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The interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein
condensates are studied theoretically. The two condensates are characterized by their respective healing lengths ξ1

and ξ2 and by the interspecies repulsive interaction K . An exact solution to the Gross-Pitaevskii (GP) equations is
obtained for the special case ξ2/ξ1 = 1/2 and K = 3/2. Furthermore, applying a double-parabola approximation
(DPA) to the energy density featured in GP theory allows us to define a DPA model, which is much simpler to
handle than GP theory but nevertheless still captures the main physics. In particular, a compact analytic expression
for the interfacial tension is derived that is useful for all ξ1, ξ2, and K . An application to wetting phenomena
is presented for condensates adsorbed at an optical wall. The wetting phase boundary obtained within the DPA
model nearly coincides with the exact one in GP theory.

DOI: 10.1103/PhysRevA.91.033615 PACS number(s): 03.75.Hh, 68.03.Cd, 68.08.Bc

I. INTRODUCTION

Phase separation in gas mixtures goes against our intu-
itive notion of the entropy of mixing. However, at ultralow
temperature where quantum physics rules, this possibility has
been realized experimentally, in particular in binary mixtures
of Bose-Einstein condensates (BECs). See, e.g., [1] for an
overview. Let us recall briefly the state-of-the-art research in
this field, paying special attention to experiments.

At the beginning of this century weakly phase-segregated
binary Bose-Einstein systems were observed experimen-
tally [2–7]. More recently, strong phase separation has been
realized by various research groups [8–12]. Moreover, also
in an ultracold dual component gas of thermal atoms spatial
separation of components has been achieved [13], while
many more degenerate Bose mixtures were produced in
which phase separation is possible [14–16]. The theoret-
ical and experimental physics of multicomponent conden-
sates is well explained in Refs. [17,18]. The statics and
dynamics of phase-separated BECs have been extensively
addressed in Refs. [19–32]. The interfacial phenomomenology
in Bose mixtures has been explored in Refs. [33–40] and
the phase diagram at finite temperature was investigated in
Refs. [41–44].

Our focus in this paper is on the calculation of static interfa-
cial properties of BEC binary mixtures within Gross-Pitaevskii
(GP) theory [45]. Research on this problem, in particular on the
interfacial tension of phase-separated mixtures of BECs [24],
has led to interesting results [23,46]. In particular, in [46]
accurate analytical approximations (e.g., series expansions)
were provided, covering certain ranges of condensate healing
lengths and interparticle repulsive interaction strengths. While
these results are useful, there is still a need for (i) more exact
solutions within GP theory, and (ii) a simpler model which can
provide a compact and insightful expression for the interfacial
tension that can be used over the entire parameter range. Our
aim is to contribute advances to meet both of these needs.

This paper is organized as follows. Section II deals with the
framework of GP theory. Section III is concerned with exact

solutions to the GP equations describing interfacial profiles and
announces our exact solution for a special choice of physical
parameters. Section IV defines our simpler model through
the so-called double-parabola approximation (DPA) to the
GP Lagrangian and presents the solutions for the interfacial
profiles within this model. Section V treats the application of
the DPA to the interfacial tension and presents our compact
analytical expression for this quantity. Section VI is concerned
with the application of the DPA to the wetting phase transition
that can occur when the condensates are adsorbed at an
optical wall. This section also clarifies how the exact solution
announced in Sec. III could be found by virtue of insights
gained through the DPA. Finally, our conclusions and outlook
are given in Sec. VII.

II. GROSS-PITAEVSKII THEORETICAL FRAMEWORK

A. Gross-Pitaevskii Lagrangian

We start from the Lagrangian L and action S of a two-
component BEC,

S [�1,�2] =
∫

dtL =
∫

dtdrL, (1)

with the mean-field Gross-Pitaevskii Lagrangian den-
sity [47,48]

L(�1,�2) =
2∑

j=1

i�

2
(�∗

j ∂t�j − �j∂t�
∗
j ) − E(�1,�2), (2)

in which the Hamiltonian density is

E(�1,�2)=
2∑

j=1

[
�

2

2mj

|∇�j |2+gjj

2
|�j |4

]
+ g12|�1|2|�2|2,

(3)

where, for species j , �j = �j (r,t) is the wave function of
the condensate playing the role of order parameter; mj is
the atomic mass, gjj = 4π�

2ajj /mj > 0 is the strength of

1050-2947/2015/91(3)/033615(10) 033615-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.033615


INDEKEU, LIN, VAN THU, VAN SCHAEYBROECK, AND PHAT PHYSICAL REVIEW A 91, 033615 (2015)

the repulsive intraspecies interaction, g12 = 2π�
2a12(1/m1 +

1/m2) > 0 is the strength of the repulsive interspecies
interaction, and ajj ′ is the s-wave scattering length, relevant at
low energies.

