state chemical potential equation (1.20). It follows that
for small oscillations around the ground state one always has


∞ = 
0f , μ∞ = μf . (5.5)

For the same reason the nonoscillatory part of 
sp (zeroth
harmonic) in the steady state is the same as in the ground
state at ω = ωf , i.e., is given by Eq. (1.15) with 
0 → 
0f

and μ → μf .
The same is true for the one-channel model. Note also

that infinitesimal quenches in the BCS regime conform to this
conclusion; see Eq. (3.30). Moreover, this result generalizes
to finite spin dynamics, where, as we show below, zeroth
harmonics of 
(t) and 
sp to linear order in δω coincide with
the ω = ωf ground-state values.

B. Normal modes and finite-size dynamics

Now we turn to the linear analysis per se. At this point
it is convenient to rewrite summations over p as summations
over single-particle energies. We adopt the following model
of discrete spectrum. Let us discretize the magnitude of
the momentum, p → pk . The corresponding energies are
εk = p2

k/2m with degeneracy Nk = N (εk), the number of
states in a momentum shell between pk and pk+1, which is
a smooth function of εk . The level spacing δk = εk+1 − εk

is also assumed to depend on εk smoothly. We include this
dependence in Nk , so without loss of generality we take
it to be constant, δk = δ. Our final results depend only on
the density of states ν(εk) = Nk/δ, the number of states per
unit energy. Equivalently, εi can represent levels of some
other single-particle potential, e.g., a 3D harmonic oscillator
potential; see the discussion at the end of Sec. I A. All
quantities and equations, including spins 
sp, Hamiltonians,
equations of motion, and initial conditions, considered in this
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paper depend on p only through εp. For any such quantity
Ap = A(εp),

∑
p

Ap =
N∑

k=1

NkAk →
∫

ν(ε)dε, (5.6)

where Ak = A(εk). In particular, the Lax vector (2.1) reads


L(u) =
N∑

k=1

Nk
sk

u − εk

− (ω − 2μ)

g2
ẑ + 2

g2
[(u − μ)ẑ − 

].

(5.7)

A convenient tool for linear analysis of the dynamics are
the separation variables introduced in Refs. [13,15] for the
one- and two-channel models, respectively. As we will see,
in linearized dynamics these variables are simply the normal
modes. Separation variables uj are defined as the solutions of
L−(uj ) ≡ Lx(uj ) − iLy(uj ) = 0; i.e.,

L−(u) = 2b

g
+

N∑
k=1

Nks
−
k

u − εk

= 0. (5.8)

Because u = uj are the zeros of the rational function L−(u)
and u = εk are its poles, we can also write it as

L−(u) = 2b

g

∏
j (u − uj )∏
k(u − εk)

. (5.9)

Matching the residues at u = εk and u = ∞ in Eqs. (5.8)
and (5.9), we express the spins in terms of uj ,

Nks
−
k = 2b

g

∏
j (εk − uj )∏

m	=k(εk − εm)
, (5.10)

J− =
∑

k

Nks
−
k = 2b

g

∑
k

(εk − uk). (5.11)

Equations of motion in terms of new variables are

u̇k = − 2i
√

Q2N+2(uk)∏
m	=k(uk − um)

,

(5.12)

ḃ = −2ib

[
ω

2
+
∑

k

(εk − uk)

]
;

see Ref. [15] for a detailed derivation. Here Q2N+2(u) is the
spectral polynomial defined in Eq. (2.9).

Roots of Q2N+2(u) are the same as roots of 
L2(u)
determined by Eq. (3.3). In our new notation,

(
u − μ ∓ i
0

) [ 2

g2
−
∑

k

Nk

2(u − εk)E(εk)

]
= δω

g2
, (5.13)

where E(εk) =
√

(εk − μ)2 + 
2
0. Here and everywhere be-

low in this section μ and 
0 without a subscript indicate
ground-state values μi and 
0i for the initial detuning ω = ωi .
In the ground state 
L2(u) = [(u − μi)2 + 
2

0i]L
2
0(u). There is

a pair of complex roots c± = μi ± i
0i and 2N real double
degenerate roots xk that solve

L0(x) = − 2

g2
+
∑

k

Nk

2(x − εk)E(εk)
= 0, (5.14)

A plot of L0(x) reveals that xk are located between consecutive
εk , i.e., εk < xk < εk+1.

Since 
L2(xk) = L2
x(xk) + L2

y(xk) + L2
z(xk) = 0 in the

ground state and xk is real, all components of 
L(xk) must van-
ish, Lx(xk) = Ly(xk) = Lz(xk) = 0. It follows that L−(xk) =
0, meaning that the separation variables are frozen in the real
double roots, uk = xk . After a quench they start to move from
these initial positions, uk(t) = xk + δuk , where δuk vanishes
at t = 0 and is proportional to δω for an infinitesimal quench.
For δω 	= 0 real double roots of Q2N+2(u) split into pairs
of complex conjugate roots ck = xk + δck and c̄k = xk + δc̄k .
Therefore, the expression for Q2N+2(uk),

Q2N+2(uk) = (uk − ck)(uk − c̄k)(uk − c+)(uk − c−)

×
∏
m	=k

(uk − cm)(uk − c̄m), (5.15)

to lowest nonzero order in δω becomes

Q2N+2(uk) = (δuk − δck)(δuk − δc̄k)�2
k

×
∏
m	=k

(xk − xm)2, (5.16)

with �k =
√

(xk − μ)2 + 
2
0, not to be confused with function

�(t) in Sec. II B 3. Similarly, the denominator of the equation
of motion (5.12) for uk to the lowest order

∏
m	=k(uk − um) =∏

m	=k(xk − xm), so this equation reads

δu̇k = ±2i�k

√
(δuk − δck)(δuk − δc̄k). (5.17)

Corrections to the roots due to the quench obtain by setting
u = xk + δck in Eq. (5.13) and linearizing in δck . Separating
real and imaginary parts, δck = ak + ibk , we have

ak = δω(xk − μ)

g2�2
kFk

, bk = δω
0

g2�2
kFk

, (5.18)

where

Fk =
∑
m

Nk

2(xk − εm)2E(εm)
. (5.19)

Let us also evaluate the correction to the complex root pair
c± = μi ± i
0i . Writing the perturbed roots as μ′ ± i
′, we
obtain from Eq. (5.13) to linear order in δω

μ′ − μi = δω

g2

βk

α2
k + β2

k

,

(5.20)


′ − 
0i = −δω

g2

αk

α2
k + β2

k

,

where αk and βk are defined in Eq. (C5). Comparing this
with first-order shifts in the ground-state gap and chemical
potentials that readily derive from Eqs. (C7), we conclude that

μ′ = μf , 
′ = 
0f , (5.21)

as it should be according to Sec. II D 1; see the text following
Eq. (2.65) and also below.

Equation (5.17) is a harmonic oscillator equation, which
yields

δuk(t) = ak(1 − cos 2�kt) + ilk sin 2�kt, (5.22)
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FIG. 24. (Color online) As a result of a quench, doubly degen-
erate roots of 
L2(u) in Fig. 17 split into pairs of complex conjugate
roots cm (not all N = 54 pairs of roots are shown). In linear analysis,
separation variables move periodically on ellipses around the brunch
cuts of [ 
L2(u)]−1/2 connecting complex conjugate cm without crossing
any of the brunch cuts. Each separation variable has its own distinct
frequency and corresponds to a normal mode of small oscillations
around the ground state. Here 
0f = 0.12εF , δω/γ = −0.1, and
other parameters are the same as in Fig. 17.

where

lk = ±
√

a2
k + b2

k = δω

g2�kFk

. (5.23)

In deriving Eq. (5.22) we took into account the initial condition
δuk(0) = 0 and used expressions (5.18). We set the sign in the
last equation in Eq. (5.23) to be plus, which we justify later in
this section.

Equation (5.22) shows that uk(t) are the normal modes of
small oscillations around the ground state and that the normal
frequencies are 2�k = 2

√
(xk − μ)2 + 
2

0, where xk are the
roots of Eq. (5.14). Equation (5.22) also shows that in linear
analysis separation variable uk(t) moves on an ellipse with
semiaxes ak and

√
a2

k + b2
k around the roots ck,c̄k . The latter

are the focal points of the ellipse. The function
√

Q2N+2(u)
entering equations of motion for separation variables has
branch cuts connecting pairs of conjugate roots ck and c̄k ,
so one can also say that separation variables move on ellipses
around brunch cuts without crossing any of them; see Fig. 24.

Next, we determine deviations of the spins δ
sk(t) and the
order parameter δ
(t) from their initial ground-state configu-
ration (1.14) and (1.15). We go to a rotating reference frame,

s−
k → s−

k e−2iμt , b → be−2iμt , (5.24)

to get rid of the time dependence in the unperturbed dynam-
ical variables. This shifts ω → ω − 2μ in the equation of
motion (5.12) and now ḃ = 0 in the ground state before the
quench, i.e., for ω = ωi . Linearizing Eq. (5.10), we obtain a
decomposition of spin deviations in terms of the normal modes,

δs−
k (t)

s−
k (0)

= δ
(t)


0
−
∑

j

δuj

εk − xj

. (5.25)

Similarly, the second equation in Eq. (5.12) linearized and
integrated in the rotating frame after the quench, i.e., with

ω = ωf , yields


(t)


0
= 1 −

∑
k

lk
1 − cos 2�kt

�k

− iδωt + 2it
∑

k

ak

− i
∑

k

ak sin 2�kt

�k

, (5.26)

where we took into account 
(t) = −gb(t), 
(0) = 
0 and
expressions (5.22). The iδωt appears because for unperturbed
uk the bracketed term in the second equation in Eq. (5.12)
vanishes for ω = ωi , while after the quench ω = ωf .

