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Chaotic resonances of a Bose-Einstein condensate in a cavity pumped by a modulated optical field
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We present a theoretical analysis of a Bose-Einstein condensate (BEC) enclosed in an optical cavity driven by
a modulated external laser beam where the cavity field variable is adiabatically eliminated. The modulation of the
amplitude of the pump laser induces nonlinear resonances and the widespread presence of chaotic oscillations
even when repulsive atom-atom interactions are negligible. Close to resonance, varying the modulation amplitude
by just a few percent causes abrupt and erratic changes to the output laser intensity with peak power increasing
by almost an order of magnitude. We also use a simplified model of the BEC-cavity system that considers only
a small number of spatial modes of the BEC to show that, despite the disruptive presence of a modulation in the
pump beam, the system can still be considered to be low-dimensional.
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I. INTRODUCTION

The introduction of chaos can, when coupled with a
stabilizing mechanism, increase the utility of a device by
allowing the selection of an appropriate system state that would
otherwise be difficult to achieve [1]. Accordingly, methods that
can aid the transition of a system to a chaotic state can be of
great benefit. One such method is the application of a parameter
modulation, which can, by the selection of an appropriate
frequency, lower the threshold of the onset of chaos [2,3].

Interest in the study of Bose-Einstein condensates (BECs)
confined to optical cavities has continued to develop in recent
years, both theoretically [4–9] and experimentally [10–14].
The coupling between the light field of the optical cavity
and the wave function of the BEC in such a system can
result in chaotic dynamics. Such dynamics in BECs have
been investigated for a variety of theoretical and experimental
setups (see, e.g., [15–18]). It has been previously shown
that chaotic dynamics arising from the nonlinear atom-field
interaction are an intrinsic feature of the BEC-cavity system;
chaos occurs sporadically in the domain where interactions
between condensate atoms are negligible, and ubiquitously
when atom-atom interactions are included [19]. In both cases,
the chaotic oscillations appear beyond a critical intensity of
the input pump laser.

In this paper, we investigate the resonance effect of a pump
amplitude modulation on the dynamics of the cavity-confined
condensate. The effect of modulating the pump-beam power
in a simplified model of a BEC-cavity system was previously
considered in [20], where it was shown that the introduction of
this modulation could be applied as an optical Kerr switch.
In [20], the dynamics of the BEC are approximated both
by considering only two spatial modes of the condensate
and by neglecting the interactions between atoms, a setup
previously described in [21]. Here, we consider the effect of
a modulation using first the full model, which imposes no
restriction on the number of spatial modes of the BEC, and
then a simplified model involving only a few (but more than
two) spatial modes of the BEC. It is shown that the addition of a
pump amplitude modulation is roughly analogous to the effect
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of atom-atom interactions in the BEC-cavity system [19]: in
the absence of pump modulation, the system exhibits sporadic
instances of chaos, whereas in the presence of pump amplitude
modulation and close to resonance chaotic oscillations can
be found extensively through a wide parameter range. The
results presented suggest that use of a modulated pump beam
could be a simple and effective method for inducing chaotic
dynamics for a wide range of system parameters. In addition,
inducing chaos via pump modulation should be easier to
realize in practice than inducing chaos via manipulation of
the atom-atom interaction.

We first consider the effects that pump intensity and strength
of atom-atom interactions have on the fundamental temporal
frequency of the BEC-cavity system’s oscillations without
external modulations. We then proceed to find resonance
frequencies and the associated modulation amplitudes required
to induce chaotic dynamics in the presence of a modulated
pump. We illustrate our findings by displaying the evolution
in phase space of the BEC-cavity system, along with the
associated phase-space orbit “widths” that provide a useful
indicator of the presence of chaos, Poincaré sections depicting
the presence of both quasiperiodicity and chaos, the cavity
intensity as it responds to the backaction of the BEC oscilla-
tions, and representative power spectra. We also present spatial
spectra for the system that indicate the small number of modes
(typically five) required for an accurate description of the BEC-
cavity system’s dynamics. As a consequence, we introduce a
simplified n-mode model to describe the BEC-cavity system’s
behavior, and, for our range of parameters, show excellent
agreement for the chaotic resonances between the full model
and simplified n-mode model.

