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Modeling spontaneous breaking of time-translation symmetry
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We show that an ultracold atomic cloud bouncing on an oscillating mirror can reveal spontaneous breaking
of a discrete time-translation symmetry. In many-body simulations, we illustrate the process of the symmetry
breaking that can be induced by atomic losses or by a measurement of particle positions. The results pave the way
for understanding and realization of the time crystal idea where crystalline structures form in the time domain
due to spontaneous breaking of continuous time-translation symmetry.
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I. INTRODUCTION

Symmetries of a quantum many-body Hamiltonian are
reflected by properties of its eigenstates. However, there are
systems whose eigenstates are extremely vulnerable to any
symmetry-breaking perturbation. Bose gas in a symmetric
double-well potential, with attractive particle interactions, is a
simple example [1–5]. The ground state of the system reflects
the symmetry of the external potential but it cannot be easily
prepared in an experiment because it is a macroscopic su-
perposition of two Bose-Einstein condensates (BECs) located
in different potential wells. Loss of a particle is sufficient to
break the symmetry and accumulate all remaining particles
in one of the wells. Breaking of a symmetry due to an
infinitesimally weak perturbation is called the spontaneous
symmetry-breaking phenomenon.

Spontaneous breaking of continuous spatial translation
symmetry to discrete spatial translation symmetry is respon-
sible for the formation of space crystals. Recently, it has been
proposed that a similar phenomenon can also occur in the
time domain [6,7]. That is, it is possible to invent systems
where the ground state of a time-independent Hamiltonian
reveals a spatially homogeneous flow of particles which, under
any symmetry-breaking perturbation, changes spontaneously
to periodic motion of spatially inhomogeneous structures.
Such a spontaneous breaking of continuous time-translation
symmetry to a discrete one is termed time crystal formation;
see Fig. 1. Two different systems have been proposed: a
bright soliton formed by attractively interacting particles on
an Aharonov-Bohm ring [6] and ions on a ring in the presence
of an external magnetic field [7] (see also [8–12]). These
proposals triggered debate in the literature as to whether
time crystal formation is possible. It seems that different
assumptions can lead to contradictory conclusions [13–22].

In the present paper, we consider a periodically driven
many-body system whose description can be reduced to a
Hilbert space spanned by two periodically evolving modes.
As in the case of a Bose gas in a double-well potential
[1–5], a spontaneous symmetry-breaking process occurs. In
our example, eigenstates of the system possess discrete
time-translation symmetry, which is spontaneously broken
to another discrete translation symmetry but with a longer
period; see Fig. 1. The spontaneous symmetry breaking that
is predicted within the mean-field approach can be analyzed
in full many-body simulations. Moreover, it can be realized
in ultracold-atom experiments. While the system considered

in the present paper does not precisely reproduce the idea of
time crystals, where spontaneous breaking of the continuous
time-translation symmetry is required, it shows a possibility
of time-translation symmetry breaking by an infinitesimally
small perturbation. The results pave the way for understanding
and realization of the time crystal idea.

II. RESULTS

We consider N atoms that form a Bose-Einstein condensate
and bounce on an oscillating, horizontally oriented atomic
mirror in the presence of the gravitational field [23–25].
We assume that the atomic cloud is strongly confined in
the transverse directions by means of a harmonic potential
so that a description of the system can be reduced to the
one-dimensional Hamiltonian. In the mean-field approach, all
atoms occupy the same single-particle wave function, which
is a solution of the Gross-Pitaevskii equation (GPE) [26].
Thus the GPE of the considered system, in the coordinate
frame moving with the mirror [27], can be written as
(H0 + g0N |ψ |2)ψ = i∂tψ , with

H0 = − 1
2∂2

z + V (z) + λz cos(ωt), (1)

where V (z) = z for z � 0 and V (z) = ∞ for z < 0. In (1),
we have used the gravitational units, i.e., l0 = (�2/m2g)1/3,
t0 = (�/mg2)1/3, and E0 = mgl0 for length, time, and energy,
respectively, where m is the atomic mass and g is the gravita-
tional acceleration. The parameter ω stands for the frequency
of the mirror oscillations, λ/ω is related to the oscillation
amplitude, and g0 = 2ω⊥a(m/�g)1/3 is the particle interaction
strength [26], where a is the atomic scattering length and ω⊥
is the frequency of the harmonic potential along the transverse
directions.