Linearizing spin equations of motion (1.8) directly and
plugging expressions (5.25) and (5.26), one can verify that the
correct sign in the last equation in Eq. (5.23) is indeed plus,
even though there is probably a simpler way to show this.

The imaginary part in Eq. (5.26) comes from the phase of
the order parameter, so we write


(t) =
(


0 − 
0

∑
k

lk
1 − cos 2�kt

�k

)

× exp

[
−iδωt + 2it

∑
k

ak − i
∑

k

ak sin 2�kt

�k

]
.

(5.27)

This coincides with Eq. (5.26) to first order in δω. Moreover,
we know from Eq. (5.5) that the linear part of the phase
(zeroth harmonic in the derivative of the phase) is −2μf t

in the continuum limit, where μf is the ground-state chemical
potential at detuning ωf . Similarly, the zeroth harmonic in the
amplitude of 
(t) is equal to 
0f . It turns out that this is true
even in the discrete case, i.e.,


0 − 
0

∑
k

lk

�k

= 
0f ,

(5.28)
2μ + δω − 2

∑
k

ak = 2μf ,

where we restored the phase of 
(t) to the original reference
frame according to Eq. (5.24). Recall that in this section μ and

0 without a subscript indicate ground-state values μi and 
0i

for the initial detuning ω = ωi . With the help of Eqs. (5.18)
and (5.23) these relations become∑

k

xk − μ

�2
kFk

= g2

2
− g2 δμ

δω
,

(5.29)∑
k


0

�2
kFk

= −g2 δ
0

δω
,

where δμ = μf − μ and δ
0 = 
0f − 
0. These are in fact
identities, as we prove in Appendix C. Thus,


(t) =
(


0f + 
0

∑
k

lk
cos 2�kt

�k

)

× exp

[
−2iμf t − i

∑
k

ak sin 2�kt

�k

]
, (5.30)

in the original reference frame.
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An expression for s−
k (t) obtains similarly from Eqs. (5.25)

and (5.26) with the help of identity (C8),

s−
k (t) = s−

kf

⎛⎝1 +
∑

j

lj cos 2�j t

�j

+
∑

j

aj cos 2�j t

εk − xj

− i
∑

j

lj sin 2�j t

εk − xj

⎞⎠
× exp

⎡⎣−2iμf t − i
∑

j

aj sin 2�j t

�j

⎤⎦ , (5.31)

where

s−
kf ≡ s−

f (εk) = 
0f

2
√

(εk − μf )2 + 
2
0f

. (5.32)

The last term in round brackets in Eq. (5.31) can be as well
included into the phase; to linear order the two versions are
equivalent. The present form is more convenient for the long-
time analysis below. We see that again nonoscillatory parts of
the magnitude and phase of s−

k (t) and magnitude of sz
k are the

same as in the ground state for final detuning ω = ωf .
Finally, the expression for sz

k (t) follows the conservation of
|
sk| = 1/2, sz

k = ±
√

1/4 − |s−
k |2 expanded to the linear order

in δω,

sz
k (t) = sz

kf

⎡⎣1 − 
2
0f

(εk − μf )2

∑
j

lj cos 2�j t

�j

− 
2
0f

(εk − μf )2

∑
j

aj cos 2�j t

εk − xj

⎤⎦ , (5.33)

where

sz
kf ≡ sz

f (εk) = − εk − μf

2
√

(εk − μf )2 + 
2
0f

. (5.34)

C. Continuum limit

In N → ∞ limit, xk → εk and summations in the above
expressions for sz

k (t), s−
k (t), and 
(t) turn into integrations.

With the help of Eqs. (5.18), (5.23), (5.6), and (B9), Eq. (5.30)
obtains (as always in units of the Fermi energy εF )


(t)


0f

= [1 + X1(t)] exp[−2iμf t − iX2(t)], (5.35)

where

X1(t) = δω

γ

∫ ∞

0

2 cos[2E(ε)t]f (ε)dε

E(ε)[π2f 2(ε) + H 2(ε)]
, (5.36)

X2(t) = δω

γ

∫ ∞

0

2(ε − μ) sin[2E(ε)t]f (ε)dε

E2(ε)[π2f 2(ε) + H 2(ε)]
, (5.37)

where E(ε) =
√

(ε − μ)2 + 
2
0 and H (ε) is defined in

Eq. (B8). In deriving this expression, we also used, �k →
E(εk), ν(ε) = νF f (ε), g2νF = γ , and δ = Nk/ν(εk). Equa-

0 20 40 60 80
t

0f

0.98

1

1.02

|
(t

)|/
0f

numerics
analytics, Eq. (5.35)

FIG. 25. (Color online) Comparison of Eq. (5.35) with |
(t)|
computed by numerically evolving N = 5024 spins in a 3D two-
channel model after a detuning quench. Here γ = 1.0, 
0i =
0.122
max, 
0f = 0.126
max, and both Eq. (5.35) and the spin chain
in the numerics are cut off at ε� = 10εF .

tion (5.35) is in excellent agreement with numerical results;
see, e.g., Fig. 25.

Expressions (5.33) and (5.31) for s−
k (t) and sz

k (t) contain
two extra summations as compared to 
(t). These are handled
as in Appendix C by splitting each sum into two parts, over
xj inside and outside a small interval around εk . The same
method works for summations over xj because according to
Eq. (B8) �(ε) is a smooth function and therefore xj are locally
equally spaced with spacing δ just as εk . The second and the
third sums in round brackets in Eq. (5.31) are

Y1(ε,t) = δω

γ

∫ ∞

0
− 2(ε′ − μ) cos[2E(ε′)t]f (ε′)dε′

(ε − ε′)E(ε′)[π2f 2(ε′) + H 2(ε′)]

− δω

γ

2(ε − μ)H (ε) cos[2E(ε)t]

E(ε)[π2f 2(ε) + H 2(ε)]
, (5.38)

Y2(ε,t) = δω

γ

∫ ∞

0
− 2 sin[2E(ε′)t]f (ε′)dε′

(ε − ε′)[π2f 2(ε′) + H 2(ε′)]

− δω

γ

2H (ε) sin[2E(ε)t]

π2f 2(ε) + H 2(ε)
, (5.39)

respectively. Thus,

s−(ε,t)

s−
f (ε)

= [1 + X1(t) + Y1(ε,t) − iY2(ε,t)]

× exp[−2iμf t − iX2(t)], (5.40)

sz(ε,t)

sz
f (ε)

= 1 − 
2
0f

(ε − μf )2
[X1(t) + Y1(ε,t)]. (5.41)

Functions X1 and X2 are related via differentiation. Define

X̃1(t) =
∫ ∞

0
K(ε)e2iẼ(ε)t dε, (5.42)

where Ẽ(ε) =
√

(ε − μ̃)2 + 
2
0 and

K(ε) = δω

γ

2f (ε)

E(ε)[π2f 2(ε) + H 2(ε)]
. (5.43)
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Then

X1(t) = ReX̃1(t)|μ̃=μ, (5.44)

X2(t) = 1

2t
Re

∂X̃1(t)

∂μ̃

∣∣∣∣
μ̃=μ

. (5.45)

A similar relationship holds for Y1 and Y2.

D. Validity of the few-spin conjecture

We are now in the position to prove the few-spin conjecture
for infinitesimal quenches independently of either numerics
or arguments of Sec. II. At t → ∞ integrals in Eqs. (5.36)
and (5.37) vanish by the Riemann-Lebesgue lemma. There-
fore,


(t) → 
0f e−2iμf t . (5.46)

According to the few-spin conjecture this asymptotic behavior
of 
(t) occurs when there is a single isolated root pair at
μf ± i
0f . Equation (5.21) shows that our 
L2(u) does have
this pair of roots. Moreover, the remaining 2N roots are given
by Eq. (5.18) and we explicitly see from Appendix B that their
imaginary parts scale as 1/N at large N and that they merge
into a continuum of roots on the real axis in the N → ∞ limit.
Thus, there is indeed a single isolated root pair at μf ± i
0f

in the thermodynamic limit.

E. Weak-coupling limit

Simpler expressions obtain in the weak-coupling (BCS)
limit when 
0 is much smaller than other energy scales (Fermi
energy in gases and Debye energy in metals). This limit
describes superconductivity in metals and applies to recent
experiments on nonadiabatic BCS dynamics [25,31]. In our
quench phase diagrams (Figs. 2–4, etc.) the weak-coupling
regime corresponds to a small neighborhood of the origin.

