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Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions

J. C. Cremon,1 A. D. Jackson,2 E. Ö. Karabulut,1,3 G. M. Kavoulakis,4 B. R. Mottelson,2 and S. M. Reimann1,*

1Mathematical Physics, LTH, Lund University, PO Box 118, SE-22100 Lund, Sweden
2The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen Ø,

Denmark
3Department of Physics, Faculty of Science, Selcuk University, TR-42075 Konya, Turkey

4Technological Education Institute of Crete, P.O. Box 1939, GR-71004, Heraklion, Greece
(Received 22 September 2014; published 20 March 2015)

When a Bose-Einstein-condensed cloud of atoms is given some angular momentum, it forms vortices arranged
in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution
separates into a “primary” space related to the mean-field Gross-Pitaevskii solution and a “complementary”
space including the corrections beyond mean field. Considering a weakly interacting Bose-Einstein condensate
of harmonically trapped atoms, we demonstrate how this separation can be used to close the conceptual gap
between exact solutions for systems with only a few atoms and the thermodynamic limit for which the mean field
is the correct leading-order approximation. Although we illustrate this approach for the case of weak interactions,
it is expected to be more generally valid.
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I. INTRODUCTION

Cold atomic quantum gases are typically dilute with an
average interatomic distance much larger than the scattering
length for atom-atom elastic collisions. This justifies the use of
the mean-field approximation, which assumes a simple product
form for the many-body wave function in the case of bosonic
atoms. The complicated many-body problem is then reduced
to one of a single variable, and the effect of interactions is
described by a nonlinear term. This procedure was developed
by Gross and Pitaevskii some decades ago [1,2]. Since the
experimental realization of Bose-Einstein condensation (BEC)
in trapped atomic gases, this approach has been used with
remarkable success (see, e.g., Refs. [3–6]).

One of the many fascinating effects associated with the
superfluid properties of these gases is the formation of vortices
in response to rotation. When the ratio of angular momentum to
particle number increases, the number of vortices in the cloud
grows, and they group in structures with discrete rotational
symmetries (as illustrated by the mean-field densities in Fig. 1).
Such vortex states have been observed in a number of experi-
ments (see, for example, Refs. [7–14]). The literature on this
topic is extensive, as summarized by the reviews [15–19]. For
a dilute and harmonically trapped Bose-Einstein condensate
of atoms, the rotational properties have been thoroughly
analyzed both within the Gross-Pitaevskii approximation as
in Refs. [20–25] and beyond as in Refs. [17,22,26–44].

Going beyond the mean-field approximation, one often
applies the so-called configuration-interaction (CI) formalism.
In this numerical approach, one typically uses the Fock states
constructed from a given set of single-particle states as a basis
for the expansion of the exact many-body wave function. Other
approaches are often variational, such as quantum Monte Carlo
[45] or density-functional techniques for correlated Bose
gases [46]. The so-called coupled-cluster approach, originally
formulated for nuclei [47,48] and often applied to atomic and
molecular systems of fermions [49,50], has also been adapted
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to bosonic systems [51] and is based on a series expansion
of excitation operators acting on the corresponding mean-field
ground-state configuration.

An important advantage of the full CI approach is that
apart from an almost always inevitable truncation of the
Hilbert space, no further assumptions are made regarding the
functional form of the many-body wave function. The method
fully accounts for the correlations between the particles and
accurately describes the low-lying excitations. However, the
dimension of the Hamiltonian matrix grows very rapidly with
the number of particles. Thus, little is currently known about
the intermediate regime between small and large systems, in
which exact diagonalization becomes prohibitively difficult
but the mean-field approach still suffers from significant
finite-size corrections.

Here, we wish to shed new light on this problem, suggesting
a procedure that offers direct insight into the question of
how a finite-size system of bosonic particles approaches the
thermodynamic limit in which the Gross-Pitaevskii approach
is known to be exact [33,52–54]. With increasing particle
number, we find a power-law convergence of the exact ground
state into the mean-field Gross-Pitaevskii solution. Our study
thus provides a clear and general strategy for this problem and
offers strong arguments for both its validity and practicality.
Further, these arguments are not limited by either the particle
number or by the strength of the interaction.