By introducing the dimensionless quantities sj = r/ξj ,
with ξj = �/

√
2mjnj0gjj the healing length and nj0 the num-

ber density of condensate j in bulk, τj = t/tj , ψj = �j/
√

nj0,
K = g12/

√
g11g22, where tj = �/μj and μj = gjjnj0 is the

chemical potential of condensate j , we scale the Lagrangian
density in (2) and Hamiltonian density in (3) to

L̃(ψ1,ψ2) = L
2P0

=
2∑

j=1

i

2
(ψ∗

j ∂τj
ψj − ψj∂τj

ψ∗
j ) − Ẽ(ψ1,ψ2), (4)

with

Ẽ(ψ1,ψ2) = E
2P0

=
2∑

j=1

[∣∣∇sj
ψj

∣∣2 + |ψj |4
2

]
+ K|ψ1|2|ψ2|2,

(5)
where the pressure P0 is given by μ2

j /2gjj , which takes one
and the same value in both condensates at two-phase coexis-
tence. Next we make a transformation of the dimensionless
Lagrangian density by writing

ψj (sj ,τj ) ≡ φj (sj ,τj )e−iτj . (6)

We then have a Lagrangian density in terms of the new order
parameters φj ,

L̂(φ1,φ2) ≡ L̃(φ1e
−iτ1 ,φ2e

−iτ2 )

=
2∑

j=1

[
i

2
(φ∗

j ∂τj
φj − φj∂τj

φ∗
j ) − ∣∣∇sj

φj

∣∣2
]

−V̂(φ1,φ2), (7)

in which the potential Ṽ takes the form

Ṽ(φ1,φ2) =
2∑

j=1

[
−|φj |2 + |φj |4

2

]
+ K|φ1|2|φ2|2. (8)

We recall that when K > 1, the two components are immisci-
ble and a two-phase segregated BEC is formed [24].

B. GP equations

By considering a variation φ∗
j → φ∗

j + δφ∗
j and requiring

δS/δφ∗
j = 0, we obtain the Euler-Lagrange equations

∂L̂
∂φ∗

j

= ∂τj

∂L̂
∂(∂τj

φ∗
j )

, j = 1,2, (9)

yielding the time-dependent GP equations

i∂τj
φj = −∇2

sj
φj + ∂Ṽ

∂φ∗
j

, j = 1,2 (10)

or

i∂τj
φj = [ − ∇2

sj
− 1 + |φj |2 + K|φj ′ |2]φj ,

j = 1,2(j �= j ′). (11)

Note that these reduce to the time-independent GP equations
(TIGPE) when the order parameter φj (sj ,τj ) = φj0(sj ) is time
independent [so that ψj (sj ,τj ) = φj0(sj )e−iτj is stationary],
namely,

∇2
sj
φj0 = ∂Ṽ

∂φ∗
j0

, j = 1,2, (12)

which leads to[ − ∇2
sj

− 1 + |φj0|2 + K|φj ′0|2
]
φj0 = 0,

j = 1,2, (j �= j ′). (13)

C. Boundary conditions for interface profiles

For describing a static planar interface at z = 0, separating
bulk condensate 1 residing in the half space z � 0 and bulk
condensate 2 residing in the half space z � 0, we limit our
attention to order parameters that are translationally invariant
in the x and y directions. To keep the notation simple, we
will not change the name of the function: φj0(sj ) → φj0(ρj ),
where ρj ≡ z/ξj . For describing an interface the TIGPE must
be solved with the boundary conditions

φ10(ρ1 → ∞) = φ20(ρ2 → −∞) = 1,

φ20(ρ2 → ∞) = φ10(ρ1 → −∞) = 0. (14)

III. EXACT SOLUTIONS FOR INTERFACIAL PROFILES

A. The strong-segregation limit K → ∞
In the interesting limit of strong interspecies repulsion

K → ∞, the segregation (i.e., mutual exclusion in space)
of the phases becomes complete. Numerical solution of the
TIGPE indicates that the overlap of two order parameters
becomes zero and that the interaction term K|φ1|2|φ2|2 in
the potential (8) becomes negligible. Consequently, the GP
equations decouple in this limit (in spite of the divergence of
K). In this limit the simple exact solution to the GP equations
for the interface consists of a pair of adjacent “tanh” profiles

φj0(ρj ) = tanh

[
(−1)j+1 ρj√

2

]
, j = 1,2. (15)

The interface position is conveniently marked by the common
point of vanishing of the two order parameters. Note that
the interface consists simply of two adjacent “hard-wall”
profiles [49]. It is noteworthy that a (single) condensate
wave function at a hard wall is mathematically similar to the
Ginzburg-Landau (GL) order parameter for a strongly type-I
superconductor at a normal/superconducting interface in the
limit κ → 0, with κ the GL parameter [50].