At weak coupling μ ≈ εF = 1. Integrals (5.36) and (5.37)
are dominated by energies close to the Fermi energy, |ε −
μ| ∼ 
0, where f (ε) ≈ 1 independent of dimensionality. It
is convenient to change the integration variable to ξ = ε − μ

and extend the integration to the entire real axis. X2(t) vanishes
by particle-hole symmetry (integrand is odd in ξ ). The error
due to these approximations is proportional to 
0/εF , which
vanishes in the weak-coupling limit. Equation (5.35) implies

|
(t)| = 
0f − 4δ
0

∫ ∞

0

cos[2E(ξ )t]dξ

E(ξ )[π2 + H 2(ξ )]
, (5.47)

where E(ξ ) =
√

ξ 2 + 
2
0, δ
0 = 
0f − 
0i , and

H (ε) = ln

[
E(ξ ) − ξ

E(ξ ) + ξ

]
. (5.48)

In deriving Eq. (5.47) we used the weak-coupling gap formula

0 ∝ exp(−ω/γ ) and Eqs. (B6) and (B8). [Note that at
relevant energies 4E(ε)/γ ∝ 
0/εF → 0.] We also used the
fact that the integrand is even in ξ to convert the integration
range from (−∞,∞) to (0,∞).

The phase of the order parameter defined through


(t) = |
(t)|e−i�(t) (5.49)

is simply �(t) = 2εF t . Let us also note that in terms of ξ =

0 sinh(πx/2) Eq. (5.47) reads

|
(t)| = 
0f − 2δ
0

∫ ∞

0

dx

π

cos[2τ cosh(πx/2)]

1 + x2
, (5.50)

where τ = 
0t .

F. Long-time behavior of �(t): BCS side

Integrands in Eqs. (5.36) and (5.37) are highly oscillatory.
The argument of the cosine is stationary at ε = μ, E′(μ) = 0.
For μ > 0 the stationary point is inside the integration range.
For μ < 0 there are no stationary points on the integration
path. This leads to qualitatively different behavior of 
(t) on
the BCS (μ > 0) and BEC (μ < 0) sides.

Consider first the BCS regime. We evaluate X̃1(t) in
Eq. (5.42) in stationary-phase approximation

X̃1(t) = K(μ̃)

√
π
0

t
e2i
0t+iπ/4 + O(1/t), (5.51)

where we used Ẽ(μ̃) = 
0, Ẽ′′(μ̃) = 1/
0. With the help of
Eq. (5.44) we obtain from Eq. (5.35) for the order parameter
amplitude

|
(t)| = 
0f + √
πK(μ)
2

0
cos(2
0t + π/4)√


0t
. (5.52)

The phase of the order parameter obtains with the help of
Eq. (5.45),

�(t) = 2μf t + √
πK ′(μ)
2

0
cos(2
0t + π/4)

2(
0t)3/2
. (5.53)

Coefficients K(μ),K ′(μ) are given by Eqs. (5.43), (B8),
and (B4). Simpler expressions for G(ε) are available in 2D
and in the weak-coupling (BCS) limit; see Eqs. (B5) and (B6).
For example, in the BCS limit (
0/εF → 0),


(t) =
[

0f − 2δ
0

π3/2

cos(2
0t + π/4)√

0t

]
e−2iμf t , (5.54)

where δ
0 = 
0f − 
0i and we additionally used 
0 ∝
exp(−ω/γ ). Note that the second term in Eq. (5.53) is
proportional to 
0/εF . This expression for 
(t) holds in the
BCS limit for both one- and two-channel models in 2D and
3D. Equation (5.54) for μf = 0 appeared in Ref. [18] without
derivation.

Let us also mention that long times for which asymptotes
of the order parameter derived in this section apply in practice
(e.g., in numerical simulations) mean t such that 1/
0 � t �
1/δ. At times of order of the inverse level spacing 1/δ partial
recurrences occur; see Fig. 26. Oscillations with frequency
2
0 and 1/

√
t decay in the weak-coupling limit of the one-

channel model were identified by Volkov and Kogan [3].

G. Long-time behavior of �(t): BEC side

In the absence of stationary points, integrals of the type
of Eq. (5.42) are dominated by the end point, ε = 0 here.
Normally, they vanish as 1/t at large t , but in the present case
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FIG. 26. (Color online) Finite-size effects, such as partial
recurrences in |
(t)|, develop at times of order of the inverse
level spacing δ ∝ 1/N between discretized single-particle energy
levels εk . Long-time behaviors derived in our paper apply at
times tδ � 1. In other words, we take the thermodynamic limit
first and large-time limit second. Two detuning quenches in a 3D
two-channel model are shown for N = 5024 and (a) γ = 0.5, 
0i =
3.0 × 10−2
max, 
0f = 2.9 × 10−4
max, δ = 3.4 × 10−3
max, and
(b) γ = 0.1, 
0i = 0.97
max, 
0f = 0.99
max, δ = 8.0 ×
10−3
max.

K(0) = 0 in both 2D and 3D, so they vanish faster. Unlike
the BCS side, the long-time behavior on the BEC side is not
universal in that it depends on the form of K(ε) at small ε, i.e.,
on the density of states and on the asymptotic spin distribution.
As a result, for example, it is different in 2D and 3D.

We first integrate by parts to obtain

X̃1(t) = − 1

2it

∫ ∞

0

[
K(ε)

Ẽ′(ε)

]′
e2iẼ(ε)t dε. (5.55)

In 2D the dimensionless density of states f (ε) = 1 and it
follows from Eqs. (5.43), (B8), and (B5) that K(ε) ∝ 1/ ln2 ε.
We evaluate the large t asymptote of this integral by splitting
the integration range into three, (0,1/�t),(1/�t,�/t), and
(�/t,∞), where � is such that 1 � ln � � ln t . In the first
integral we expand the integrand in small ε, which leads to an
integral

∫ 1/�t

0 d(ln ε)/ ln3 ε and

X̃1(t) = δω

γ

ie2iẼ(0)t

Ẽ′(0)E(0)

1

t ln2 t
. (5.56)

The other two integrals vanish as 1/t ln3 t and are therefore
negligible. Equations (5.35), (5.44), and (5.45) yield the
amplitude and the phase of the order parameter,

|
(t)| = 
0f

[
1 − δω

γ

sin(2Emint)

|μ|t ln2 t

]
, (5.57)

�(t) = 2μf t − δω

γ

cos(2Emint)

Emint ln2 t
, (5.58)

where Emin =
√

μ2 + 
2
0.

In 3D f (ε) = √
ε and K(ε) ∝ √

ε at small ε. This follows
from Eqs. (5.43), (B8), and (B4) and is, for example, readily
verified in the strong-coupling limit with the help of the last
expression in Eq. (B7). We split the integration range in
Eq. (5.55) into two, (0,1/�) and (1/�,∞), where t � � � 1.
In the first integral we can expand in small t , which results
in a Gaussian integral that behaves as 1/

√
t at large t . The

second integral vanishes faster as t → ∞. We thus determine
the following (exact) large-time asymptote:

X̃1(t) = − π1/2

(2t)3/2

δω

γ

e2iẼ(0)t+iπ/4

[−Ẽ′(0)]3/2E(0)H 2(0)
. (5.59)

With the help of Eqs. (5.44) and (5.45) we finally derive

|
(t)| = 
0f

[
1 − c

δω

γ

cos(2Emint + π/4)

(2|μ|t)3/2

]
, (5.60)

�(t) = 2μf t − c
|μ|
Emin

δω

γ

sin(2Emint + π/4)

(2|μ|t)3/2
. (5.61)

The coefficient c depends on μ, 
0, and γ . It is known exactly
from Eq. (5.59), but involves G(0), which in 3D is an elliptic
integral according to Eq. (B4). In the strong-coupling BEC
limit, μ → −∞, G(ε) is independent of ε and takes a simple
form (B7). In this case,

c =
√

π |μ|
εF

(
4|μ|
γ εF

+ π

√
|μ|

0

)−2

, (5.62)

where we restored the original energy units.

H. Long-time behavior of spins

Let us also work out the long-time behavior of individual
spins given by Eqs. (5.40) and (5.41) and compare it to the
asymptotic spin distribution, Eqs. (2.62) and (3.11), obtained
earlier. The latter result is based on the few-spin conjecture,
so the agreement with linear analysis provides yet another
(though redundant because we already proved the few-spin
conjecture for infinitesimal quenches in Sec. V D) check.

Functions X1,2 vanish as t → ∞, while the large-time limit
of Y1,2 derives from the identity

lim
t→∞

∫ ∞

0
− dε′F (ε′)e±2iE(ε′)t

ε′ − ε
= ±iπαF (ε)e±2iE(ε)t , (5.63)

where α is the sign of tdE(ε′)/dε′ at ε′ = ε and F (ε′) is an
arbitrary bounded continuous function.

Applying this identity to Eqs. (5.38) and (5.39) and
substituting resulting expressions into Eqs. (5.40) and (5.41),
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we obtain

s−
∞(ε,t)e2iμf t

s−
f (ε)

= 1 − 2δω

γ

exp[−2iE(ε)t − iφ]√
π2f 2(ε) + H 2(ε)

− 2δω

γ

[
ξ

E(ε)
− 1

]
cos[2E(ε)t + φ]√
π2f 2(ε) + H 2(ε)

,

(5.64)

sz
∞(ε,t)

sz
f (ε)

= 1 + 2δω

γ


2
0f

ξE(ε)

cos[2E(ε)t + φ]√
π2f 2(ε) + H 2(ε)

, (5.65)

where ξ = ε − μ and φ is defined through

cos φ = H (ε)√
π2f 2(ε) + H 2(ε)

,

(5.66)

sin φ = πf (ε) sgn(tξ )√
π2f 2(ε) + H 2(ε)

.