II. ROTATIONAL PROPERTIES WITHIN THE
GROSS-PITAEVSKII APPROXIMATION

We begin by briefly reviewing some of the well-known
results regarding the formation of vortices in a weakly
interacting dilute Bose-Einstein condensate. The criterion
adopted here for the formation of vortices is their energetic
stability, namely, the minimization of the energy either for a
fixed value of the angular momentum or for a fixed value of
the rotational frequency of the trap. We consider a harmonic
trapping potential that is very tight along the axis of rotation,
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FIG. 1. (Color online) Isosurfaces of the density distribution of
the bosonic cloud within the mean-field approximation (taken at
about one-third of the maximum value) for different ratios of angular
momentum to particle number, L/N = 1,1.8, and 2.3 from left to
right (first discussed by Butts and Rokshar [20]). The vortices appear
as holes, and the phase of the order parameter [in color scale from
light to dark blue (gray)] jumps by 2π when encircling each vortex.

here chosen to be the z axis, with oscillator frequencies ω =
ωx = ωy � ωz. The two-body potential is assumed to be the
usual contact interaction. For sufficiently weak interactions,
�ωz is much larger than the interaction energy, and the
atoms occupy only the ground state of the harmonic potential
in the z direction. Thus, the problem becomes effectively
two-dimensional. The interatomic potential has the form
V (ri − rj ) = u0 δ(ri − rj ), with u0 = U0

∫ |φ(z)|4 dz. Here,
U0 = 4π�

2a/M is the matrix element for elastic collisions, a

is the corresponding scattering length, M is the mass of the
particles, and φ(z) is the ground state of the oscillator potential
along the z axis. The Hamiltonian that we consider is thus

Ĥ =
N∑

i=1

−�
2∇2

i

2M
+ M

2
ω2

(
x2

i + y2
i

) + u0

2

N∑

i �=j=1

δ(ri − rj ).

(1)

Within the mean-field Gross-Pitaevskii approximation the
many-body wave function is assumed to have a product form,
while the corresponding order parameter �MF(x,y) can be
expanded in the eigenstates of the noninteracting problem.
Making the assumption that the interaction energy is much
smaller than �ω, it is sufficient to consider only the single-
particle states φ0,m of the lowest Landau level with zero radial
nodes and angular momentum m� � 0. (As we will explain in
Sec. IV, the assumption of weak interactions is not essential,
and the approach presented below is expected to remain valid
for stronger interactions.) The order parameter �MF is thus
expanded in the basis of the states φ0,m, �MF = ∑

m�0 cmφ0,m,
where the amplitudes cm are variational parameters.

Minimizing the energy functional subject to the constraint
of fixed L/N (where L� is the total angular momentum,
and N is the number of particles in the trap), one finds that
as L/N increases, there is a sequence of phase transitions
associated with the formation of one or more vortices in the
gas (see the work by Butts and Rokshar [20] and, for example,
Refs. [21–24,41]). This is a direct consequence of the fact that
for a fixed value of L/N only certain single-particle states are
occupied by a macroscopic number of atoms of O(N ). For
example, for L/N = 1 the mean-field approximation yields
a solution in which the only occupied single-particle state
is the one with m = 1 and there is a single vortex at the
trap center (see Refs. [20,22,26–28]). A similar behavior is
found at higher values of L/N [20,22]. For example, for
L/N = 1.8, only the single-particle states with m = 0,2,4, . . .

TABLE I. Coefficients cm of the expansion of the Gross-Pitaevskii
order parameter in the lowest Landau level for 0 � m � 6 (see text).

L/N c0 c1 c2 c3 c4 c6

1.0 0 1.0000 0 0 0 0
1.8 0.4803 0 0.7992 0 −0.3611 −0.0127
2.3 0.5312 0 0 0.8179 0 −0.2210

are occupied, and the order parameter has twofold symmetry.
Correspondingly, for L/N = 2.3, the mean-field state consists
of single-particle orbitals with only m = 0,3,6, . . . , and it has
threefold symmetry [55].