At this point we make two remarks. First, the fact that
the interaction term K|φ1|2|φ2|2 in the potential (8) becomes
negligible can be understood analytically using the DPA,
which will be introduced in the next section. Second, the
appearance of the tanh function is not unique to the strong-
segregation limit. In the next sections we will see two more
examples of the occurrence of this function in exact solutions
for finite K .
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B. The exact solution of Malomed et al.

Interestingly, for K = 3 and for the symmetric choice
ξ1 = ξ2, an exact solution to coupled differential equations
mathematically identical to the GP equations was provided by
Malomed et al. [51] in the physical context of domain bound-
aries in convection patterns. The solutions are surprisingly
simple and again involve the tanh function,

φ10 = 1

2

[
1 + tanh

(
z√
2 ξ

)]
,

φ20 = 1

2

[
1 − tanh

(
z√
2 ξ

)]
. (16)

We will come back to this special case when we discuss
the interfacial tension in Sec. V. There it will become clear
that the DPA can explain why we might have anticipated that
the exact solution is simple for this special case K = 3 and
ξ1 = ξ2.

C. An exact solution for an asymmetric case (ξ1 �= ξ2)

We have uncovered another exact solution. It applies to the
case ξ2/ξ1 = 1/2 and K = 3/2 (the roles of ξ1 and ξ2 can
be interchanged). The solutions to the GP equations are now
the following profiles, with ξ1 = ξ , and ξ2 = ξ/2, once more
involving the tanh function,

φ10 =
√

1

2

[
1 + tanh

(
z√
2 ξ

)]
,

φ20 = 1

2

[
1 − tanh

(
z√
2 ξ

)]
. (17)

The heuristic procedure through which this serendipitous
solution could be found has been strongly guided by insights

provided by the DPA. We will discuss this in detail in Sec. VI
when we treat the wetting problem within the DPA. In this
and the preceding two subsections we have disclosed that the
DPA is useful for guessing exact results. We now turn to the
precise definition of the DPA in the context of GP theory and
to the study of the remarkable properties of the simple model
defined through the DPA.

IV. DOUBLE-PARABOLA APPROXIMATION
FOR INTERFACIAL PROFILES

The idea of approximating a double-well potential by a
piecewise parabolic function is old and generally dictated by
the desire to work with piecewise harmonic potentials that
allow one to solve the equations of motion exactly using simple
functions, the behavior of which is easy to interpret physically.
In the context of surface and interfacial phenomena one of the
first to implement this approximation for the bulk free-energy
density was Hauge [52]. We follow this line of thought and
expand the quartic potential V̂ in (8) about its (local) minima,
which correspond to the bulk values for the order parameters.
For obtaining the interface profile in the half space z < 0 we
make use of the expansion about bulk condensate 2 and for
the half space z > 0 we expand about condensate 1, in the
following manner:

|φj |=1 + εj ; |φj ′ | = δj ′ with

{
z � 0, (j,j ′) = (1,2),
z � 0, (j,j ′) = (2,1),

(18)

in which the real numbers εj and δj are treated as small
perturbations. We expand the potential up to second order
in εj and δj and so arrive at two “quadratic” potentials, each
of which is to be used in the appropriate half space,

V̂DPA(φ1,φ2) = 2(|φj | − 1)2 + (K − 1)|φj ′ |2 − 1
2 with

{
z � 0, (j,j ′) = (1,2),
z � 0, (j,j ′) = (2,1). (19)

This defines the DPA for the potential energy density and can be interpreted as the potential for a model that is related to, but
different from, the original GP theory and which we will call the DPA model. The following technical remark is in order: In
view of the structure of the TIGPE we anticipate that, at the interface position z = 0, it will (in general) be possible to preserve
continuity of the order parameter functions and their first derivatives. Indeed, in view of (12), continuity of the potential V̂ but
discontinuity of one of its (partial) derivatives with respect to the order parameter(s), at z = 0, will induce a discontinuity in the
second derivative of the interface profile functions φj0(ρj ), j = 1,2. This is a mild singularity, often imperceptible to the eye in
an interface plot. Experience has taught us that this singularity has little or no effect on the qualitative features of the phenomena
under study, provided one stays away from bulk criticality or similar conditions, at which the (local) minima of the potential may
merge or undergo some other drastic change.