In our case t > 0, but we still kept it under the sign function
to ensure proper behavior under time reversal; see Eq. (6.2).
Equations (5.64) and (5.65) match Eq. (2.62) with

θ (ε) ≈ sin θ (ε) = 2δω

γ


0

E(ε)
√

π2f 2(ε) + H 2(ε)
. (5.67)

(Not that in the present case 
∞ = 
0f and μ∞ = μf .) This
indeed agrees with Eq. (3.13) obtained from the few-spin
conjecture.

I. Short-time behavior

Here we analyze the short-time behavior of |
(t)| for
quenches within the universal weak-coupling regime. For
large quenches from weaker to stronger coupling, when

0f /
0i � 1, or from the normal state (zero initial coupling)
in this regime |
(t)| grows as e
0f t . This exponential growth
reflects the instability of the normal state in the presence of
superconducting interactions [7,16]. At the same time, even for
small quenches |
(t)| rises or falls sharply at short times; see
Figs. 7 and 25. Sharp growth is seen in experiment, too, though
most of it is probably due to a different mechanism [31].

A direct small t expansion of the cosine in Eq. (5.36)
diverges at high energies. Cutting off the integral at ε�

(Debye energy in the case of metals), one obtains [12]
δ|
(t)| ∝ δ
0(ε�t)2. This is cutoff dependent and applies
only to ultrashort times t � 1/ε� that vanish as the cutoff is
sent to infinity. We are interested in times 1/ε� � t � 1/
0.

Consider Eq. (5.50). The argument of the cosine is small
for x � x0, where x0 is determined by e

πx0
2 = 1/τ , i.e., x0 =

2
π

ln(1/τ ). Let us divide the domain of the integration into three
intervals: [0,x0 − a], [x0 − a,x0 + a], and [x0 + a,∞) and let
the corresponding integrals be I1, I2, and I3, respectively.
The auxiliary parameter a, 1 � a � x0, is such that 1/a →
0,a/x0 → 0 as x0 → ∞. For example, one can take a = √

x0.
Expanding the cosine in small τ in I1 and integrating, we
obtain

I1 = 1

2
− 1

πx0
− a

πx2
0

+ o
(
a/x2

0

)
. (5.68)

In I2 we replace x2 + 1 → x2
0 up to terms of order a/x0. After

this, a substitution y = exp πx/2 transforms it into the cosine
integral

∫
dy cos y/y with known behavior, leading to

I2 = a

πx2
0

+ o
(
a/x2

0

)
. (5.69)

Integrating by parts in I3, we see that it is proportional to
e−πa/2/x2

0 , which is negligibly small. Thus,

I1 + I2 + I3 = 1

2
− 1

2| ln(τ )| + o

[
1

| ln(τ )|
]
. (5.70)

Note the cancellation of the auxiliary parameter a. Finally,
plugging this into Eq. (5.50), we derive the short-time behavior
of the gap function amplitude

|
(t)| = 
0i + 
0f − 
0i

|ln(
0t)| . (5.71)

VI. APPROACH TO THE ASYMPTOTE IN THE
NONLINEAR CASE

Here we discuss the approach of 
(t) to its large-time
asymptote in the nonlinear case. We consider regimes I
and II, the gapless phase and the phase where 
(t) →

∞e−2iμ∞t−2iϕ . Rather than rigorously deriving the t → ∞
asymptote in its entirety as we did for the linearized dynamics,
we present an argument based only on our knowledge of
the frequency spectrum that works under certain general
assumptions about relevant Fourier amplitudes.

As t → ∞ spins tend to their steady-state form, 
s(ε,t) →

s∞(ε,t), where 
s∞(ε,t) is given by Eqs. (2.45) and (2.62) in
regimes I and II, respectively. In phase II, in a reference frame
rotating with frequency 2μ∞ around the z axis, 
s∞(ε) rotates
with a constant frequency 2E∞(ε) = 2

√
(ε − μ∞)2 + 
2∞. As

mentioned above, an integrable model with N degrees of free-
dom is characterized by N incommensurate frequencies [63]
that are determined by the integrals of motion and are fixed
throughout its time evolution. The Fourier decomposition of
any dynamical quantity can have only these basic frequencies
in its spectrum. In particular,

|
(t)| = 
∞ +
∫ ∞

0
F (ε) cos[2E∞(ε)t]f (ε)dε, (6.1)

with some unknown function F (ε).
Terms containing sin[2E∞(ε)t] are absent by time-reversal

symmetry [cf. Eq. (5.35)] of the equations of motion (1.8)
and (1.33) [see also Eq. (2.24)]

sz(−t) = sz(t), s+(−t) = s−(t), 
̄(−t) = 
(t), (6.2)

where we suppressed ε dependence of spins for compactness.
These relations hold at all times as long as the initial condition
at t = 0 satisfies them, which our initial state (1.28) does.

A common practice in previous work is to attempt to deter-
mine the approach of |
(t)| to its asymptotic value 
∞ from
the steady-state spins 
s∞(ε,t). Consider the one-channel case
for simplicity. Continuum version of Eq. (1.13) at t = ∞ is


∞(t) = λ

∫ ∞

0
s−
∞(ε,t)f (ε)dε. (6.3)
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The constant part of s−
∞(ε,t) yields 
∞, while the contribution

of the oscillating part integrated over ε vanishes (dephases) as
t → ∞. One can further determine the large-time asymptote
of Eq. (6.3) similarly to how we evaluated the large-time
behavior of Eq. (5.35). This is, however, not the correct
asymptote of the actual 
(t). Not only does it not yield the
correct coefficient of the time-dependent part of 
(t) [such
as the coefficient c in Eq. (5.60)], but also the actual time
dependence can be different.

At finite t there is a correction to the steady-state value of
the spin, 
s(ε,t) = 
s∞(ε,t) + δ
s(ε,t), so that the actual order
parameter is


(t) = λ

∫ ∞

0
s−
∞(ε,t)f (ε)dε + λ

∫ ∞

0
δs−(ε,t)f (ε)dε.

(6.4)

Even though δs−(ε,t) is small as compared to the oscillating
part of s−

∞(ε,t) at large times, this is no longer true after
integrating these quantities over ε. Consider, for example,
Eq. (5.40). We showed in Sec. V H that s−

∞(ε,t) comes from
functions Y1,2(ε,t). However, we see from Eq. (5.35) that the
integral of these functions over ε vanishes and, as a result,
they do not contribute to 
(t). The correction δs−(ε,t), on the
other hand, comes from both X1,2(t) and Y1,2(ε,t). It is this
contribution from X1,2(t) to δs−(ε,t) that actually determines

(t). Thus, there is a partial cancellation between the two
integrals in Eq. (6.4) and the true large-time behavior of 
(t)
can only be determined by keeping both.

Nevertheless, 
∞(t) being a legitimate dynamical quantity
has the right frequency spectrum and also contains the
dimensionless density of states f (ε). So, it still produces a
correct large-time dependence when, for example, the latter is
set by a stationary point as in Eq. (5.52) or by the behavior of
f (ε) at small ε as in Eq. (5.60). The situation on the BEC side
in 2D is different. The ln2 t dependence in the denominator
of Eq. (5.57) comes from K(ε) ∝ 1/ ln2 ε behavior of the
Fourier amplitude at small ε; see Eq. (5.42) and the text
below Eq. (5.55). This is, in turn, a consequence of K(ε) ∝
H−2(ε) and H (ε) ∝ ln ε, which follow from Eqs. (5.43), (B8),
and (B5). Were we to evaluate the large-time asymptote of
|
(t)| using Eq. (6.3), we would obtain 1/(t ln t) instead of
1/(t ln2 t). To see this, note that Eq. (5.64) implies that the
oscillating part of s−

∞(ε,t) is proportional to H−1(ε), i.e., to
1/ ln ε, at small ε and apply the same steps as in the text below
Eq. (5.55). The 1/ ln ε dependence cancels in Eq. (6.4) due
to the second term on the right-hand side. We note also that
Eqs. (2.62) and (3.11) imply s−

∞(ε,t) ∝ 1/ ln ε in all of region
II in 2D, not just in the linear approximation.

Similar considerations apply in analyzing Eq. (6.1). Let us
work out the large-time behavior of |
(t)| in steady states I,
II, and II′ separately.