II. THE BEC-CAVITY SYSTEM

We consider a 87Rb BEC composed of N = 105 atoms, each
with mass m = 1.44 × 10−25 kg, confined to a Fabry-Pérot
optical cavity driven by an external blue-detuned laser beam
of wavelength λ = 780 nm, with a cavity loss rate of κ =
2π × 1.3 MHz, as shown schematically in Fig. 1. The system
setup is as described in [19]; the BEC couples to a single
mode of the cavity, where the detuning between the pump
frequency ωp and that of the cavity ωc is given by �c = ωp −
ωc. Effects arising from spontaneous emission are disregarded
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FIG. 1. (Color online) The BEC-cavity system, where the single-
mode cavity field interacts with a cigar-shaped condensate that is
aligned transversely to the cavity axis. The cavity is driven by a pump
laser represented by the pump rate η with a modulation of frequency
�m and relative amplitude μ; cavity losses are represented by the
decay rate κ .

by assuming a large detuning �a between the pump and the
resonant frequency of the atoms ωa , where �a = ωp − ωa =
2π × 58 GHz. This latter detuning determines the depth of
the standing-wave cavity mode, given by �U0, where U0 =
g2

0/�a , with g0 = 2π × 14.1 MHz being the maximum atom-
photon coupling strength. Note that the chosen parameters
have previously been used in both theoretical and experimental
investigations [19,22]. It should be emphasized, however, that
the results are representative of a wide range of parameter
values.

The BEC-cavity system is pumped externally by an optical
beam with an average amplitude corresponding to a mean
pump rate η. This beam is then modulated with an amplitude
relative to the mean pump amplitude denoted by μ and at a
frequency of �m.

Since the optical lattice is aligned with the cavity axis [22],
we use a one-dimensional model of the condensate dynamics,
which can be derived from the three-dimensional Gross-
Pitaevskii equation as described in, e.g., [23–26]. The BEC-
cavity system is described by the following coupled equations:

∂ψ(x,t)

∂t
= i

2

∂2ψ

∂x2
− i|α|2V0 sin2

(πx

2

)
ψ − i�|ψ |2ψ, (1)

|α|2 = η2[1 + μ cos(ωmt)]

κ2 + (�c − U0N 〈ψ | sin2(πx/2) |ψ〉)2
, (2)

where x is a dimensionless position variable scaled with
respect to half the lattice period L, where L = λ/2. Simi-
larly, t is a dimensionless time variable scaled with respect
to T0 = mL2/4�, and � = 2g1DNT0/(�L), V0 = U0T0, and
ωm = �mT0 are dimensionless parameters that characterize
the scattering length, BEC-lattice coupling strength, and
modulation frequency, respectively. In the definition of �,
the atom-atom interaction parameter g1D = 2�ω⊥a, where a

is the scattering length and the transverse trap frequency ω⊥
is

√
ωyωz, with the (y,z) trap frequencies ωy = 2π × 37 Hz

and ωz = 2π × 210 Hz. The intracavity photon number is
given by |α|2, and the integral in the denominator of Eq. (2)
describes the overlap of the cavity mode with the density
profile of the condensate. In the examples that follow, we
write the dimensionless modulation frequency ωm in terms
of a dimensionless recoil frequency ωr = 4�rT0, with the
recoil frequency �r = (�k2)/(2m) [5], and k = 2π/λ, so that
ωr = π2/2.

The dimensionless BEC wave function ψ is normalized
such that 〈ψ |ψ〉 = 1. In this model, the cavity field dynamics
are adiabatically eliminated since we consider the limit where
the decay rate κ � �r .

We initially focus in Sec. IV on a modulated-pump system
where the coupling between atoms is solely through the cavity
field and atom-atom interactions are neglected (i.e., � = 0).
In Sec. V we include the effect of atom-atom interactions in a
repulsive condensate.

Given the previously established low-dimensional nature
of the system without modulation [19], it is reasonable to
investigate whether the modulated system retains this curious
feature. In Sec. VI we accordingly apply a truncated model
that reduces the wave function as given by Eq. (1) to a system
composed of only five motional states. We show that for the
relevant areas of interest a close correspondence between the
results from the two models persists and that the dynamical
behavior of the system remains low-dimensional, despite the
introduction of pump modulation.