A. DPA for the GP equations

The double-parabola-approximated GP equations are obtained by replacing the potential V̂ in the Lagrangian density (7) by
the V̂DPA in (19) and deriving the Euler-Lagrange equation (9), which leads to

i∂τj
φj = −∇2

sj
φj + 2(φj − eiθj )

i∂τj ′ φj ′ = −∇2
sj ′ φj ′ + (K − 1)φj ′

with

{
z � 0, (j,j ′) = (1,2)
z � 0, (j,j ′) = (2,1) (DPA), (20)

where φj = |φj | exp(iθj ). Note that, alternatively, these linearized equations can be obtained directly from the GP equations
of (11) by expanding the order parameters to first order in the perturbations about their bulk values, similarly to what was
done in [24]. For studying the interface structure, it would be sufficient to limit our attention to real order parameters and real
perturbations. Nevertheless, we insist on deriving the DPA in complex function space because we have the intention to apply our
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results in future work to dynamical properties such as dispersion of phonon excitations and capillary wave excitations using the
Bogoliubov–de Gennes formalism.

When the order parameters are stationary, namely, φj (sj ,τj ) = φj0(sj ), we obtain the DPA to the TIGPE,

−∇2
sj
φj0 + 2

(
φj0 − eiθj0

) = 0

−∇2
sj ′ φj ′0 + (K − 1)φj ′0 = 0

with

{
z � 0, (j,j ′) = (1,2)
z � 0, (j,j ′) = (2,1) (DPA), (21)

where φj0 = |φj0| exp(iθj0).
Note that the DPA equations appear decoupled in the order parameters. However, the form of the equations depends on

which bulk phase is chosen as starting point for the expansion. Since the bulk boundary conditions are different on either side
of the interface, the order parameters are implicitly coupled. Of course, the apparent decoupling greatly facilitates analytical
calculations.

B. DPA solutions

For obtaining static interface profiles we can take all functions to be real, and independent of the coordinates x and y

(translational invariance in the directions parallel to the interface) and independent of time. The solutions φj (ρj ,τj ) = φj0(ρj )
that solve the TIGPE with the suitable boundary conditions (14) are simple exponentials. A unique interface is obtained by
matching the solutions for z � 0 to the ones for z � 0 at z = 0 with the requirement that the functions and their first derivatives
be continuous at z = 0. This leads to

φj0(ρj ) = 1 − β

α + β
e−α|ρj |

φj ′0(ρj ′) = α

α + β
e−β|ρj ′ |

with

{
z � 0, (j,j ′) = (1,2)
z � 0, (j,j ′) = (2,1) (DPA), (22)

where α = √
2 and β = √

K − 1. Note that Ao and Chui [24]
already discussed these functions in the framework of pertur-
bation expansions and identified ξj /β as the penetration depth
of condensate j into condensate j ′ for j �= j ′.

In the following two figures we compare order parameter
profiles calculated within the DPA model with numerically
exact order parameter profiles solving the GPE (13). For the
symmetric case ξ1 = ξ2 = ξ , Fig. 1 shows the numerically

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

z/ξ1

φ
j
0

K=2, ξ2/ξ1 =1

 

 

φ10 (DPA)

φ10 (GP)φ20 (GP)

φ20 (DPA)

FIG. 1. Interface structure for weak segregation. Reduced order
parameter profiles φj0, j = 1,2, are plotted versus z/ξ1 for K = 2
and the symmetric case ξ1 = ξ2. The numerically exact profiles (black
lines, GP) and the double-parabola approximations (gray lines, DPA)
are shown.

exact order parameters together with their DPAs for K = 2
(moderately weak segregation). For an asymmetric case 2ξ1 =
ξ2, Fig. 2 shows the numerically exact order parameters
together with their DPAs, also for K = 2. Note how the
DPA differs from the exact solution in featuring steeper
profiles, corresponding to a smaller interface width. In spite
of this quantitative difference the DPA appears to lead to a
qualitatively correct interfacial structure.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0
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0.4

0.6

0.8

1
K=2, ξ2/ξ1 =2

z/ξ1

φ
j
0

φ20 (DPA)

φ20 (GP) φ10 (GP)

φ10 (DPA)

FIG. 2. Interface structure for weak segregation. Reduced order
parameter profiles φj0, j = 1,2, are plotted versus z/ξ1 for K = 2 and
the asymmetric case 2ξ1 = ξ2. The numerically exact profiles (black
lines, GP) and the double-parabola approximations (gray lines, DPA)
are shown.
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C. Validity conditions

Ao and Chui [24] pointed out that, in order for these
solutions (22) of the linearized GPE to be self-consistent
within perturbation theory, a condition corresponding to
(fairly) strong segregation must be fulfilled, which requires
the penetration depth of condensate j into condensate i to be
smaller than the healing length of condensate i, for i = 1,2.
This condition is