A. Regime II

In steady states II and II′ 
(t) → 
∞e−2iμ∞t−2iϕ . For
quenches in region II μ∞ > 0, so it can be viewed as a nonequi-
librium extension of the BCS regime. The frequency spectrum
2E∞(ε) has a stationary point at ε = μ∞, E′

∞(μ∞) = 0, which
in regime II lies within the integration range. The large-time
behavior of Eq. (6.1) obtains with the help of stationary point

method [cf. Eq. (5.52)]

|
(t)| = 
∞ + √
πF (μ∞)
2

∞
cos(2
∞t + π/4)√


∞t
. (6.5)

The only assumption about F (ε) here is that it is smooth.
This is an extension of Eq. (5.52) to the nonlinear regime.
In the weak-coupling BCS limit this result was published
in Ref. [16]. In this limit 
∞ is given by Eq. (3.29) and
generally it obtains from Eqs. (3.15) and (3.39) in 2D and
3D, respectively, and Eq. (3.14) as the imaginary part of u.
Here we see that expression (6.5) holds throughout the entire
region II for both one- and two-channel models.

B. Regime II′

Regime II′ has the same asymptotic 
(t) as II by definition
only with μ∞ < 0. There are now no stationary points on the
integration path. The approach to the asymptote is therefore
determined by the behavior of F (ε)f (ε) near the end points,
ε = 0 in this case. We assume this behavior is the same as
in linear analysis, since we expect the time dependence to
have the same functional form throughout a given regime.
According to Sec. V G, this means finite nonzero F (0) in 3D
and F (ε) ∝ 1/ ln2 ε for ε � 1 in 2D.

Expanding Eq. (3.11) in small ε and using Eq. (2.62), we
see that the spin components at t → ∞ do behave the same
as in linear analysis, though this in itself does not prove our
assumption. Moreover, the asymptotic spin distribution (3.11)
is continuous across critical lines separating various regimes,
so the same small ε form holds in gapless region I as well.

As long as our assumptions about F (ε) are correct, the
analysis of the integral in Eq. (6.3) is the same as that in
Sec. V G, resulting in

|
(t)| = 
∞

[
1 − c1

sin
(
2Emin

∞ t
)

t ln2 t

]
in 2D (6.6)

and

|
(t)| = 
∞

[
1 − c2

cos
(
2Emin

∞ t + π/4
)

t3/2

]
in 3D, (6.7)

at large times, where Emin
∞ = √μ2∞ + 
2∞ and c1 and c2 are

real coefficients that depend on 
0i , 
0f , and γ .

C. Gapless regime

Finally, we turn to regime I. Now 
(t) → 0 at t → ∞.
Spins 
s∞(ε) rotate with frequencies 2ε around the z axis, so
that the Fourier transform of the order parameter magnitude is
of the form

|
(t)| =
∫ ∞

0
F (ε) cos(2εt)f (ε)dε, (6.8)

and the sin(2εt) term vanishes by time-reversal symme-
try (6.2).

In 3D we similarly assume finite and nonzero F (0). Steps
outlined below Eq. (5.58) in Sec. V G now lead to the following
large-time behavior:

|
(t)| = c3

t3/2
. (6.9)
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In 2D we speculate that F (ε) ∝ 1/ lnr ε at small ε, where r

is either 1 or 2. As discussed before in this section, s−
∞(ε,t) ∝

1/ ln ε in 2D, so that 
∞(t) ∝ 1/(t ln t). The 1/ ln ε term,
however, cancels from F (ε) at least in linear analysis and it
ends up being proportional to 1/ ln2 ε instead. In the gapless
case we allow for a possibility that such a cancellation does
not occur. The analysis of the integral in Eq. (6.8), analogous
to that leading to Eq. (5.60), then yields

|
(t)| = c4

t lnr t
. (6.10)

The gapless regime contains the 
0i = 
0f = 0 point, the
origin of quench phase diagrams. It therefore includes the
weak-coupling limit 
0i/εF → 0 and 
0f /εF → 0. Equa-
tion (6.8) becomes in this limit [see Sec. V E]

|
(t)| =
∫ ∞

−∞
F (ξ ) cos(2ξ t)dξ, (6.11)

where F (ξ ) is even in ξ . Now there can be no power law
in t contribution at large t coming from integration limits.
Instead, |
(t)| vanishes exponentially [17,18] as A(t)e−2α
0i t

independent of dimensionality, where α ∼ 1 and A(t) is a
decreasing power law, A(t) ∼ 
0i at t ∼ 1/
0i . Recall that
throughout this paper we have been using units where εF = 1.
To convert to arbitrary units in Eqs. (6.9) and (6.10), one
needs to replace t → εF t . Guided by linear analysis, we
further assume that coefficients c4 and c5 are of order 
0f ,
which we take to be comparable to 
0i . It is clear that at any
finite 
0i/εF � 1 power laws in Eqs. (6.9) and (6.10) coming
from the lower integration limit will eventually win over the
exponential decay. The comparison of e−2α
0i t with (εF t)−1

shows that the weak-coupling result is valid at times such that
ln(εF /
0i) � 
0i t � 1, while for 
0i t � ln(εF /
0i) it has
to be replaced with Eqs. (6.9) and (6.10).

VII. EXPERIMENTAL SIGNATURES

Far-from-equilibrium states of fermionic superfluids de-
scribed in this paper can be observed in different systems with
various experimental techniques.

Matsunaga et al. [25,26] directly measured the time-
dependent amplitude |
(t)| induced by an ultrafast electro-
magnetic perturbation in Nb1-xTixN films using terahertz-
pump–terahertz-probe spectroscopy. The underlying system
is a BCS superconductor [weak-coupling regime of the one-
channel model (1.3)] and for perturbation strength below
certain threshold its nonadiabatic dynamics falls within region
II of our quench phase diagrams. Even though we considered
BCS interaction quenches in the one-channel model in this
paper, it is clear from our arguments that our results apply
more generally to any kind of nonadiabatic global perturbation.
Therefore, we expect |
(t)| to be described by Eq. (6.5) de-
rived originally in nonlinear regime by Yuzbashyan et al. [16].
These experiments indeed measure damped oscillations with
frequency 2
∞, where 
∞ is the asymptotic value of |
(t)|
even when the system is deep in the nonlinear regime and 
∞
is much different from the ground-state gap. The power-law
approach, however, appears to be faster than 1/t1/2.

In this paper we primarily focused on detuning or in-
teraction quenches in cold fermions. Experiments address-

ing superfluidity in these systems include measurements of
the molecular condensate fraction [47,48], radio-frequency
absorption spectra [68], and observation of vortices [69].
Signatures of “far-from-equilibrium phases” I, II, and III—
gapless, gapped (Volkov-Kogan), and oscillatory—in these
experiments can be derived from the many-body wave function
�(t) determined above.

The pseudospin (fermionic) part of �(t) is a direct
product of spin- 1

2 wave functions
∏

p(ūp|↓〉 + v̄p|↑〉) found
in Sec. II D. In the gapless steady state(

up
vp

)
= cos

θp

2

(
1
0

)
e−iεpt + sin

θp

2

(
0
1

)
eiεpt−iδp , (7.1)

where cos θp ≡ cos θ (εp) is given by Eq. (3.11) in all three
phases. The second term represents an occupied pair of states
±p (pseudospin up); the first represents an empty pair of
states (pseudospin down). �(t) in the gapless phase is a
coherent superposition of eigenstates of a free Fermi gas with
different energies reflecting the fact that 
(t) → 0 implies
vanishing of interactions between fermions on the mean-field
level. Effectively, the system is governed by a noninteracting
Hamiltonian at t → ∞. It nevertheless retains superconduct-
ing correlations. For example, in the weak-coupling regime
its superfluid density is half that in the ground state and in
phase II [18]. Phase I is therefore a nonequilibrium gapless
superfluid.

In the gapped steady state Eqs. (2.51) and (2.63) imply

(
upe

iμ∞t

vpe
−iμ∞t

)
= cos

θp

2

ground-state pair︷ ︸︸ ︷(|Up|
|Vp|

)
e−iE∞

p t

+ sin
θp

2

excited pair︷ ︸︸ ︷( |Vp|
−|Up|

)
eiE∞

p t , (7.2)

where

|Up| =
√

1

2
+ ξp

2E∞
p

, |Vp| =
√

1

2
− ξp

2E∞
p

, (7.3)

ξp = εp − μ∞, and we dropped the nonessential constant
phase ϕ. Bogoliubov amplitudes |Up| and |Vp| are the same
as in the BCS ground state [70] with gap 
∞ and chemical
potential μ∞. The two wave functions on the right-hand side
of Eq. (7.2) are the two orthonormal eigenstates of the BdG
Hamiltonian,

HBdG =
(

ξp 
∞

∞ −ξp

)
. (7.4)

The first one is a Cooper pair wave function in the BCS ground
state and corresponds to an alignment of the pseudospin 
sp
antiparallel to the effective magnetic field. The second one is
an excited state of the Cooper pair (
sp parallel to the effective
magnetic field) termed an excited pair in the original BCS
work [71]. It is interesting to note that these excitations of
the condensate in superconducting metals carry no charge and
spin, so nonadiabatic dynamics considered here provides a
unique venue for creating and measuring them [19]. The steady
state in phase II therefore is a coherent mixture of ground-state
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and excited pairs, a superposition of eigenstates of the BCS
Hamiltonian with gap 
∞ and chemical potential μ∞.