III. FREQUENCY RESPONSE IN THE
ABSENCE OF MODULATION

It can be seen from Eq. (1) that in the absence of cavity-
field or atom-atom interactions the BEC will evolve freely,
with each spatial mode oscillating at a rate proportional to
ωr = π2/2. This frequency arises from the term of Eq. (1)
that governs the kinetic energy of the BEC. The presence of
light-matter (parameter η/κ) and atom-atom (parameter �)
interactions, however, introduces important nonlinear shifts in
the response of the BEC-cavity system without modulations.

In Fig. 2 we show with black dashed lines the change
in fundamental frequency for a range of η/κ values, for
the case where no atom-atom interactions are present (i.e.,
� = 0) (a), along with the dominant frequencies from two
particular values of η/κ (b). Both plots are generated from
numerical simulations of the frequency spectra of Eqs. (1)
and (2) with no pump modulation (i.e., μ = 0) using the
following procedure: the temporal evolution of the cavity
field is calculated numerically using Eqs. (1) and (2), and
is then converted to a frequency spectrum using a fast Fourier
transform. The frequency spectrum of the cavity field is
calculated for a range of values of η/κ , and the dominant
frequency from each spectrum is recorded. These dominant
frequencies are then plotted as the black dashed line in (a).

We extend the analysis presented in Sec. VB of [19]
to obtain a simple expression for the frequency of the
unmodulated system. We decompose the BEC wave function
ψ(x,t) into a series of spatial modes with time-dependent
amplitudes:

cn(t) = 1

LD

∫ LD/2

−LD/2
ψ(x,t)e−iπnx dx, (3)

where LD is the length of the BEC in units of x, i.e., LD =
2LBEC/L, where LBEC is the length of the BEC. We then
introduce the variables R = Re(c0c

∗
1), I = Im(c0c

∗
1) (similar
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FIG. 2. (Color online) (a) Effect of the pump intensity on the
oscillation frequency of the BEC-cavity system, for the case without
atom-atom interaction (� = 0). The black dashed and blue solid
curves correspond to the dominant frequency component from the
numerical integration of Eqs. (1) and (2) for μ = 0 and 0.017,
respectively. The red dot-dashed line is the analytical solution Eq. (7)
with a quartic fit to the function F ; note that this curve is offset
by +0.3 on the vertical axis for clarity. (b) Cavity-field frequency
spectra.

to [21]), and D = |c0|2 − 2|c1|2 and obtain

dR

dt
= −ωrI, (4)

dI

dt
=

(
ωr + �

nL

)
R − |α|2 V0

4
D, (5)

dD

dt
= 2I

(
|α|2V0 − 8R

�

nL

)
, (6)

where nL is the number of lattice sites occupied by the
BEC, and |α|2 is given by Eq. (2), with the overlap integral
〈ψ | sin2(πx/2) |ψ〉 approximated to 1/2 − 2R. The frequency
of the unmodulated system can then be approximated as

ω = √
ωr

√
ωr − F

(
η

κ

)
+ �

nL

, (7)

where F is a polynomial function of η/κ . The red dot-dashed
curve in Fig. 2(a) shows the frequency of the unmodulated
system (7) where F is a quartic polynomial in η/κ . The level
of agreement with the results of the numerical simulations
is sufficiently high that the numerical (black dashed) and
analytical (red dot-dashed) lines have been displaced so as
to be discernible in the plot. A similar level of agreement
has been obtained for cases where atom-atom interactions are
also present (� > 0). When a small modulation is introduced
[see the solid blue line in Fig. 2(a) for the case μ = 0.017],
the modulation frequency (in this case, 0.81ωr ) dominates
the spectrum until the onset of bistability where both the
modulation and system’s response are of approximately equal
magnitude (transition region). Figure 2(b) shows the dominant
oscillation frequencies for η/κ = 0.37 and 0.41. Note that both
peaks for each value of η/κ are of a similar magnitude; small
fluctuations between these values account for the “jumps”
between the modulation frequency and system frequency given
in Fig. 2(a) for η/κ in the range 0.37–0.41. Above the transition
region the external and system’s responses resonate and induce
highly nonlinear oscillations. For example, the blue cross in
Fig. 2(a) at η/κ = 0.90 indicates the presence of chaos induced
by the modulation.