ξj /
√

2(K − 1) < ξi, i �= j. (23)

When this condition is not satisfied, as can typically happen for
weak segregation (K � 1), a term quadratic in the penetrating
condensate order parameter dominates a term of first order in
the deviation of the penetrated condensate order parameter
from its bulk value [24]. Under such circumstances it is
recommended to go beyond the DPA as far as the computation
of order parameter profiles is concerned. However, for energy
and interfacial tension computations we find that including
this nonlinear term brings only modest improvement over the

interfacial tension calculated within our DPA model, when the
result is compared with the (numerically) exact result in GP
theory, even in the weak-segregation regime.

Our strategy in this and forthcoming works is, and will be,
to consider the DPA as a model in its own right, based on
and defined by the specific potential energy density (19), and
to explore its predictions. As a first example of this strategy
we will, in the next section, calculate the interfacial tension
within the DPA model and compare it with the interfacial
tension within GP theory. As a second example we will, in
Sec. VI, apply the DPA model for the calculation of the wetting
transition in adsorbed binary BEC mixtures, and compare it
with the wetting transition in GP theory.

D. Strong-segregation limit

In the limit of strong segregation K → ∞, we have α/(α +
β) → 0 and β/(α + β) → 1. The order parameters become

φj0(ρj ) = 1 − e−α|ρj |, φj ′0(ρj ′ ) = 0 with

{
z � 0, (j,j ′) = (1,2)
z � 0, (j,j ′) = (2,1) (DPA), (24)

and we notice that there is no overlap of the condensates (and
also no gap in between them; they touch at z = 0). Complete
segregation is illustrated in Fig. 3 for the symmetric case ξ1 =
ξ2.

When we relax the strong segregation slightly so that the
condensates incur a small but nonzero overlap, numerical
analysis of the full GPE reveals that the interaction term
K|φ10|2|φ20|2 in the potential (8) of the Lagrangian density (7)
is negligible compared to the other terms. Indeed, in spite of

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

z/ξ1

φ
j
0

K=∞, ξ2/ξ1 =1

 

 

φ10 (GP)φ20 (GP)

φ20 (DPA) φ10 (DPA)

FIG. 3. Interface structure in the limit of strong segregation K →
∞. Reduced order parameter profiles φj0, j = 1,2, are plotted versus
z/ξ1 for the symmetric case ξ1 = ξ2. The exact tanh profiles (black
lines, GP) and the double-parabola approximations (gray lines, DPA)
are shown.

the fact that K is large, the density overlap is so small that
the product concerned is small. Now, the DPA allows us to
establish analytically in which manner the interaction term
vanishes in the limit K → ∞. Inserting the DPA solutions
for the order parameters (22) in the interaction term and
calculating its value at z = 0, we obtain

K|φ10(0)|2|φ20(0)|2 = K

(
α

α + β

)4

∝ 1

K
→ 0 (DPA),

(25)
which quantifies the vanishing of the interaction term for
strong segregation. It is therefore clear that, in spite of
the diverging coupling constant, the interaction term can be
safely ignored in calculations pertaining to totally segregated
condensates. Consequently, the GPEs decouple in this limit.
Thus, as we announced in Sec. III A, the DPA solutions can
provide us with an analytical result (25) allowing us to gain
physical insight into an interesting property of the GP theory.

V. DPA MODEL APPLIED TO THE
INTERFACIAL TENSION

A. Grand potential and interfacial tension
from the GP Lagrangian

We define a dynamical grand potential as the grand potential
in equilibrium but with time-dependent order parameters,

�[φ1,φ2] = 2P0

∫
dr W̃(φ1,φ2), (26)

where the integration is over the volume V of the system and
the grand potential density is defined as minus the Lagrangian
density in (7), i.e.,

W̃(φ1,φ2) ≡ −L̃ (φ1,φ2) . (27)
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Consider an infinite planar interface at z = 0 and assume
translational invariance along x and y. Without loss of
generality, we assume the order parameters φj0 for stationary
states to be real and arrive at the grand potential for the
interface,

�0 = �[φ10,φ20]

= 2P0A

∫
dz

⎡
⎣ 2∑

j=1

(
∂ρj

φj0
)2 + Ṽ(φ10,φ20)

⎤
⎦ , (28)

where A is the interfacial area.
To calculate �0, we first derive a “constant of the motion.”