Let us begin with the g0 = 0 case. We, then, deal with a
single particle described by the time-dependent Schrödinger
equation. Periodically driven systems possess quasienergy
eigenstates, so-called Floquet states |ψn(t)〉, that are eigen-
states of the Floquet operator [23]. In our case, the Floquet
operator reads HF = H0 − i∂t . All quasienergy eigenstates
ψn(z,t) are time periodic with the period 2π/ω. The spectrum
of the corresponding eigenvalues εn is not bounded—it is
periodic with the period ω. The Floquet formalism is in full
analogy to the Bloch theorem in solid-state physics.

Classical motion of a particle bouncing on an oscillating
mirror is irregular. If the driving amplitude λ is not too big,
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FIG. 1. The probability of detecting a system at a fixed position
vs time. Top: The effects of spontaneous breaking of continuous
time-translation symmetry in the course of time crystal formation.
Bottom: The situation considered in the present paper where
spontaneous symmetry breaking results in a change from a discrete
time-translation symmetry to another discrete one, but with a period
that is twice as long.

there are regular resonance islands in the phase space that are
located around periodic orbits whose periods match s2π/ω

where s is an integer. If a resonance island is sufficiently large,
it is possible to find, in the quantum description, a Floquet state
that reveals a localized wave packet moving along a periodic
orbit without spreading [23]. In the following, we concentrate
on the s = 2 resonance. For s = 2, a single wave packet mov-
ing on the periodic orbit cannot form a Floquet state because
the period of the orbit is twice as long as the period of the Flo-
quet states. Consequently, the desired Floquet state must be a
superposition of two wave packets propagating along the orbit
with the 2π/ω delay. Two wave packets can form two different
and orthogonal superpositions. Therefore, we should actually
expect two Floquet states which reveal pairs of wave packets
moving along the periodic orbit [23]. In Figs. 2(a) and 2(b),
we show an example of such Floquet states for λ = 0.06 and
ω = 1.1. Two quasienergy levels associated with the s = 2 res-
onance are separated by ω/2 + J , where J is a small tunneling
rate of individual wave packets—if a single wave packet is pre-
pared initially, it moves on the periodic orbit, but after time 1/J

tunnels to a position of the other missing wave packet. Semi-
classical calculations result in J ≈ 8

√
2λ3/4

π
√

ω
exp(−16π

√
λ/ω3),

which is a good estimate provided there is no avoided crossing
with any other quasienergy level [23].

Now let us switch to the g0 �= 0 case. For a periodically
driven nonlinear system, we may still look for analogues of
Floquet states, i.e., time-periodic solutions of the GPE,

[H0 + g0N |ψ(z,t)|2 − i∂t ]ψ(z,t) = μψ(z,t). (2)

For g0N → 0, solutions of (2) associated with the classical
s = 2 resonance are identical to the corresponding Floquet
states of the linear system. However, when |g0N | increases,
a bifurcation takes place and there appear stable solutions
that reveal a single wave packet moving along the classical
periodic orbit; see Figs. 2(c) and 2(d). The period of such
solutions is twice as long as the period of the external driving.
Thus, we observe time-translation symmetry breaking where
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FIG. 2. (Color online) (a) Modulus squared of Floquet states
ψ1(z,t) (black solid line) and ψ2(z,t) (red dashed line) of a single
particle bouncing on an oscillating mirror in the presence of the
gravitational field at t = 0 [see the Hamiltonian (1)] and for ω = 1.1
and λ = 0.06. The presented Floquet states are associated with the
s = 2 classical resonance and consist of two wave packets moving
along a periodic orbit. The wave packets propagate with the period
4π/ω and with the 2π/ω delay with respect to each other, which
makes the resulting Floquet states periodic with the period 2π/ω.
(b) The same as (a), but for t = π/ω when the separation of the
wave packets is clearly visible (the interference fringes around z = 0
are related to the reflection of the wave packets from the mirror).
(c),(d) A stable solution of the GPE (2), for g0N = −0.5, that breaks
the original time-translation symmetry—this solution reveals a single
wave packet that propagates along the classical periodic orbit with the
period 4π/ω. (c) t = 0, (d) t = π/ω. Black solid lines in (c) and (d)
correspond to the results of the numerical integration of (2), while red
dashed lines (hardly distinguishable from the solid lines) are related
to the results of the two-mode approximation. The gravitational units
are used; see the text.