The knowledge of the dynamical behavior of the unmod-
ulated system is then important for the determination of the
resonant frequencies when a pump modulation is introduced.
For this reason, we show in Fig. 3 a strong agreement
between the results of the full numerical simulation of Eqs. (1)
and (2) with μ = 0 and the approximate expression (7) when
modifying the atom-atom interaction coefficient �. Here,
the pump rate is first set to η/κ = 0.01 where the pump’s
influence can be neglected, and then to η/κ = 0.75 where
the system’s dynamics with modulations is dominated by its
natural response.
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η/κ = 0.75

Analytical result

FIG. 3. (Color online) Oscillation frequency of the unmodulated
system (μ = 0) for a range of values of the atom-atom interaction
parameter � calculated from a full numerical simulation of Eqs. (1)
and (2) (dashed black line) and the expression (7) (red dot-dashed line,
offset by +0.1 on the vertical axis). The dashed curve corresponds to
η/κ = 0.01; the solid (blue) curve corresponds to η/κ = 0.75.
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FIG. 4. (Color online) The threshold values of modulation am-
plitude μ as calculated from the full model (solid black line) and the
five-mode model (dashed blue line), across the modulation-frequency
range of 0.1ωr–4.1ωr , for η/κ = 0.90. Two main resonances are
located at ωm = 0.81ωr and 1.67ωr . The threshold value for 0.81ωr

is particularly small: μ = 0.017. The dotted red line shows the
resonances when atom-atom collisions are included (for � = 157);
note the shift in the two main resonances due to the introduction of
atom-atom interactions (i.e., � > 0).

IV. PUMP MODULATION OF AN
INTERACTION-FREE CONDENSATE

We first consider the case where collisions between
condensate atoms are neglected, i.e., � = 0. We investigate
the system numerically to determine the lowest value of the
pump modulation amplitude, μ, at which chaotic oscillations
appear. To ensure that chaotic behavior is being induced by
the modulation of the pump amplitude, we investigate cases
where only periodic or quasiperiodic oscillations occur in the
unmodulated case, i.e., where the value of η is comfortably
below the critical pump rate ηcr = 1.07 [19]. We proceed by
setting η/κ = 0.90, which meets the condition of η/κ < ηcr

required to ensure (quasi-) periodic dynamics.
We have then performed a scan of pump modulation

frequency to reveal the system’s fundamental and harmonic
resonances, as demonstrated in Fig. 4, which shows the
value of the modulation amplitude μ necessary to cross the
separatrix as a function of the modulation frequency ωm. A
clear resonance appears at ωm = 0.81ωr , the frequency of
the unmodulated system as shown in Fig. 2 for η/κ = 0.90.
Here, an extremely small value of the modulation amplitude,
μ = 0.017, is required to induce chaotic dynamics. It is
interesting to note that such a value is almost 100 times
smaller than that required to induce chaotic dynamics when off
resonance (e.g., when ωm = 1.1ωr ). Two further resonances
are identifiable in Fig. 4: one at ωm = 1.67ωr and one at
ωm = 0.38ωr , very close to the first harmonic and the first
subharmonic of the unmodulated system’s response studied in
Sec. III. As chaotic motion occurs above the curve of Fig. 4,
we refer to its minima as chaotic resonances.

When a pump modulation is applied at the resonant
frequency, ωm = 0.81ωr , the system displays drastic changes
in its response when the amplitude of the modulation, μ, is
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FIG. 5. (Color online) The temporal evolution of the intracavity
intensity, for η/κ = 0.90 and ωm = 0.81ωr , showing, for μ = 0.016,
quasiperiodic oscillations over the duration of the simulation and, for
μ = 0.017, the crossing of the separatrix (at t = 51). The substantial
increase in magnitude of the intracavity intensity demonstrates the
sporadic transfer of energy into the cavity field.