We multiply the TIGPE in (13) by ∂zφj0 and add up the two
equations. We then integrate over z and find

2∑
j=1

[(
∂ρj

φj0
)2 + φ2

j0 − 1

2
φ4

j0

]
− Kφ2

10φ
2
20 = 1/2, (29)

where the constant 1/2 is obtained by considering the (bulk)
boundary conditions for φj0. For order parameter profiles that
satisfy the TIGPE we may substitute (29) in (28). Then �0

reduces to

�0 = 4P0A

2∑
j=1

∫
dz

(
∂ρj

φj0
)2 − P0V. (30)

The interfacial tension is defined as the excess grand
potential per unit area,

γ12 = �0 − �b

A
= 4P0

2∑
j=1

∫
dz

(
∂ρj

φj0
)2

, (31)

which remains after the bulk grand potential �b = −P0V of a
homogeneous phase has been subtracted. Note that at bulk two-
phase coexistence the bulk grand potentials per unit volume
are the same for each condensate. Note that expression (31)
is valid for solutions of the TIGPE. If we wish to evaluate
(nonequilibrium) interfacial tensions in GP theory for profiles
that do not necessarily satisfy the TIGPE we must use (28).

B. Interfacial tension within the DPA model

Expression (31) for the equilibrium interfacial tension is
independent of the form of the potential V̂ . Therefore, we
obtain the same expression if we start from the model defined
by the DPA potential (19) and use profiles that satisfy (21).
Note that there is no simple relation between the value of
the GP interfacial tension and that of the one defined within
the DPA model. They are equilibrium interfacial tensions for
two different models. Note that our approach is fundamentally
different from a trial-function approach in GP theory. If we
wish to consider the DPA solutions as trial functions within
GP theory, we must use (28) and may not use (31). Doing
so would lead to an approximation that is far less useful than
our DPA model because, for example, it would lead to an
interfacial tension that diverges in the limit K ↓ 1, which is
physically unacceptable.

In view of these considerations, an analytic expression for
the interfacial tension within the DPA model is obtained by

evaluating (31) in the DPA profiles (22). We find

γ
(DPA)
12 = 2

√
2

√
(K − 1)/2

1 + √
(K − 1)/2

P0(ξ1 + ξ2). (32)

This compact expression is insightful. It shows that, in the
simplified model, the contribution from each condensate is
proportional to its healing length. Furthermore, the expression
interpolates between the strong- and weak-segregation limits
by means of a function that depends only on K . How this DPA
interfacial tension compares to the GP interfacial tension, is
the question to which we now turn.

C. Comparison with exact results in GP theory

1. Strong segregation

In the strong-segregation limit K → ∞, γ12 is the sum of
the two wall tensions. It can be calculated directly by substi-
tuting the stationary solutions (15) for the strong-segregation
limit into (31), so we have

γ12 = γW1 + γW2 = 4
√

2

3
P0(ξ1 + ξ2) for K → ∞, (33)

where γWj is the wall tension for the j th component [49].
Note that the wall tension (for a single condensate) is mathe-
matically similar to the tension of a normal/superconducting
interface in the limit of strongly type-I superconductors [50].

Comparison with γ
(DPA)
12 given in (32) is immediate since

γ
(DPA)
12 = γ

(DPA)
W1 + γ

(DPA)
W2 = 2

√
2P0(ξ1 + ξ2) for K → ∞,

(34)

where γ
(DPA)
Wj is the wall tension for the j th component. So the

ratio between the DPA and the GP results is

γ
(DPA)
12

γ12
= 3

2
for K → ∞. (35)

For large K we can expand (32),

γ
(DPA)
12 = 2

√
2P0

[
1 −

√
2√
K

+ O

(
1

K

)]
(ξ1 + ξ2), (36)

and observe that the interfacial tension approaches its limit
with a square-root singularity (with diverging slope) in the
variable 1/K . We can compare this with the leading terms in
the large-K expansion of the GP interfacial tension, derived
in [46],

γ12 = P0

[
4
√

2

3
− 2.056

√
ξ1ξ2

ξ1 + ξ2

1

K1/4

+O

(
1

K1/2

)]
(ξ1 + ξ2). (37)

It is noteworthy that the K−1/4 singularity as well as its
amplitude 2.056 . . . are universal in the sense that they are
to some extent independent of the details of the theory. In
particular, these features are common to the GP theory of
BECs [45] and the earlier Ginzburg-Landau theory of super-
conductivity [50]. In particular, the amplitude 2.056... was first
obtained by Mishonov (1.03 in his units) using GL theory [53].
Subsequently this was confirmed and elaborated [54] and later
applied to BECs [46] using GP theory.
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FIG. 4. (Color online) The reduced interfacial tension γ12/P0ξ

for the symmetric case (ξ1 = ξ2 = ξ ) versus the inverse interaction
strength 1/K . Shown are the numerically exact solution (GP, black
line), the double-parabola approximation (DPA, gray line) and the
scaled DPA (red line) obtained by multiplying the DPA result by 2/3
to match the DPA and GP values at 1/K = 0.