The actual values of the variational parameters cm which
are derived within this method are given in Table I for L/N =
1.0,1.8, and 2.3 (with 0 � m � 6). In Fig. 1 we show the
density isosurfaces for these states (having onefold, twofold,
and threefold symmetry), where the color scale (from light to
dark) indicates that the phase of the order parameter changes
by 2π when encircling the vortex singularity [20].

III. EXACT SOLUTIONS COMPARED TO MEAN FIELD

In order to obtain the exact solution of the prob-
lem [26,28,33], one diagonalizes the many-body Hamiltonian
Ĥ subject to the constraints of fixed particle number,

∑
m nm =

N , and fixed total angular momentum,
∑

m mnm = L. With
increasing values of N and L, the exponentially growing
computational complexity severely restricts the size of nu-
merically tractable systems to a few dozen atoms at most.
However, studying the detailed structure of the exact wave
function suggests a substantial simplification: In analogy with
the mean-field approach discussed above, when an yrast state
(i.e., the state with lowest energy at fixed angular momentum
L) has a given discrete rotational symmetry, only certain
single-particle states are occupied by a macroscopic number
of atoms of O(N ). This permits a separation of the total
Hilbert space into a “primary” subspace that includes only
Fock states constructed exclusively from single-particle states
which are macroscopically occupied within the mean-field
approximation and a far larger “complementary” space that
consists of all other Fock states involving single-particle
orbitals outside the mean-field space [44]. The inclusion of
this complementary space leads to corrections to the mean-
field energy that are of higher order in 1/N relative to the
contribution from the primary space [33]. We shall show in the
following that this fact can be exploited efficiently to bridge
the gap between the few-body and thermodynamic limits.

A. The “unit vortex”

We begin with the relatively simple case of L/N = 1, where
(as described above) within the mean-field approximation only
the m = 1 orbital is occupied. As a result there is a single
vortex located at the center of the trap. The primary space thus
consists of only one Fock state, with all atoms occupying the
m = 1 orbital. The complementary space is spanned by all
other Fock states that have a nonzero occupancy of any single-
particle state with m �= 1. If one works within a truncated space
including only the orbitals with m = 0,1, and 2, the yrast state

033623-2



ROTATING BOSE-EINSTEIN CONDENSATES: CLOSING . . . PHYSICAL REVIEW A 91, 033623 (2015)

|�0〉 is known analytically to leading order in N [22,26],

|�0〉 =
∑

k

(−1)k
√

2
k+1 |0k,1N−2k,2k〉, (2)

where the ket on the right denotes the Fock state with
single-particle states in the lowest Landau level with m = 0,1,
and 2 and corresponding occupancies noted by the exponents.
Returning to the separation of the full Hilbert space which
we described above, the primary space consists of the single
state with k = 0, with a probability 1/2, while all the other
states with k �= 0 constitute the complementary space, with
a probability also equal to 1/2. Note that the amplitudes in
Eq. (2) decrease exponentially with k, i.e., with the occupancy
of the states belonging to the complementary space. As we
will see below, this is a more general feature that also appears
for larger values of the angular momentum.

We now consider a more systematic analysis of the
convergence of the exact solution as a function of a gradual
increase of the contribution from the complementary space. In
order to capture fully the finite-size corrections, we extend the
truncated space used in Eq. (2) by including the states with
0 � m � 6, which necessitates the use of numerical methods.
We evaluate the many-body states for a fixed number of
particles n1 in the m = 1 state (which is the occupation of the
primary space) with the remaining (N − n1) particles in the
complementary space. A Hamiltonian matrix is constructed
for each value of (N − n1), and the single eigenstate of
lowest interaction energy is selected from each matrix. A
truncated Hamiltonian is built and diagonalized in this new
basis of lowest-energy states to obtain the approximate energy
spectrum Ei

A and the corresponding eigenfunctions |�i
A〉

(where the index i = 0,1,2, . . . labels the excited states), here
for the example of N = 100 atoms.