stationary mean-field solutions possess different symmetry
than the symmetry of the original many-body Hamiltonian. In
order to describe the system in the vicinity of the bifurcation
point, let us apply a two-mode approximation [1–5] which
turns out to be very accurate. That is, we look for solutions
of (2) in the form ψ ≈ φ1a1 + φ2a2 with φ1,2 = [ψ1(z,t) ±
e−iωt/2ψ2(z,t)]/

√
2, where ψ1,2 are the Floquet states of

the linear system, presented in Figs. 2(a) and 2(b), that are
normalized according to

∫ ∞
0 dz

∫ 4π/ω

0 dt |ψ1,2|2 = 1. The φ1,2

modes are single wave packets propagating along the periodic
orbit with the period 4π/ω. Then, the energy functional of the
system can be approximated as follows:

E =
∫ ∞

0
dz

∫ 4π/ω

0
dt ψ∗

(
H0 − i∂t + g0N

2
|ψ |2

)
ψ

≈ −J

2

(
a∗

1a2 + a∗
2a1

) + UN

2
(|a1|4 + |a2|4)

+ 2U12N |a1|2|a2|2 + const, (3)

where J = ε2 − ε1 − ω/2, U = g0
∫

dzdt |φ1|4, and U12 =
g0

∫
dzdt |φ1|2|φ2|2. Extrema of E are given by solutions of

the GPE (2). For ω = 1.1 and λ = 0.06, we obtain J = 3.6 ×
10−5, U/|g0| = 1.66 × 10−2, and U12/|g0| = 2.76 × 10−3.

033617-2



MODELING SPONTANEOUS BREAKING OF TIME- . . . PHYSICAL REVIEW A 91, 033617 (2015)

If N |U − 2U12| < J , there are two solutions of the GPE,
i.e., ψ± = (φ1 ± φ2)/

√
2, which are stable. For g0 < 0

and if N |U − 2U12| > J , the ψ+ is unstable and there
appear two stable solutions that correspond to the mini-

mal value of E, i.e., ψ±v =
√

1±v
2 φ1 +

√
1∓v

2 φ2, where v =√
1 − J 2/[N (U − 2U12)]2. If g0 > 0, when we cross the

bifurcation point, the ψ+ mode remains stable but the ψ−
function, corresponding to the maximal value of E, loses its
stability and two stable solutions are born. The two-mode
approach predicts accurately the appearance of the bifurcation
point and results in a very good approximation for the solutions
of the GPE (2). In Figs. 2(c) and 2(d), we present a comparison
of the solutions obtained within the two-mode approach and
by numerical integration of (2).

The tunneling splitting J is very small. Thus, even
very weak particle interactions lead to the bifurcation and
breaking of the original time-translation symmetry in the
mean-field description. The solutions ψv and ψ−v correspond
to the same extremal value of E and both of them can be
realized in an experiment with equal probability—which of
them is realized in a particular experiment is determined
in a spontaneous symmetry-breaking process. In order to
simulate the symmetry-breaking process, we switch now to
the many-body description. We have seen that the two-mode
approximation is very accurate in the mean-field approach.
Therefore, we apply the same approximation in the many-body
problem [3–5]. To this end, the bosonic field operator is
truncated, i.e., ψ̂(z,t) ≈ φ1(z,t)â1 + φ2(z,t)â2, which leads
to the many-body Hamiltonian Ĥ of a similar form as E in
(3), but with a1,2 → â1,2. In order to see the symmetry of
the many-body Hamiltonian more transparently, it is useful
to introduce operators ĉ1,2 = (â1 ± â2)/