The DPA result (36) does not capture the K−1/4 singularity
and displays a K−1/2 singularity instead. The difference in the
manner the slope diverges near 1/K = 0 can be appreciated in
Fig. 4, in which both the DPA and the GP interfacial tension are
plotted as functions of 1/K for the symmetric case ξ1 = ξ2. In
this figure we observe that the DPA curve is similar in shape to
the GP interfacial tension. If we reduce the DPA by applying
an overall prefactor of 2/3, we obtain the red curve, which
follows the GP curve surprisingly well. Note that the reduced
DPA intersects the GP curve in one internal point, to which we
will return shortly, after discussing the other interesting limit,
K ↓ 1.

2. Weak segregation

In the weak-segregation limit K ↓ 1, the two condensates
tend to merge. The total density of the two condensates is
nearly constant and displays a small depression around the
interface. In this limit γ12 was calculated by Barankov [55],
and before him by Malomed et al. [51] in a different physical
context, who obtained

γ12 = 4
√

K − 1

3
P0

ξ 3
1 − ξ 3

2

ξ 2
1 − ξ 2

2

= 4
√

K − 1

3
P0

ξ 2
1 + ξ1ξ2 + ξ 2

2

ξ1 + ξ2
.

(38)
When ξj = ξ , it simplifies to

γ12 = 2
√

K − 1P0ξ. (39)

Considering the DPA, when we take the limit K ↓ 1, we
find that γ

(DPA)
12 in (32) approaches

γ
(DPA)
12 = 2

√
K − 1P0(ξ1 + ξ2). (40)

Comparing the DPA with the GP result for the symmetric case
ξj = ξ , we have

γ
(DPA)
12

γ12
= 2 for K ↓ 1. (41)

We conclude that the DPA model describes the interfacial
tension in the weak-segregation regime qualitatively correctly,
since it shares the correct square-root singularity at K = 1
with the GP expression. This can also be appreciated in Fig. 4.

3. Half segregation and the exact solution of Malomed et al.

We already noted, when we discussed Fig. 4, that the
reduced DPA for the interfacial tension intersects the GP curve
in one internal point. This happens at K = 3, for the symmetric
case ξ1 = ξ2. Interestingly, at this point in parameter space an
exact solution to the GP equations was provided by Malomed
et al. [51]. We have already recalled this solution in (16).
Note that the order parameters are perfectly symmetric. Not
only are the healing lengths equal but the healing length also
equals the penetration depth since

√
2 = √

K − 1. The profiles
cross precisely at halfway to their bulk values, at φj0 = 1/2.
Therefore, we denote this special case as “half segregation.”

It is instructive to observe that the DPA solutions (22)
are also perfectly symmetric in this case and display half
segregation. The interfacial tension within the DPA model
is given by

γ
(DPA)
12 = 2

√
2P0ξ, (42)

while the GP value is precisely two-thirds of this,

γ12 = 4
√

2

3
P0ξ. (43)

VI. APPLICATION OF THE DPA MODEL
TO WETTING PHENOMENA

A. Wetting phase boundary

In this section we apply the DPA model to the wetting
phase transition predicted for BEC mixtures adsorbed at an
optical wall, using the GP theory at T = 0 [56,57]. The
wetting transition takes places when, e.g., a layer of condensate
2 intrudes between condensate 1 and the optical wall (an
evanescent wave emanating from a prism). The condition for
a wetting transition is the following surface energy equality:

γW1 = γW2 + γ12. (44)

The curve in the (ξ2/ξ1,1/K) plane that solves this equation
is the so-called wetting phase boundary. In the hard-wall limit
(for a vanishing order parameter at the wall), the wetting phase
boundary was established numerically [56] and an analytical
solution was reported in the second paper of [46]. In this limit
the wetting transition is of first order (discontinuity in the first
derivative of the energy). The analytic solution for the phase
boundary is

√
K − 1 =

√
2

3

[
ξ1

ξ2
− ξ2

ξ1

]
. (45)
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FIG. 5. Phase boundary for the first-order wetting transition in
adsorbed BEC mixtures, in the plane of inverse interaction strength
and healing length ratio. The GP solution is shown (black curve) as
well as the DPA (gray curve).

For the more physical case of a softer wall, the wetting
transition was studied in [57]. It was found that first-order
wetting as well as critical wetting are possible.