Figure 2 shows the low-energy spectrum as evaluated within
this scheme as a function of the highest occupancy of the
complementary space Nc [red (light gray) circles]. (The energy
is given in units of v0 = u0

∫ |φ00|4d2r , where φ00 is the
single-particle ground state of the two-dimensional harmonic
oscillator.) The right side of this graph also shows the energy
spectrum evaluated within the usual full diagonalization of the
many-body Hamiltonian [blue (dark gray) circles] with the
same truncation, 0 � m � 6.

We see that there is a rapid convergence of the approximate
solution to the exact result. Low-lying excited states are also
reproduced fairly well, with larger deviations being apparent
only in the higher-energy section of the spectrum. The relative
error between the eigenenergies as evaluated within our model
and with full diagonalization (in the same subspace) decreases
exponentially with Nc. Remarkably, our method reproduces
the yrast state as well as the low-lying excited states with high
accuracy. As shown in Fig. 3(a) for the yrast state (labeled
“Y”) and the first nontrivial excited state (labeled “G”) that is
related to the Goldstone mode [56], relative errors as small as
10−7 to 10−10 are obtained for values of Nc ≈ N/2. (The first
excited state, labeled “CM”, in Fig. 2, is a trivial center-of-
mass excitation.) Figure 3(b) shows a logarithmic plot of the
deviation from unity overlap of the model yrast state and the
exact yrast state, 1 − |〈�0

A|�ex〉|2, as a function of Nc. This plot
clearly shows an exponential convergence with the number of

FIG. 2. (Color online) Interaction energies (in units of v0; see
text) for L = N = 100 evaluated within the model [left, red (light
gray) circles] as a function of the highest occupancy Nc of the
complementary space for a single-particle basis of orbitals with
0 � m � 6. The blue (dark gray) circles to the right show the result
from the “exact” approach in the same subspace of single-particle
states (see text). The relative error between the model and the full
diagonalization in the same subspace is given in Fig. 3(b) for the
yrast state (“Y”) and the Goldstone mode (“G”; see text), converging
to numbers as small as 10−7 to 10−10 for values of Nc ≈ N/2. (The
state labeled “CM” is a center-of-mass excitation.)

particles in the complementary space. Finally, Fig. 3(c) shows
the size of the submatrices arising in our calculations. Note
that all of these submatrices are dramatically smaller than that
of the full CI matrix, which has a dimension of 189 509 for the
specific example considered here.

B. States of discrete rotational symmetry

While the above example of the unit vortex at L/N = 1 is
instructive, it is special in the sense that within the mean-field
approximation there is only one state that is macroscopically
occupied. We therefore consider, without loss of generality, the
ratio L/N = 9/5, where within the mean-field approximation
two vortices have nucleated in the cloud.

In what follows below we show how our method is applied
considering this case as an example. We start with some
approximate and semianalytic results, which demonstrate the
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FIG. 3. (Color online) (a) The relative error in the interaction
energy and (b) the deviation from unity overlap of the model yrast
state with the exact yrast state, 1 − |〈�0

A|�ex〉|2, on a logarithmic
scale as a function of the highest occupancy of the complementary
space Nc for the data of Fig. 2. (c) The dimension of the submatrices
as a function of Nc.

use of our method. At the end of this section we present the
full numerical results.