√
2, which annihilate

particles in the modes ψ1(z,t) and e−iωt/2ψ2(z,t), respectively,
and then we have

Ĥ ≈ −J

2
(ĉ†1ĉ1 − ĉ

†
2ĉ2) + 1

4
(U − 2U12)

× [
(ĉ†1)2ĉ2

2 + (ĉ†2)2ĉ2
1 + 2ĉ

†
1ĉ1ĉ

†
2ĉ2

]
, (4)

modulo constant. From (4), it is apparent that there are two
classes of eigenstates. Eigenstates from the first class are
spanned by Fock states with only even occupations of the ψ1

mode, while eigenstates from the other class are spanned by
Fock states with the odd occupations only. It implies that the
many-body Floquet states are also eigenstates of the operator
that translates the system in time by 2π/ω. This is illustrated in
Fig. 3, where we plot the time evolution of the single-particle
density ρ0(z,t) = 〈ψ0|ψ̂†(z,t)ψ̂(z,t)|ψ0〉, where |ψ0〉 is the
ground state of the Hamiltonian (4) corresponding to g0N =
−0.5, N = 104 and the same values of λ and ω as in Fig. 2.

For g0 < 0, the energy splitting between the ground energy
level and the first excited level of (4) is extremely small
[28] and tends to zero when N → ∞, but g0N = const—
the Gaussian state approximation in the effective N -body
approach [5] results in the energy splitting proportional to
N exp(−αN ), where α is a positive constant. This suggests
that for large N , even a tiny perturbation can disturb the
system dramatically. We will analyze the effect of successive
measurements of positions of atoms on the state of remaining
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FIG. 3. Left column: Time evolution of the single-particle prob-
ability density corresponding to the ground state of the Hamiltonian
(4) for g0N = −0.5, N = 104 and the other parameters as in Fig. 2—
from top to bottom: t = 0, π/ω, 2π/ω, 3π/ω, and 4π/ω. Middle
column: Similar data, but in the case when every π/ω period positions
of 100 atoms are measured. Initially, the single-particle density
ρ0(z,0) ≈ 0.5N [|φ1(z,0)|2 + |φ2(z,0)|2] and, because |φ1(z,0)|2 =
|φ2(z,0)|2, the measurement of particle positions is not able to
break the time-translation symmetry. When t increases, |φ1(z,t)|2 �=
|φ2(z,t)|2 and even a measurement of a single particle can break the
symmetry and result in a collapse of the system to one of the two
propagating wave packets (see the second panel from the top in the
middle column). Right column: The results of the measurements of
positions of 100 atoms, i.e., at t = 0, we measure positions of 100
atoms, let the remaining atoms evolve, and, after π/ω, we again
measure positions of 100 atoms, and so on. The histograms presented
in the right column indicate that time-periodic evolution of the system
after the spontaneous time-translation symmetry breaking can be
observed in a single experimental realization. The gravitational units
are used; see the text.

particles. The probability density for a measurement of a
single atom at position z in the system prepared in a N -body
state |ψ〉 is proportional to the single-particle density
〈ψ |ψ̂†(z,t)ψ̂(z,t)|ψ〉. When an atom is localized at a given
position z1 in a measurement process at t = t1, it is annihilated
from the system, i.e., |ψ (1)〉 ∝ ψ̂(z1,t1)|ψ〉 is a state of
the remaining (N − 1) atoms [29,30]. The state |ψ (1)〉 can
evolve in time and, at t = t2, another measurement of atom
position can take place after which a state of the remaining
particles corresponds to |ψ (2)〉 ∝ ψ̂(z2,t2)|ψ (1)〉, where z2

has been chosen according to the single-particle density
〈ψ (1)|ψ̂†(z2,t2)ψ̂(z2,t2)|ψ (1)〉. Such a sequential procedure can
simulate an intentional measurement process as well as atomic
losses that can happen in an atomic system due to, e.g.,
molecule formation in a three-body collision [31].