Our aim is to derive an approximate wetting phase boundary
in the hard-wall limit within the DPA model and to compare it
with the GP result (45). To this end we first give the DPA for
the wall tensions,

γ
(DPA)
Wj = 2

√
2P0ξj , (46)

as follows from (32) in the limit K → ∞. Inserting these and
our expression (32) for γ

(DPA)
12 into (44), leads to the wetting

phase boundary within the DPA model,

√
K − 1 = 1√

2

[
ξ1

ξ2
− 1

]
(DPA). (47)

Figure 5 shows the GP wetting phase boundary together
with the DPA. Clearly, the two curves are almost coincident.
Moreover, the DPA reproduces the parabolic character of the
GP phase boundary near both end points, at 1/K = 0 and
K = 1.

B. DPA-assisted design of an exact solution to the GP equations

In this section we explain how we found the exact
solution (17) announced in Sec. III C and displayed in Fig. 6.
We start by observing that the DPA intersects the GP curve
precisely at ξ2/ξ1 = 1/2 and K = 3/2 (see Fig. 5). The asymp-
totic behavior of the order parameters can be read off from
the DPA solutions, provided conditions (23) are satisfied. For
z > 0 we can rely on the DPA since ξ2/ξ1 <

√
2(K − 1) = 1.

An “up-down” symmetry occurs since ξ1/
√

2 equals the
penetration depth ξ2/

√
K − 1. For z < 0 we cannot rely on

the DPA for the approach of φ20 towards 1, since ξ1/ξ2 > 1.
In this case the approach towards the bulk density is governed
by the decay length ξ1/(2

√
K − 1), which is longer than the

length ξ2/
√

2 predicted by the DPA.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
K=1.5, ξ2/ξ1 =0.5

z/ξ1

φ
j
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φ20
(GP, numerical,
black solid)

φ20
(DPA)

φ10
(DPA)

φ10
(GP, analytical,
red dashed)

FIG. 6. (Color online) Interface structure for an exactly solvable
asymmetric case. Reduced order parameter profiles φj0, j = 1,2,
are plotted versus z/ξ1 for K = 3/2 and ξ1 = 2ξ2. The numerically
exact profiles (black lines, GP), the exact solution (red dashed lines,
analytical), and the double-parabola approximations (gray lines;
DPA) are shown.

This information, together with the graphical observation
that φ10 takes a value of about 1/

√
2 at the point in space

where φ20 equals 1/2, suggest that the solutions to the GPE
ought to be well approximated by the skewed profiles presented
in (17), which happen to solve the GPE exactly. Note that
the z coordinate can be shifted so as to provide the profile
crossing at z = 0, which facilitates comparison with the DPA
which intrinsically features this position as the location of the
interface. The required shift is δ = arctanh(2 − √

5) in units
of

√
2 ξ . Figure 6 shows these GP solutions together with their

DPA counterparts.
Incidentally, we note that the interfacial tension obtained

for this exact solution,

γ12 = 2
√

2

3
P0ξ, (48)

is 2/3 of the value found within the DPA model for the same
condensate parameters K = 3/2 and ξ1 = 2ξ2 ≡ ξ .

VII. CONCLUSION

In this work we accomplished two goals: (i) We added
an exact solution to the GP theory for interfaces in BEC
binary mixtures. This is an exact solution for an asymmetric
system (with unequal healing lengths) and at finite interspecies
repulsion strength K . We have been able to find this solution
guided by information gathered by solving a simpler but related
model, the so-called DPA. (ii) We defined and developed the
DPA model. We first derived the DPA for the potential energy
density in the Lagrangian by expanding the order parameters
about their bulk values and keeping the deviations in account
to second order. Locating the interface center at z = 0, we
next derived the DPA for the GP equations in each half space,
z < 0 and z > 0. The solutions and their first derivatives were
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then matched at z = 0. This led to unique simple analytical
solutions that can be used efficiently to uncover and understand
properties of GP theory.

The power of the DPA model lies in its capacity to provide
systematically analytical expressions for many physical quan-
tities of two segregated BECs. We know of no other methods
capable of doing this. Here, the excess surface energies at a
hard wall and at the interface were evaluated within the DPA
model. This provided a compact and useful expression for the
interfacial tension. As an application we derived the wetting
phase boundary within the DPA and obtained good agreement
with the GP solution. Moreover, the DPA provided crucial
hints facilitating a successful guess of an exact solution to the
GP equations for an asymmetric case ξ1 �= ξ2. Clearly, the DPA
model is a practical and broadly applicable tool for exploring
the physics of a more complicated model. In the future we plan

to use the DPA framework to derive, and to get physical insight
into, an approximate dispersion relation for capillary waves on
the interface, which takes into account the finite thickness and
the structure of the interface.
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