In order to simplify the discussion, we first truncate the
space to the single-particle states with 0 � m � 4. (It is
straightforward to generalize the arguments presented below to
larger spaces.) For large N , there is a macroscopic occupancy
of the single-particle states with m = 0, 2, and 4 in the primary
space. In this limit, it is convenient to approximate the exact
yrast state by the sum

|�0〉 =
∑

k

(−1)kψk|0n0(k),2n2(k),4n4(k)〉, (3)

where the occupancy of the orbitals with m = 0,2, and 4 are
n0(k), n2(k), and n4(k), respectively. Fixing the occupancy
of one orbital, for example, n0(k) = k, the constraints of
fixed particle number and fixed total angular momentum
determine the occupancy of the other two. Consequently, for
the above choice of n0(k), we have n2(k) = 11N/10 − 2k and

n4(k) = k − N/10. As discussed in Ref. [33], within the states
contained in Eq. (3) the eigenvalue equation takes the form

− Vk,k−1ψk−1 + Vk,kψk − Vk,k+1ψk+1 = Eψk. (4)

Here, Vk,k′ are the matrix elements of the interaction V between
states |k〉 and |k′〉 on the right-hand side of Eq. (3), and E is
the interaction energy. The above equation is obvious since
in addition to the diagonal matrix elements, the interaction,
being a two-body operator, connects states where two atoms
from the states with m = 0 and m = 4 get transferred to the
state with m = 2 and vice versa.

Assuming that ψk is a smooth and differentiable function
of k, this eigenvalue equation assumes the familiar form

− 1
2 (Vk,k−1 + Vk,k+1)∂2

k ψk + Veff(k)ψk = Eψk, (5)

where Veff(k) = Vk,k − Vk,k−1 − Vk,k+1. In the vicinity of its
minimum at some k0 where Veff has the value E0, this effective
potential can be approximated as Veff − E0 ∝ (k − k0)2/2.
Thus, ψk satisfies an eigenvalue equation of a linear single-
particle problem in the effective potential Veff(k). For the
example of L/N = 9/5, in the limit of very large N we find
that the minimum of Veff(k) occurs at k0/N = n0/N ≈ 0.2289,
a number that is very close to the value of the mean-field
coefficient for |c0|2(≈ 0.2307) given in Table I (albeit here for
0 � m � 4). The energy of the yrast state within the primary
space is found to be E ≈ (0.1880N2 − 0.3149N )v0 plus terms
of order unity. This expression for E must now be corrected at
O(N ) for the effects of the complementary space.

To gain insight into the role of the orbitals outside the
mean-field space, we first consider contributions to the com-
plementary space due to only the m = 1 single-particle state.
The ψk in Eq. (3) for the yrast state is a Gaussian with a width
of O(

√
N ). If one promotes 2n1 particles to the single-particle

state with m = 1, where n1 is of O(N0), to leading order in
N , the corresponding yrast state can be written as

|2n1〉 ∝ (a†
1a

†
1a0a2)n1 |�0〉. (6)

Here, |2n1〉 denotes the yrast state with 2n1 atoms in the single-
particle state with m = 1, and a

†
m and am are the usual creation

and annihilation operators for a particle with angular momen-
tum m� (in Fig. 2). The Gaussian form of the amplitudes of the
primary space components of state |2n1〉 is preserved, and its
center is simply shifted by a term of order unity. As before, the
primary components are all of O(N ) with a width of O(

√
N ),

and the occupancy of the states in the complementary space is
of O(N0). As a consequence, the energy of the state |2n1〉 is
the same as that of |�0〉 to leading order in N , i.e., to O(N2),
and it is only necessary to consider corrections from the com-
plementary space which are of subleading order, i.e., O(N ).
This implies that it is sufficient to approximate the full state of
Eq. (3) by the single component |�0〉 = |0n0(k0),2n2(k0),4n4(k0)〉.
This is a very considerable simplification.

Using this single component (appropriately renormal-
ized to unity), we find that neither the curvature of
Veff nor the “inertial parameter” (Vk,k−1 + Vk,k+1) de-
pends on n1 to leading order. Further, we find that
the diagonal energies scale linearly with n1, while
the off-diagonal matrix elements 〈2n1,0|V |2n1 + 2,0〉
are seen to be proportional to N

√
(2n1 + 1)(2n1 + 2).
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These are the only nonzero off-diagonal matrix elements
which come from the operator a1a1a

†
0a

†
2 (plus its Hermitian

conjugate). Diagonalizing the resulting matrix, we find that
the yrast energy becomes E ≈ (0.1880N2 − 0.3885N )v0 and
that the probabilities of the various states with 2n1 atoms in
the m = 1 state decrease exponentially with n1. We emphasize
here that the above result is generic and not specific for the
example that we have considered (see the Appendix).