increased. This change is illustrated in Figs. 5 and 6, where the
modulation amplitudes μ = 0.016 and 0.017 are considered.
The effect of the slightly larger modulation on the light field
in the cavity, shown in Fig. 5, is dramatic. The initially similar
evolutions of the intracavity intensity for both values of μ

diverge, slowly at first, then drastically. This can be explained
by the backaction of the BEC oscillations on the cavity field;
at a critical value of the modulation, the energy of the system
that was previously stored in the fundamental homogeneous
mode is now delivered into the cavity field. In Fig. 6, the
broadband spectrum apparent for μ = 0.017 indicates the
chaotic evolution of the light field, which contrasts with the
solitary peaks apparent for μ = 0.016 that correspond to
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FIG. 6. (Color online) Frequency spectra for μ = 0.016 (black
dots) and 0.017 (red line). The lower value of μ exhibits an output
suggestive of periodic dynamics (though here there is an additional,
incommensurate, frequency not apparent in the spectrum, leading to
quasiperiodic dynamics). The larger value of μ, however, gives a
broadband spectrum that indicates the presence of chaos.
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quasiperiodic oscillations of the BEC. Although the period
of the oscillations decreases during the chaotic evolution, the
adiabatic following of the field variable α to the atomic wave
function ψ remains valid.

The drastic change in dynamical response to the external
modulation displayed in Figs. 5 and 6 is explained in terms
of crossing a separatrix in the phase space. To illustrate this
dynamical feature, we decompose the BEC wave function
into a series of spatial modes of amplitude cn(t) given in
Eq. (3). A projection of the phase space of the conjugate
pair of modal variables X = −LD

√
8N Re[c0(c∗

1 + c∗
−1)/2]

and P = LD

√
8N Im[c0(c∗

1 + c∗
−1)/2] for the two modulation

amplitudes μ = 0.016 and 0.017 is presented in Figs. 7(a)
and 7(b), respectively.

In Fig. 7(b), it can be seen that the critical increase of
the modulation amplitude pushes the dynamical evolution
across the separatrix into a new region of high momentum
P . Energy is then fed back in to the cavity field, resulting
in high-amplitude oscillations eight to ten times larger than
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FIG. 7. (Color online) Phase-space orbits and their associated
Poincaré projections for η/κ = 0.90, for the case (a) immediately be-
fore (μ = 0.016, red lines and blue crosses) and (b) after (μ = 0.017,
black lines and yellow circles) the modulation-induced crossing of the
separatrix, showing quasiperiodic and chaotic behavior, respectively.
In (b), the yellow circles describe initially quasiperiodic oscillations
in the inner part of the figure, before becoming scattered chaotically
across the extended phase-space orbit.
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FIG. 8. (Color online) The width of phase-space orbits for in-
creasing rates of the pump η, for the case without a pump-beam
modulation (μ = 0.00, black line), and for a small modulation
μ = 0.017 at frequency ωm = 0.81ωr (red line). At all points, the
small modulation provokes phase-space excursions whose extent
exceeds greatly the no-modulation case. Note that there is additionally
an instance of chaos around η = 0.90–0.93 for μ = 0.017, which
comes before the critical value of η for the onset of chaos in the
no-modulation case, ηcr ≈ 1.07.

those seen below the threshold of crossing the separatrix. Such
a crossing can be used to separate the different dynamical
regimes and in the identification of dynamical resonances (see
Fig. 4). Figure 7 also shows Poincaré sections demonstrating
that the extent of the representative orbit in phase space is
greatly increased once the system is in the chaotic regime
across the separatrix.

Setting the modulation parameters at resonance, i.e. ωm =
0.81ωr and μ = 0.017, the mean pump amplitude or rate
η was varied and the modulated system’s behavior was
compared over a wide range of pump rates with that of the
unmodulated system (see Fig. 8). Over the entire extent of
our parameter range, it can be seen that the modulated case
displays almost exclusively chaotic behavior, even at pump
rates below the critical pump rate ηcr ≈ 1.07κ required to
(sporadically) induce chaotic motion in the interaction-free
BEC-cavity system [19]. This effect is similar to that achieved
by taking into account the nonlinear collisional interaction
between the atoms of the condensate in the unmodulated case,
although a consequence of the atom-atom interactions is that
ηcr is increased.