Assume that a (N = 104)-body system is initially pre-
pared in the ground state of the Hamiltonian (4) |ψ0〉 for
g0N = −0.5. The single-particle density, whose evolution is
shown in Fig. 3, reads ρ0(z,t) ≈ 0.5N [|φ1(z,t)|2 + |φ2(z,t)|2].
At t = 0, we have |φ1|2 = |φ2|2 and the measurements of
particle positions are not able to break the time-translation
symmetry. When t increases, the wave packets |φ1(z,t)|2 and
|φ2(z,t)|2 start moving in opposite directions and even a single
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measurement of an atom position can break the symmetry.
That is, the initially fragmented BEC [26] collapses to a single
BEC with all remaining atoms occupying the mode φ1(z,t) or
φ2(z,t), depending on the result of the position measurement.
Further evolution of the system and the next measurements of
atom positions do not change the form of the state, i.e., once the
time-translation symmetry is broken, a BEC propagates along
the periodic orbit with the period twice as long as the period
of the many-body Floquet Hamiltonian. Figure 3 illustrates
the symmetry-breaking process. In this figure, we also present
the results of the measurements of small fractions of atoms
performed every π/ω period, which indicates that repeated
measurements can reveal the effect of spontaneous symmetry
breaking in a single experimental realization.

In order to see signatures of the spontaneous time-
translation symmetry breaking in an experiment, a few
elements have to be realized in a laboratory. An oscillating
atomic mirror can be created by means of a time-modulated
evanescent wave [32]. Initially, in the absence of the mirror
oscillations, a BEC has to be prepared in a collectively
excited state that will match the resonance with the external
driving [23]—in the present paper, we have considered the
19th excited state. The excitation can be done by swiping
a focus laser beam along the condensate many times [33]
or by an appropriate phase imprinting [34]. Then, the time
modulation of the evanescent wave has to be slowly turned on,
which allows the system to adiabatically follow the desired
Floquet state. At the end of this process, the system reveals
the spontaneous time-translation symmetry breaking if particle
interactions are attractive, i.e., g0 < 0, and J > 0. If they are
repulsive, g0 > 0, no symmetry breaking occurs because the
ground state of the Hamiltonian (4), which is adiabatically
followed, is always a nearly perfect BEC and does not suffer
from a symmetry-breaking perturbation, regardless of whether
or not the bifurcation condition is fulfilled. Thus, depending on
the sign of g0, which can be controlled by means of a Feshbach
resonance [26], the final state reveals periodic motion with a
period 2π/ω or 4π/ω.

It is worth commenting on the case of strong repulsive
particle interactions, i.e., when NJ  (U − 2U12). Then, the
ground state of (4) becomes a Fock state |N/2,N/2〉, where
the same numbers of atoms occupy the φ1,2 modes. At t when
|φ1| ≈ |φ2|, a measurement of positions of some fraction of
atoms reveals interference fringes similar to that in Fig. 2(a),
but with a random position; cf. interference of two independent
BECs [29]. If at t + 2π/ω another position measurement is
performed, the results again reveal interference fringes and
again with a random position because the strong interactions
again push the system to a fragmented BEC state.

III. SUMMARY

In summary, we have analyzed the process of spontaneous
time-translation symmetry breaking that is a key element of the
formation of time crystals. We have concentrated on a specific
system that can be realized experimentally in ultracold atomic
gases, that is, ultracold atoms bouncing on an oscillating mirror
in the presence of the gravitational field. We have shown
that atomic interactions lead to the time-translation symmetry
breaking in the mean-field description of the system. Many-
body simulations indicate that while the system eigenstates are
also eigenstates of the original time-translation operator, they
are sensitive to infinitesimal symmetry-breaking perturbation
in the limit of N → ∞. We have simulated the process of the
symmetry breaking that can be induced by measurements of
particles positions or by atomic losses.
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