A similar interpretation of the oscillatory state obtains by
Fourier transforming the amplitudes (2.73),(

upe
iμ̃t

vpe
−iμ̃t

)
=

∞∑
n=−∞

{
cos

θp

2

(
apn

bpn

)
e−i(ep−nω
)t

+ sin
θp

2

(
b̄pn

−āpn

)
ei(ep−nω
)t

}
, (7.5)

where ω
 is the oscillation frequency of |
(t)|, μ̃ and −2ep
are the zeroth harmonics of the phase of 
(t) and the common
phase of the amplitudes [see Eqs. (2.53) and (2.57)], and we
again dropped the constant phase ϕ. This expression derives by
first going to a frame rotating with frequency 2μ̃ to get rid of
the linear term in the phase of 
(t). This makes e−iφp , the term
involving the relative phase, periodic according to Eq. (2.54)
and it does not contribute to the momentum-dependent phases
on the right-hand side. Phase III, therefore, can be understood
as a superposition of generalized excited- and ground-state
pairs with dispersions ±ep and quanta of the amplitude (Higgs)
mode |
(t)|. As noted in Sec. II D 2, ep → εp at large εp.

The knowledge of the steady state allows us to compute
far-from-equilibrium correlation and Green’s functions in all
three phases. For example [72],

iGp,>(t,t ′) = 〈âp↑(t) â
†
p↑(t ′)〉 = ūp(t)up(t ′),

−iGp,<(t,t ′) = 〈â†
p↑(t ′) âp↑(t)〉 = v̄p(t ′)vp(t), (7.6)

G+
p (t,t ′) = 〈â†

−p↓(t) â
†
p↑(t ′)〉 = vp(t)ūp(t ′).

With these we can evaluate various observables such as the
superfluid density mentioned earlier in this section. Note also
that the steady-state momentum distribution n∞

p (t)dp is simply
related to the z component of the pseudospin according to
Eq. (1.6). Taking into account that p and −p are both included
in sz

p and integrating over the angles, we have

n∞
p (t) = 2p2

(
2sz

p + 1
)
. (7.7)

Expressions for sz
p in phases I, II, and III appear in Eq. (2.48),

Eq. (2.62), and Eqs. (2.55) and (2.72), respectively.
Finally, let us discuss the signatures of nonequilibrium

phases in radio-frequency (RF) spectroscopy [73–79]. Recall
that in an atomic Fermi gas the pairing occurs between atoms
in two different hyperfine states, |↑〉 ≡ |1〉 and |↓〉 ≡ |2〉. The
RF photon transfers atoms from one of these states, say |2〉, to
the third hyperfine state |3〉 that does not interact with |1〉 and
|2〉. In an unpaired Fermi gas where atoms |2〉 are free, the RF
absorption spectrum has a peak at the atomic transition energy
ω = E23. In the paired ground state, the peak shifts to ω > E23

by an amount equal to the minimum binding energy of Cooper
pairs [73].

The RF response of steady states I, II, and III was calculated
in Ref. [19] for quenches within the BCS regime and in
Ref. [36] for quenched p-wave superfluids. The calculation in
the present case is identical [80], so we do not reproduce it here.
The RF spectrum of phase I is similar to that of the normal state,
a peak at ω = E23. In phase II there are two peaks—at ω > E23

and ω < E23—which come from the ground-state and excited
pairs, respectively; see Eq. (7.2). The first peak corresponds to

a process in which an RF photon breaks a ground-state pair; the
second peak corresponds to a process in which an RF photon
breaks an excited pair. The RF response of phase III similarly
reflects the structure of the corresponding steady-state wave
function (7.5). There are two series of peaks spaced by ω
,
the frequency of oscillations of |
(t)|, coming from processes
where an RF photon breaks a ground-state (excited) pair and
absorbs or emits several quanta of the amplitude (Higgs) mode
|
(t)|.

VIII. CONCLUSION

In this paper we studied the coherent dynamics of an
isolated BCS-BEC condensate in two- and one-channel (BCS)
models in two and three spatial dimensions. Our main focus
was on detuning quenches ωi → ωf (interaction quenches
λi → λf in the one-channel model). We constructed exact
quench phase diagrams and predicted the order parameter
dynamics 
(t) and the full time-dependent wave function �(t)
of the system at large times for any pair of values (ωi,ωf ).
In contrast to most previous work, we considered quenches
beyond the weak-coupling limit of BCS-to-BCS quenches. We
add to this BCS-to-BEC and BEC-to-BCS quenches across the
Feshbach resonance, as well as quenches on the BEC side. We
showed that the weak-coupling limit is universal in that it is
model and dimension independent. Outside of this limit, there
are several qualitatively different features, the two-channel
model having richer quench phase diagram as it contains an
extra parameter: dimensionless resonance width γ . All results
for the one-channel model obtain from the two-channel ones
by taking the broad resonance, γ → ∞, limit.

We find the same three main nonequilibrium phases
(asymptotic states) as in the weak-coupling regime. Inter-
estingly, this seems to be a universal, model-independent
feature of quench dynamics of fermionic condensates, at least
when there is a global complex order parameter, so that the
Cooper pairs interact only through this collective mode. The
same three phases occur, for example, in p-wave supercon-
ductors [36,37], spin-orbit coupled superfluids [81], and s-
wave superconductors with energy-dependent interaction [20].
One can speculate that similar universality according to the
order parameter type exists among quench phase diagrams
of multicomponent superfluids, such as three fermion species
with pairing interactions or multiband superconductors.

The above three main phases are phase I, where 
(t)
vanishes; phase II, where 
(t) → 
∞e−2iμ∞t up to a constant
phase factor; and phase III, where |
(t)| oscillates persistently.
It turns out that μ∞ plays the role of a nonequilibrium analog
of the chemical potential. For quenches within the weak-
coupling regime μ∞ ≈ εF , while for quenches to deep BEC
μ∞ → −∞. Some of the new effects as one moves beyond
the weak-coupling regime are as follows. The oscillatory
approach of |
(t)| to a constant (Volkov-Kogan behavior)
changes from 1/

√
t for μ∞ > 0 to 1/t3/2 in 3D and 1/(t ln2 t)

in 2D for μ∞ < 0, and the oscillation frequency changes
from 2
∞ to 2

√
μ2∞ + 
2∞. For resonance width below a

certain threshold, the asymptotic gap amplitude 
∞ can be
much larger than 
0f , the ground-state gap at final detuning
ωf . Similarly, exponential vanishing of |
(t)| in phase I
gives way to a power-law behavior. Persistent oscillations
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in phase III are first suppressed for stronger quenches and
then disappear altogether. For example, in 3D one-channel
model there is a critical coupling λc, such that even quenches
from an infinitesimally small λi to λf > λc produce no such
oscillations. As λf approaches λc from below, the oscillation
amplitude first increases, then decreases, and finally vanishes
at λf = λc.

The postquench asymptotic state of the condensate is a
coherent superposition of ground-state and excited pairs at
each momentum [multiple bands of such pairs shifted by the
oscillation frequency of |
(t)| in phase III]. These are two
orthogonal eigenstates of a Cooper pair in the self-consistent
field, and, for instance, the BCS ground state is a direct
product of ground-state pair wave functions. Our steady state
in phases I and II is a direct product of such time-dependent
superpositions. In the Anderson pseudospin language, ground-
state (excited) pairs correspond to the alignment of pseudospin
antiparallel (parallel) to the magnetic field. Even though we
refer to these states as ground-state or excited pairs, we should
stress that they are not the same as similar states of Cooper
pairs in the ground or excited states of the BCS Hamiltonian
since the self-consistent field is different. Excited pairs are
elusive excitations in superconductors; it is difficult to couple
to them as they carry no charge or spin. Nonadiabatic dynamics
of the BCS-BEC condensate provides an opportunity to access
them, e.g., in the RF absorption spectrum.

Our treatment of the dynamics of the BCS-BEC condensate
neglects the coupling to the noncondensed modes (mean-
field approximation), molecules with nonzero momenta q
in the two-channel model. We check the validity of this
approximation for the two-channel model by estimating the
rates of the decoherence processes due to these terms for
postquench steady states in phase II and comparing them to the
typical time scale on which the quench dynamics occurs. Our
preliminary results indicate that the mean-field approach is
justified for quenches sufficiently far from the μ∞ = 0 line in
the quench phase diagrams, e.g., quenches within deep BEC,
deep BCS, or across the resonance from deep BCS to deep
BEC and vice versa. A more thorough study of these effects is
necessary to fully clarify the situation.

In mean-field various pairing Hamiltonians, e.g., one- and
two-channel models considered here, chiral p-wave BCS, a
certain class of d-wave BCS models [39], is equivalent to
integrable classical spin (or spin-oscillator) chains with long-
range interactions. The most remarkable general feature of
their dynamics is a reduction in the number of effective degrees
of freedom as t → ∞. Consider, e.g., the one-channel model.
As explained above, its dynamics in the thermodynamic limit
at long times after the quench can be described in terms of
just a few—zero (phase I), one (phase II), or two (phase III)—
collective classical spin variables. In other words, the number
of spins at long times reduces from infinity to zero, one, or two.
Moreover, the spin times evolve with the same Hamiltonian
only with “renormalized” parameters. For example, in phase
I the effective Hamiltonian at large times is simply H = 0,
and in phase II it is H = 2μ∞Sz − gS−S+, where 
S is the
collective spin of length | 
S| = 
∞/g and g is the original
BCS coupling constant. The order parameter 
(t) coincides
with that of the few-spin problem, while the original spins
relate to the collective ones in a more involved fashion.