Let us now turn to the case where contributions from both
the m = 1 and m = 3 single-particle orbitals are included in
the complementary space. Generalizing Eq. (6), we see that the
states including contributions from the complementary space
can be constructed as

|2n1 + 1,2n3 + 1〉 ∝ a
†2n1+1
1 a

†2n3+1
3 a

n1
0 a

n1+n3+2
2 a

n3
4 |�0〉,

(7)
|2n1,2n3〉 ∝ a

†2n1
1 a

†2n3
3 a

n1
0 a

n1+n3
2 a

n3
4 |�0〉.

We emphasize that the counting of states in this equation is
correct: Naively, one might expect that two distinct states, e.g.,
with n1 = n3 = 1, could be constructed from |�0〉 through the
application of either a

†
1a

†
3a2a2 or a

†
1a

†
3a0a4. Given the Gaussian

nature of ψk , however, these states are not orthogonal, and only
one of them should be included.

There are four classes of nonzero off-diagonal matrix
elements. The first two classes include

〈n1 + 2,n3| V |n1,n3〉 = √
n0 n2V11,20

√
(n1 + 1)(n1 + 2)

and

〈n1,n3 + 2|V |n1,n3〉 = √
n2 n4V33,24

√
(n3 + 1)(n3 + 2),

where Vij,kl = 〈φ0i ,φ0j |V |φ0k,φ0l〉. The remaining two classes
reflect the staggering of the ground-state wave function [i.e.,
the alternating sign seen explicitly in Eq. (2)]. They have the
form

〈n1,n3|V |n1 − 1,n3 + 1〉
= (−1)n3

√
n1(n3 + 1)(2

√
n0 n2V12,30 − 2

√
n2 n4V14,30)

(8)

and

〈n1 + 1,n3 + 1|V |n1,n3〉
= (−1)n3

√
(n1 + 1)(n3 + 1)(n2V22,13 − 2

√
n0 n4V04,13).

(9)

For Nc particles in the complementary space, the matrix
has dimension Nc/2 + 1. Considering as an example Nc =
18, the yrast energy E ≈ (0.1880N2 − 0.3149N )v0 obtained
above for the primary space is shifted by the amount 	E =
−0.1893Nv0. As previously discussed for the simpler case
with only the m = 1 orbital from the complementary space,
the amplitudes show an exponential decrease with n1 and n3.

In the preceding paragraphs we approximated the yrast
state with the single-component |�0〉 = |0n0(k0),2n2(k0),4n4(k0)〉,
which allowed us to give a detailed description of our
method, providing us with some semianalytic results. In what
follows we apply the same method fully numerically, without
making the approximation for the yrast state consisting of
a single component and compare it with the result of the full
diagonalization (in the spirit of the case of L/N = 1 discussed

FIG. 4. (Color online) The quantity 1 − |〈�0
A|�ex〉|2 as a func-

tion of N for a fixed angular momentum per particle, L/N = 9/5.
Here, at each point the number Nc of particles in the complementary
space was increased until numerical convergence of the result was
obtained. The (red) squares refer to the space with 0 � m � 4 (open
squares, K = 1, and solid squares, K = 4, where K is the number of
lowest-energy states included in the reduced matrix), and the (blue)
circles refer to the space with 0 � m � 6 (open circles, K = 1, and
solid circles, K = 4).

above). Here, however, we consider only the yrast state since
the analysis of the excitation spectra beyond the value of
L/N = 1 is more complicated due to the fact that, even for the
low-lying states, competing solutions of different symmetry
are found (see Ref. [44]).