V. PUMP MODULATION OF A REPULSIVE CONDENSATE

We extend our model by introducing two-body collisions
in the BEC and considering � > 0, i.e., a BEC with repulsive
atom-atom interactions. It has previously been shown that
with � > 0 and in the absence of pump modulation, chaotic
dynamics are ubiquitous when the pump rate exceeds a critical
value of the pump intensity ηcr [19]. Similarly, in Sec. IV
we have shown that chaotic dynamics are ubiquitous in the
collisionless, or interaction-free, case (� = 0) when the pump
modulation amplitude exceeds a critical value. In this section,
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we demonstrate that when both atom-atom interactions and
pump modulation are present simultaneously some features of
the dynamical behavior of the system are changed with respect
to those cases when only pump modulation or atom-atom
interactions are present individually.

We again consider an experimental configuration depicted
in Fig. 1. For this configuration and the parameter values listed
in Sec. II, the atom-atom interaction coefficient � = 157. Note
that this choice of configuration does not affect the generality
of our results, as very similar behavior is also observed when
the condensate is aligned along the axis of the cavity (which
has the effect of increasing � [19]).

With atomic collisions now included in the model, the BEC-
cavity system features two nonlinearities: one arising from the
atom-light coupling and another arising from atomic colli-
sions. The introduction of this additional nonlinear term alters
the effect of the pump modulation, causing a shift of the chaotic
resonances to higher modulation frequencies (see Fig. 4).
The lowest threshold value of the modulation amplitude μ

required to induce chaos when no atom-atom interactions
are present (� = 0) is achieved when ωm = 0.81ωr . When
repulsive atom-atom interactions are included (� = 157), this
frequency is shifted to ωm = 1.49ωr , in agreement with the
shift in the unmodulated frequency discussed in Sec. III and in
Eq. (7). A further consequence of the inclusion of atom-atom
interactions (� > 0) is that the values of pump modulation
amplitude, μ, required to instigate chaotic dynamics in the
system are, in general, greatly increased: for example, at
ωm = 1.49ωr , the threshold value of the pump modulation
amplitude, μ = 0.13, is much larger than the corresponding
value (μ = 0.017) in the case where atom-atom interactions
are not present (� = 0).

The inclusion of atom-atom interactions also affects the
transition to chaos with increasing pump rate η. Previous
studies [19,27] have shown that in the absence of pump
modulation the range of η over which the BEC-cavity system
exhibits bistability is reduced when repulsive atom-atom
interactions are included (� > 0), relative to that when atom-
atom interactions are neglected (� = 0). A consequence of
this is that the critical pump rate ηcr required to induce
chaos is larger for a repulsive condensate (� > 0) than for a
collisionless condensate (� = 0). This remains the case when
pump modulation is also present (μ > 0), as can be seen by a
comparison of Figs. 8 and 9.

Figures 8 and 9 also show that, irrespective of whether
atom-atom interactions are present (Fig. 9) or not (Fig. 8), once
the pump rate, η, exceeds a threshold value, ηcr, the system
dynamics become exclusively chaotic. Above this threshold it
can be seen that the orbit widths and consequently the phase-
space volume and degree of chaos in the modulated pump
case (μ > 0) are far greater than in the system without pump
modulation (μ = 0). Similarly it can be seen that the degree
of chaos in the system dynamics can be maximized when both
pump modulation and repulsive atom-atom interactions are
present.

VI. REDUCED n-MODE MODEL

Figure 10 shows that for the BEC-cavity system with
modulated pump amplitude the number of significant motional
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FIG. 9. (Color online) The width of phase-space orbits for in-
creasing η, for the case with atom-atom interactions (� = 157)
without a pump-beam modulation (μ = 0.00, dotted black line), and
with modulation μ = 0.13 at frequency 1.49ωr (red line). As in Fig. 8,
the modulation has the effect of substantially increasing the extent of
phase-space excursions beyond the critical pump rate. Also shown is
the orbit width for the case with only five spatial modes considered
(dashed blue line); note that it exhibits behavior similar to that of the
full model.