It is this feature of the dynamics together with the inte-
grability of the underlying model that allowed us to explicitly
determine the exact postquench asymptotic state of the system.
In this paper we presented for the first time a comprehensive,
consistent overview of a general method to explicitly evaluate
the large-time asymptotic solution in classical integrable
systems that support this kind of reduction. We are not aware
of any similar method for other integrable nonlinear models,
the rather different soliton resolution conjecture [82] being the
closest analog we were able to identify.

An interesting open question is whether a similar reduction
in the number of degrees of freedom in the course of time
evolution occurs also in nonintegrable pairing models. This
can explain the aforementioned universality of the quench
phase diagrams among systems characterized by a global
complex order parameter. It seems nonaccidental indeed that
the nonintegrable spin-orbit coupled superfluid [81] has the
same three main postquench phases and that, moreover, 
(t)
in phase III is given by an elliptic function dn. Presumably, a
generalization of this method to nonintegrable models would
rely on more general considerations without recourse to
integrability-specific techniques and thus would clarify the
underlying physical mechanism. It would also make a number
of interesting problems, such as, e.g., the competition between
chiral and antichiral components in p-wave superconductors
upon switching on superconducting interactions and, more
generally, the dynamical interplay among various components
in a multicomponent superfluid, potentially amenable to in-
depth analysis.
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APPENDIX A: PAIR-BREAKING RATES

In this Appendix, we perform a preliminary analysis of
the validity of neglecting q 	= 0 terms far from equilibrium
in the Hamiltonian (1.1). So far, we have studied the quench
dynamics of the condensate decoupled from these noncon-
densed modes. There are two kinds of relevant processes
due to the q 	= 0 terms: (i) excitation of molecules out of
the condensate and (ii) excitation of fermionic quasiparticles
through two-particle collisions. We estimate characteristic
time scales of both processes in the postquench steady state.
We find that sufficiently far from the μ∞ = 0 line in our quench
phase diagrams (see Figs. 3 and 21) these time scales are much
larger than the characteristic time of the quench dynamics. This
means that dropping q 	= 0 terms is indeed justified at times it
takes for the quench dynamics to develop and reach the steady
state. At much later times, after the quench dynamics plays
out, these terms set in, presumably leading to decoherence
and eventual thermalization of our (isolated) system. We note
also that the μ∞ = 0 line can be very roughly interpreted as
a far-from-equilibrium generalization of the unitarity point.
Quenches away from this line are from BCS or BEC initial
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detuning to the far BCS and BEC side, including quenches
across the resonance.

In what follows we consider a 3D condensate and, for
simplicity, we content ourselves with steady states in phase
II (including II′), where pairing amplitude asymptotes to a
constant, |
(t → ∞)| = 
∞.

1. Steady-state molecular production

Here we compute the rate at which molecules with nonzero
momentum are produced in steady state II, where initially all
molecules have zero momentum. To the lowest order in the
interaction, the corresponding scattering amplitudes are [83]

Ab(p1,p2)δ(Efin − Ein) =
∫ ∞

−∞
〈�fin|V̂ (t)|�in〉dt, (A1)

where |�in〉 and Ein are the steady-state wave function and
energy. |�fin〉 obtains from |�in〉 by destroying two pairs and
creating a molecule with momentum q = p1 + p2 and two
unpaired atoms with momenta p1 and p2. The energy of the
final state is

Efin = Ein + ζq ± E∞
p1

± E∞
p2

, (A2)

where plus (minus) corresponds to a ground (excited) pair and

ζq = q2

4m
+ ωf − 2μ∞ (A3)

is the energy of the molecule. The interaction V̂ (t) is described
by the last term in Eq. (1.1),

V̂ (t) = g
∑
p1,p2

[
b̂
†
p1+p2

(t)âp1↑(t)âp2↓(t)

+ b̂p1+p2 (t)â†
p2↓(t)â†

p1↑(t)
]
. (A4)

Since our initial state does not contain molecules with
nonzero momentum, only the first term in Eq. (A4) contributes
to the matrix element (A1). One also needs to keep in mind
that our steady state contains superpositions of a ground-state
pair with energy −E∞

p and an excited pair with energy +E∞
p

for each p. Equations (7.2) and (A1) then yield four scattering
amplitudes [72],

A(−−)
b (p1,p2) = g cos

θp2

2
cos

θp1

2

∣∣Vp2

∣∣∣∣Vp1

∣∣,
A(+−)

b (p1,p2) = g sin
θp2

2
cos

θp1

2

∣∣Up2

∣∣∣∣Vp1

∣∣, (A5)

A(++)
b (p1,p2) = g sin

θp2

2
sin

θp1

2

∣∣Up2

∣∣∣∣Up1

∣∣,
where − (+) describes breaking a ground-state (excited) pair
and A(−+)

b (p1,p2) = A(+−)
b (p2,p1).

Molecular production rate per atom at zero temperature
obtains from these amplitudes and Fermi’s golden rule [83],

τ−1
mol = 2π

Nf

∑
p1p2αβ

∣∣A(αβ)
b (p1,p2)

∣∣2
× δ
(
ζp1+p2 − αE∞

p2
− βE∞

p1

)
. (A6)

In this expression Nf is the total number of fermions in the
absence of molecules and we took into account that there are
no molecules with nonzero momentum in our steady state.

Let us specialize to quenches into either deep BCS (ωf →
+∞) or deep BEC (ωf → −∞). We expect a much higher
rate in the latter case, because in the BCS regime ζq → +∞,
requiring excited pairs of extremely high energy to create a
molecule. For quenches to the far BEC side μ∞ → −∞, while

∞ remains finite regardless of the initial detuning; see, e.g.,
Figs. 18 and 19. It follows that E∞

p ≈ ξp = |μ∞| + p2/2m and
Eq. (5.4) implies ωf ≈ 2μ∞. For α = β = −1 the argument
of the δ function in Eq. (A6) is always positive; i.e., energy
conservation cannot be satisfied, meaning that the ground-state
pairs do not contribute to the rate. Similarly, if α = β = 1 (two
excited pairs),

ζp1+p2 − E∞
p1

− E∞
p2

≈ (p1 + p2)2

4m
+ ωf − p2

1 + p2
2

2m

= ωf − (p1 − p2)2

4m
< 0. (A7)

Therefore, only scattering processes involving one fermion
from an excited pair and another from a ground-state pair
contribute. Expression (A6) for the rate in this case is

τ−1
mol ≈ 4πg2

Nf

∑
p1,p2

sin2 θp2

2
cos2 θp1

2

∣∣Up2

∣∣2∣∣Vp1

∣∣2
×δ

(
3p2

1 + 2p1 · p2 − p2
2

4m

)
. (A8)

Next we go from summations to integrations, integrate over
the angle between p1 and p2, and change integration variables
from momenta to energies, which results in

τ−1
mol ≈ 3γ

2εF

∫ ∞

0
dε2 sin2 θ (ε2)

2
|U (ε2)|2

×
∫ ε2

ε2/9
dε1 cos2 θ (ε1)

2
|V (ε1)|2. (A9)

We replace the cosine with one, use |V (ε1)|2 ≈ 
2
∞/4(ε1 +

|μ∞|)2, which follows from Eq. (7.3) together with |U (ε1)|2 ≈
1, and integrate over ε1. According to Eq. (3.13), the
probability of finding an excited pair is

sin2 θ (ε2)

2
→ 
2

0i(δω)2

16E4
i (ε2)

as ε2 → ∞. (A10)

A larger rate obtains for finite ωi than for ωi close to ωf .
In this case, δω ≈ 2μ∞ and sin2[θ (ε2)/2] appreciably differs
from zero at energies about

√

0i |μ∞|. We obtain

τ−1
mol ∼ γ
2

∞
0i

εF |μ∞| → 0. (A11)

In deriving Eq. (A10) we assumed finite resonance width γ . A
separate estimate for the broad resonance limit for quenches to
deep BEC finds a rate that also vanishes, but as γ −1/3|μ∞|−1/2.

This result for the molecular production rate should be
compared with the typical time scale τdyn of the quench
dynamics for quenches to the far BEC side. Equations (5.60)
and (6.7) imply

τ−1
dyn ∼ |μ∞|. (A12)

We see that indeed τdyn � τmol.
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2. Two-particle collisions

Next we estimate the relaxation rate due to two-particle
collisions. In contrast to the molecular production, we find
that here the contribution coming from just the ground-state
pairs is of the same order of magnitude or larger than that from
collisions that involve excited pairs. We therefore consider
ground-state pairs only and take the probability of finding
such a pair at a given momentum p to be cos2(θp/2) ≈ 1.
Let us analyze quenches to the far BCS side of the Feshbach
resonance from any initial detuning. In this case, ωf � μ∞ ≈
εF ; see, e.g., Fig. 19. The total scattering amplitude for this
case has been studied in Ref. [2] [see Eq. (71) therein], which
also estimates the corresponding rate as

τ−1
in ∼

(
g2νF

ωf

)2

2

∞
εF

= γ 2εF

(

∞
ωf

)2

. (A13)

In fact, this is the well-known Fermi liquid result for the
quasiparticle lifetime. Indeed, λ = g2νF /ωf is the strength of
the effective interaction between fermions [see Eq. (1.4)] and

∞ is the typical excitation energy, the energy scale at which
spins deviate appreciably from their ground-state positions.