We follow the same procedure as above, considering two
different truncations of the Hilbert space with 0 � m � 4 and
0 � m � 6. First, we evaluate the many-body states of Eq. (7)
for each configuration of particles in the complementary space.
Then, the lowest-energy state for each such configuration
is chosen, and the truncated Hamiltonian is diagonalized
in this new basis of lowest-energy states to obtain the
approximate ground-state energy E0

A and corresponding wave
function |�0

A〉. Figure 4 shows the quantity 1 − |〈�0
A|�ex〉|2

versus N in the space 0 � m � 4 (squares) and 0 � m �
6 (circles) on a double-logarithmic scale. Intriguingly, for
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FIG. 5. (Color online) Occupancies of the exact yrast states at
L/N = 9/5 as a function of the particle number N on a double-
logarithmic scale here for a basis with 0 � m � 7. The saturation of
the single-particle basis is reflected by the significant reduction in
occupancy for higher values of m. The circles (connected by solid
lines to guide the eye) indicate single-particle states that belong to the
primary space; the squares (dashed lines) indicate those that belong
to the complementary space. Clearly, with increasing N , there is a
convergence towards the occupancies obtained from mean field (see
Table I).

large N , this quantity shows a simple power-law behavior,
1 − |〈�0

A|�ex〉|2 ∝ N−γ .
The fact that the overlap decreases for the more extended

space, 0 � m � 6, compared with the more restricted one,
0 � m � 4, is not a surprise since the relative dimensionality
of the full Hilbert space compared with the dimensionality
of the space of our approach increases dramatically in the
more extended space. The crucial result of this analysis is
that the Fock state amplitudes for a given configuration in the
complementary space decrease exponentially with the number
of particles in that space in both cases (we also emphasize that
the number of the single-particle orbitals which are occupied
by a macroscopic number of atoms saturates quickly for larger
values of m, as is clearly seen from the logarithmic plot of the
occupancies in Fig. 5). The exponent is independent of N in
the limit N → ∞, indicating that the number of particles in the

complementary space has a limit of O(N0). This behavior is, in
fact, strongly supported by the occupancies obtained through
direct diagonalization, as seen in Fig. 5. The occupancy of
the states which construct the primary space in compliance
with the mean-field approximation [red (dark gray) circles]
increases (except for the orbital with m = 6 that saturates),
while the orbitals of the complementary states [green (light
gray) squares] show a power-law decay with the number of
particles.

More generally, one can retain the K eigenstates of lowest
energy for each configuration of particles in the comple-
mentary space. (This corresponds to retaining excited states
of the effective harmonic-oscillator problem in the primary
space.) For a given basis set, an increase of K accelerates the
convergence towards the full solution (see Fig. 4). For fixed N ,
one finds exponential convergence in K . In this case, however,
the exponent depends on N such that convergence is more
rapid for larger particle numbers, and the generalized oscillator
ground state alone contributes to the yrast state as N → ∞.
We stress that for Nc = N and retaining all the possible K

states, the approach is simply a passive unitary transformation
of the basis and the results are necessarily identical to the full
exact solution.

IV. CONCLUSIONS

In short, this paper suggests a significantly simplified
understanding of the properties of a rotating Bose-Einstein
condensate of trapped atoms. The direct numerical strategy for
this problem would be to include a certain set of single-particle
states and to diagonalize the resulting many-body Hamiltonian
matrix. The difficulty is that the dimension of this matrix
grows prohibitively as the number of particles or the angular
momentum (and thus, consequently, the number of necessary
single-particle basis states) increases.

The method presented in this study makes use of the fact
that only certain single-particle states are macroscopically
occupied, while all other states have an occupancy of order
unity. This introduces a natural separation of the Hilbert space
into a primary and a complementary part. The first, containing
the macroscopically occupied single-particle states, can be
regarded as a generalized harmonic oscillator problem that
can withstand major truncation when N is large. The resulting
simplification is significant: The size of the Hamiltonian
matrix can be reduced safely by a factor of order Nκ−2,
where κ is the number of single-particle states included in
the primary space. The contribution of the complementary
subspace to the many-body states falls exponentially with the
number of particles in it. Therefore, the present approach
shows clearly that the vast majority of these states do not
make a significant contribution to the yrast states, providing a
simple understanding of how scattering processes between the
primary and complementary spaces govern the transition from
finite sizes to the thermodynamic limit.