states, or spatial modes, of the BEC is very small since we are
using a low pump rate to ensure that η < ηcr. Consequently,
it is reasonable to model the BEC-cavity system by making
use of a simplified model that involves a reduced number of
such states. Previous studies (e.g., [21]) have demonstrated
that a two-mode model can describe a variety of features
consistent with the experimental results from the BEC-cavity
system. Reference [19] showed that by increasing the number
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FIG. 10. (Color online) Spatial BEC spectra averaged over the
duration of the BEC-cavity system’s evolution, for modulation
amplitudes μ = 0.016 (black crosses) and 0.017 (red lines). The
number of relevant modes in both cases is basically the same, and
although the n = ±3 modes are roughly ten times more prominent for
the larger amplitude their magnitude remains insignificant, suggesting
that a five-mode model would be adequate to provide an accurate
representation of the system.
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of spatial modes of the BEC to five it is possible to account
for behavior not described by the simpler two-mode model,
such as the chaotic motion apparent in the evolution of the
system described by Eqs. (1) and (2). It is therefore worth
investigating whether a model truncated to only five modes
can also accurately reflect the system’s dynamics when the
pump modulation is incorporated.

We proceed by describing the BEC wave function using
five spatial modes:

ψ(x,t) = 1√
nL

2∑
n=−2

cn(t)einπx, (8)

where nL = LBEC/(λ/2) is the number of lattice sites occupied
by the BEC. Substituting into Eq. (1) then gives

dcn

dt
= − i

n2π2

2
cn − i

|α|2V0

2

(
cn − cn−1

2
− cn+1

2

)

− i�′
2∑

k,m=−2

ckc
∗
mcn+m−k, (9)

where �′ = �/nL, while the integral in Eq. (2) becomes

〈ψ | sin2

(
πx

2

)
|ψ〉 = 1

2

[
1 −

2∑
n=−2

c∗
n (cn−1 + cn+1)

]
. (10)

The results of varying the modulation frequency for the
five-mode model, which are shown alongside the results of
the full model in Fig. 4, are in good agreement with those of
the full model, and accurately reproduce the resonances found
at ωm = 0.81ωr and 1.67ωr in the full model. Furthermore, the
five-mode model is able to accurately predict the onset of chaos
in the modulated system, both for the case when the condensate
is collision free (� = 0) and when the atom-atom interactions
in the condensate are repulsive (� > 0). An example is the
result shown for the five-mode model (dashed blue line) in
Fig. 9, compared to that calculated from the full model (red
line). It is reasonable to conclude that the essential features of
the BEC-cavity system’s dynamics are demonstrably captured
by the five-mode, low-dimensional model.

VII. CONCLUSION

It has been shown using numerical simulations that the
nonlinear dynamical behavior of a BEC in an optical cavity is
strongly influenced by a periodic modulation of the pump field,
and that such a modulation greatly increases the likelihood
that the system will display chaotic behavior. This approach
provides a simple mechanism for ensuring chaotic dynamics
beyond a critical pump rate, and should be easier to realize
in practice than inducing chaos via manipulation of the atom-
atom interaction.

It has also been shown that a simplified five-mode model
accurately describes the essential features of the BEC-cavity
dynamics when the pump is modulated, reproducing the
behavior of the full model for a wide range of parameter values.

The results presented demonstrate that the BEC-cavity
system is rich with possibilities for the investigation of
nonlinear dynamics. Possible interesting extensions to the
analysis described here include investigations of inhomoge-
neous initial conditions beyond the assumed spatially uniform
state examined here, the possibility of coupled atomic/optical
solitonic states, and the viability of exploiting the chaotic
regime as the basis of new methods for coherent BEC
transport. Extending these investigations from Fabry-Pérot to
ring cavities offers the prospect of interesting connections with
other dynamical behaviors and instabilities involving light and
BECs, e.g., collective atomic recoil lasing [28–30].

An additional extension could be the relaxation of the
adiabatic elimination of the cavity field. Until recently, all
experiments of the kind described here involved cavities
with loss rates such that the time scale of cavity losses
(∼κ−1) was much shorter than the time scale of the BEC
dynamics (∼�−1

r ), consistent with adiabatic elimination of the
cavity-field dynamics. However, recent experiments [31–33]
using ultra-high-finesse cavities involve cavity-field dynamics
that evolve on a longer time scale than the BEC dynamics, i.e.,
κ < �r . How some of the nonlinear phenomena described
here will be affected by this new regime is an interesting and
open question.
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