Equation (A13) has to be compared with the characteristic
time scale of the dynamics for quenches to the far BCS side.
According to Eq. (6.5) this time scale is

τdyn ∼ 1


∞
. (A14)

We see that τdyn � τin for any finite resonance width γ since
ωf → ∞ in deep BCS. In the broad resonance limit, too,
τdyn/τin = λ2
∞/εF � 1. This is because at large γ quenches
to the far BCS in phase II are only possible from initial
detunings also on the far BCS side; see, e.g., Figs. 3(c) and 5.
It then follows from Eq. (3.29) that 
∞ � 
0f � εF .

A preliminary analysis for quenches to the far BEC
side shows that, at least for a finite resonance width γ

and sufficiently large |ωf |, one still has τdyn � τin. Thus,
neglecting two-particle collisions is justified at the times it
takes the quench dynamics to fully develop and reach its
asymptote.

APPENDIX B: FINITE-SIZE CORRECTIONS
TO THE ROOTS

As mentioned in Sec. III, in the thermodynamic limit 
L2(u)
for quench initial conditions has a continuum of roots along the
positive real axis. Here we verify this and determine finite-size
corrections to these roots.

Roots of 
L2(u) are determined by Eq. (3.3) or, equivalently,
by Eq. (5.13) in notation explained in the beginning Sec. V B,
which we employ here as well. The level spacing δ is of order
1/N . Thermodynamic limit means N → ∞, so εk become
continuous with density ν(ε).

Let us look for a pair of complex conjugate roots close to
εm, writing it as cm = εm + ςmδ. We take ςm ≡ ς (εm) to be
of order 1, to be confirmed below. Note that ςm is generally
complex. Our goal is to evaluate cm to first order in 1/N .
We split the summation in Eq. (5.13) into two parts: over εk

in a small interval (εm − 
ε,εm + 
ε) and over remaining
εk . The interval is, however, sufficiently large so that it

contains many εk . Specifically, 
ε → 0, but 
ε/δ → ∞ in
the thermodynamic limit. For example, 
ε = δ

√
N fulfills

these conditions. The latter summation becomes a principal
value integral in the N → ∞ limit, while the former one to
leading order in 1/N reads

N (εm)

2E(εm)δ

∞∑
p=0

[
1

p + ςm

− 1

p + 1 − ςm

]
= πν(εm)

2E(εm)
cot πςm.

(B1)

The first sum is from εk < εm, the second sum is from εk > εm.
Here it is important that the degeneracy Nk ≡ N (εk) and the
spacing between εk vary smoothly with εk . As long as this is
the case, we can include any variation of the spacing into Nk .

Thus, Eq. (5.13) to leading order in 1/N becomes

2

g2
−
∫ ∞

0
− ν(ε′)dε′

2(εm − ε′)E(ε′)
− ν(εm)

2E(εm)
cot πςm

= δω

g2

εm − μ ± i
0

E2(εm)
. (B2)

Recalling that ν(ε) = νF f (ε) and g2νF = γ in units of Fermi
energy, we obtain

π cot πς (ε) = 4E(ε)

γf (ε)
− G(ε)

f (ε)
− 2δω

γ

ε − μ ± i
0

E(ε)f (ε)
, (B3)

where

G(ε) = E(ε)
∫ ∞

0
− f (ε′)dε′

(ε − ε′)E(ε′)
. (B4)

This principal value integral is the same as in Eq. (3.6).
We evaluated it in elementary functions for various cases in
Secs. III A and III B. Specifically, in 2D,

G2d(ε) = ln

⎧⎨⎩ ε[ε − μ + E(ε)]

E(ε)
√

μ2 + 
2
0 + μ2 + 
2

0 − με

⎫⎬⎭ ; (B5)

in the weak-coupling (BCS) limit, μ ≈ εF � 
0, for energies
not too far from the Fermi energy, in both 2D and 3D,

Gwc(ε) = ln

[
E(ε) + ε − μ

E(ε) − ε + μ

]
; (B6)

in the strong-coupling (BEC) limit in 2D and 3D,

G2d
sc (ε) = ln

ε

|μ| , G3d
sc (ε) = −π

√
|μ|

0

. (B7)

Ground-state continual roots xk = εk + �kδ obtain by
setting δω = 0 in Eq. (B3); i.e.,

π cot π�(ε) = 4E(ε)

γf (ε)
− G(ε)

f (ε)
≡ H (ε)

f (ε)
. (B8)

The quantity Fk ≡ F (εk) defined in Eq. (5.19) evaluates
similarly to Eq. (B1),

F (ε) = − N (ε)

2E(ε)δ2

∂

∂�

∞∑
p=0

[
1

p + 1 − �
− 1

p + �

]

= ν(ε)

2E(ε)δ

π2f 2(ε) + H 2(ε)

f 2(ε)
. (B9)
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APPENDIX C: IDENTITIES

In this Appendix we prove Eq. (5.29). To this end, consider
a function

R(u) = L0(u)
[
(u − μ)2 + 
2

0

]
, (C1)

where L0(u) is given by Eq. (5.14). Since zeros of L0(u) are
xk and its poles are εk it alternatively can be written

R(u) = − 2

g2

∏N
k=1(u − xk)∏N
k=1(u − εk)

[
(u − μ)2 + 
2

0

]
. (C2)

Equation (5.29) follows by matching two leading terms in 1/u

expansions of function 1/R(u) obtained with the help of these
two alternative forms.

Because 1/R(u) is a rational function with poles at u = xk

and μ ± i
0, we have

1

R(u)
=
∑

k

1

(u − xk)L′
0(xk)�2

k

+ 1

2i
0(u − c+)L0(c+)

− 1

2i
0(u − c−)L0(c−)
, (C3)

where c± = μ ± i
0 and we took into account that the square
bracket in Eq. (C1) evaluated at u = xk is equal to �2

k . Note also
that L′

0(xk) = −Fk; see Eq. (5.19). Equation (5.14) implies

L0(c±) = −βk ∓ iαk, (C4)

where

αk =
∑

k

Nk
0

2[E(εk)]3/2
, βk = 2

g2
+
∑

k

Nk(εk − μ)

2[E(εk)]3/2
. (C5)

The leading term in 1/u expansion of 1/R(u) according
to Eq. (C2) is −2/(g2u2). Therefore, the coefficient at 1/u in
Eq. (C3) vanishes and that at 1/u2 is −2/g2. This yields

∑
k


0

Fk�
2
k

= αk

α2
k + β2

k

,

(C6)∑
k

xk − μ

Fk�
2
k

= g2

2
− βk

α2
k + β2

k

.

Gap and chemical potential equations (1.18) and (1.20) in
the notation of Sec. V B read

ω − 2μ

g2
=
∑

k

Nk

2E(εk)
,

(C7)

2n = 2
2
0

g2
+
∑

k

Nk

[
1 − εk − μ

E(εk)

]
.

Differentiation of these equations with respect to ω obtains
δμ/δω and δ
0/δω and comparison of the resulting quantities
with the right-hand side of Eq. (C6) proves Eq. (5.29).

Another identity used in Sec. V B derives by noting
that, according to Eq. (C2), 1/R(εk) = 0. Setting u = εk in
Eq. (C3), we obtain after some algebra

∑
j

1

(εk − xm)Fm�2
m

= αk(εk − μ) − 
0βk

2
0
(
α2

k + β2
k

)
[E(εk)]2

. (C8)
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[58] C. Sträter, O. Tsyplyatyev, and A. Faribault, Phys. Rev. B 86,
195101 (2012).

[59] D. Pekker and C. M. Varma, Rev. Condens. Matter Phys. 6, 269
(2015).

[60] P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[61] I. L. Kurland, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. B

62, 14886 (2000).
[62] The integrand in Eq. (1.37) generally has a nonvanishing zeroth

Fourier mode; i.e., it contributes to both linear and periodic parts.
[63] V. I. Arnold, Mathematical Methods of Classical Mechanics

(Springer-Verlag, New York, 1978).
[64] M. Tabor, Chaos and Integrability in Nonlinear Dynamics

(Wiley, New York, 1989).
[65] J. S. H. Goldstein, C. Poole, Classical Mechanics, 3rd ed.

(Addison Wesley, Boston, 2002), Chap. 10.
[66] B. C. Carlson and J. L. Gustafson, SIAM J. Math. Anal. 25(2),

288 (1994).
[67] DLMF, NIST Digital Library of Mathematical Functions, Chap.

19, Release date 2014-04-25, http://dlmf.nist.gov/.
[68] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H.

Denschlag, and R. Grimm, Science 305, 1128 (2004).
[69] M. W. Zwierlein, A. S. J. R. Abo-Shaeer, C. H. Schunck, and

W. Ketterle, Nature (London) 435, 1047 (2005).
[70] R. Schrieffer, Theory of Superconductivity (Perseus, New York,

1989).
[71] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,

1175 (1957).
[72] See Ref. [36] for a detailed calculation of analogous Green’s

functions and expectation values.
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