At mean-field level there are discontinuous phase transi-
tions between states of different rotational symmetry corre-
sponding to level crossings [44]. The states involved in such
crossings can be constructed using the methods described here
for distinct choices of the primary space. In the immediate
vicinity of the crossing point, these states will be nearly
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degenerate and can, in principle, mix. Fortunately, however,
the fact that they are based on different primary spaces ensures
that matrix elements of the interaction between these states will
vanish exponentially with the number of particles. Thus, such
mixing becomes increasingly unimportant as the number of
particles grows unless one is precisely at the crossing point.

The analysis presented here has been restricted to the limit
of weak interactions, where one may neglect the single-particle
eigenstates of the harmonic-oscillator potential with radial
nodes. We stress, however, that our results are quite general
and are not specific to this perturbative regime. Rather, the
illustration of our method for the case of weak interactions
represents a “proof of principle” and provides a representative
example of our approach. Even in the regime of stronger
interactions, which is actually of greater experimental rele-
vance, one can solve the mean-field Gross-Pitaevskii equation
to determine which states should be contained in our primary
subspace. This subspace could, in principle, contain any or
even all Landau levels with an angular momentum consistent
with the discrete rotational symmetry of the ground state.
In practice, mean-field calculations for stronger interactions
show that the probability of finding states with nr radial nodes
in the mean-field wave function decreases exponentially with
increasing nr . The inclusion of additional Landau levels will
not lead to any material complication in the construction or
the solution of the generalized harmonic-oscillator problem
described in Sec. III A. Excited Landau levels for other angular
momenta will contribute to the complementary space. Since
the exponential convergence found in the present paper is
dictated by angular momentum considerations and not by
the radial structure of the single-particle wave functions, this
feature will be unaltered by the inclusion of higher Landau
levels. In short, the scheme introduced here will remain valid
and useful even if additional Landau levels are included.
However, as mentioned above, internal convergence criteria
must be adopted for assessing the accuracy of such calculations
since full numerical diagonalizations will not be practical.

While the truncations adopted here appear to be particularly
promising when the number of particles is large, we have not
proven that the approach is a viable quantitative alternative to
the exact diagonalization for large systems. Such a claim would
require extensive benchmarking that is beyond the scope of this

work and remains a matter for further investigation. Rather, the
present study offers very explicit insight into the structure of
the many-body wave function and its relation to the mean-field
approximation for a rotating atomic superfluid. Although we
have focused primarily on the yrast line, the procedure adopted
here should also be suitable for investigating the richness of the
excitation spectrum. We stress that the method is physically
well motivated and provides a well-defined transformation of
the basis of many-body states that is completely passive in the
sense that it suggests the order but not the degree of truncations
of the basis.
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APPENDIX: TOY MODEL

Consider, e.g., a real symmetric matrix which is zero
except for the diagonal matrix elements An,n = n − 1 and the
off-diagonal matrix elements An,n±1, with An,n+1 = nf . The
eigenvalue equation

An,n−1cn−1 + An,ncn + An,n+1cn+1 = Ecn

has the form

(n − 1)f cn−1 + (n − 1)cn + nf cn+1 = Ecn.

The lowest eigenvalue of this matrix has a finite value in
the limit that its dimension approaches infinity, provided
that 0 � |f | � 1/2. Subject to this restriction, the lowest
eigenvalue is E = −|f |x, and the corresponding solution is
cn = xn

√
1 − x2, with x = −(1 −

√
1 − 4f 2)/(2f ). For large

values of n, the above eigenvalue equation has the simpler form
f cn−1 + cn + f cn+1 = 0, which has the solution cn ∝ xn,
independent of E. In other words, cn decays exponentially
at precisely the same rate for all eigenvectors of finite energy.
Although elementary, this toy model illustrates the present
mechanism leading to exponential convergence.
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