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Elastic and inelastic transmission in guided atom lasers: A truncated Wigner approach
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Département de Physique, University of Liege, 4000 Liège, Belgium
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We study the transport properties of a Bose-Einstein condensate formed by an ultracold gas of bosonic atoms
that is coupled from a magnetic trap into a one-dimensional waveguide. Our theoretical approach to tackling this
problem is based on the truncated Wigner method for which we assume the system to consist of two semi-infinite
noninteracting leads and a finite interacting scattering region with two constrictions modeling an atomic quantum
dot. The transmission is computed in the steady-state regime and we find a good agreement between truncated
Wigner and matrix-product state calculations. We also identify clear signatures of inelastic resonant scattering
by analyzing the distribution of energy in the transmitted atomic-matter wave beam.
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I. INTRODUCTION

The progress of the last two decades in the field of
ultracold atoms has opened the possibility of investigating
mesoscopic transport properties of interacting matter waves.
A very important step in this context is the realization of
atom lasers [1–4] permitting us to create a beam of atoms
by coherently outcoupling a trapped Bose-Einstein condensate
(BEC) into an optical waveguide at a well-defined energy and
flux [5–11]. This research is particularly interesting in view of
the perspective to realize bosonic atomtronic devices [12–15]
and to study analogies with their fermionic counterparts
[16–18]. A typical configuration of such a device is an atomic
quantum dot that features resonant transport [19] and atom
blockade [18,20]. These features can be used as building
blocks for atomic transistors [12,14,15].

A theoretical modeling of such scattering processes within
guided atom lasers faces the challenge of dealing with
interactions between atoms. A full many-body treatment of
such an open system is very complex and impossible to solve
exactly in practice. During the last ten years, these scattering
processes have been studied in the mean-field approximation
described by the Gross-Pitaevskii (GP) equation [21–23].
While this description gives satisfactory results for a weak
nonlinearity, the question of validity arises rapidly in the
case of strong nonlinear dynamics [23] where dynamical
instabilities occur. It has also been pointed out that in the
presence of disordered potentials, even a weak atom-atom
interaction strength can lead to inelastic scattering processes
[24,25], which cannot be accounted for in the framework of
the mean-field GP approximation.

The main focus of this work is to study such inelastic
scattering processes in an atom laser context. We employ
the truncated Wigner method (TW) [26–28] for this purpose.
The latter amounts to sampling the initial quantum state by
classical fields and to propagating them according to a slightly
modified GP equation. This method has been used to study
various dynamical processes with ultracold bosonic atoms,
such as the reflection of a BEC on abrupt potential barriers
at zero temperature [29] and at finite temperature [30], the
dynamics of a trapped BEC [31] when an optical lattice
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is adiabatically superimposed to the trapping potential, the
many-body Landau-Zener effect [32], as well as far-from-
equilibrium dynamics (in particular nonthermal fixed points)
of many-body systems [33]. Finally, the TW method can also
take into account a continuous measurement process [34]
during the evolution of the system.

We specifically apply the TW method to study the trans-
mission of a one-dimensional guided atom laser beam across
a double-barrier potential forming an atomic quantum dot
as described in Sec. II. In this scenario, we are particularly
interested in resonant transport. To this end, we suppose a
finite extent of the interacting region and discretize the one-
dimensional space according to a finite-difference scheme.
We generalize, in Sec. III, the TW method to open systems
using smooth exterior complex scaling [35–39]. We then study
numerically, in Sec. IV, the transmission properties through the
quantum dot model described in Sec. II. The obtained results
are then compared, in Sec. IV A, to the predictions provided
by the mean-field approximation and to matrix-product state
(MPS) calculations. In Secs. IV B–IV D, we analyze the
energy distribution of the transmitted beam using the TW
method and develop a Bogoliubov approach to understand
the physical origin of the inelastic peaks that appear in the
energy distribution.

II. SCATTERING CONFIGURATION

We consider a guided atom laser experiment such as the
one presented in Ref. [5], where a magnetically trapped BEC
plays the role of a coherent source of atoms. In this particular
experiment, the atoms are outcoupled by a rf knife rendering
the final state insensitive to the magnetic field, but sensitive to
the optical potential formed by an elongated far off-resonance
optical beam constituting an atomic waveguide. Ideally, the
propagation of the atoms at well-defined energy is quasi-one-
dimensional (1D) along the waveguide. It is then possible to
engineer an atomic quantum dot geometry by focusing two
far-detuned laser beams perpendicular to the waveguide. In
this paper, we specifically consider a waveguide configuration
in which spatial inhomogeneities and atom-atom interactions
are nonvanishing only in a finite region of space. Such a system
is represented in Fig. 1(a).

To properly implement the TW method, we discretize the
1D space by a series of points or sites separated by a constant
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FIG. 1. (Color online) (a) A trapped BEC depicted by a (green)
circle is loaded into a waveguide with two constrictions modeling an
atomic quantum dot. The bold (black) lines represent the isopotentials
of the waveguide. (b) One-dimensional infinite Bose-Hubbard (BH)
chain for the quantum dot model [see Eqs. (4)]. The condensate
is prepared within a trap represented by the green circle (S) and
coupled to the infinite BH chain (dashed green line). The big (red)
circles represent a nonvanishing on-site atom-atom interaction. The
two displaced sites enclosing the interaction region represent two
sites where the on-site potential is nonzero.

distance δ, thereby forming a spatial grid. The wave function is
then defined on these points. The sites are labeled with an index
l ∈ Z. One additional site S is introduced in order to represent
the source of atoms. This additional site S is connected to the
waveguide at site lS as illustrated in Fig. 1(b).

We treat the spatial derivatives with a finite-difference
approximation. The Hamiltonian is then given by

Ĥ =
+∞∑

l=−∞

[
−J (â†

l+1âl + â
†
l âl+1) + gl

2
n̂l(n̂l − 1) + Vln̂l

]

+κ∗(t)b̂†âlS + κ(t)â†
lS
b̂ + μb̂†b̂. (1)

Here b̂ and b̂† are the annihilation and creation operators of
the reservoir, respectively, μ is its chemical potential defined
relative to the center of the band, and âl and â

†
l are the annihi-

lation and creation operators, respectively, on the site l of the
chain. The hopping strength to the nearest neighbors is given
by J = �

2/2mδ2, the on-site interaction strength is gl , and the
on-site potential is Vl . The coupling strength κ(t) is related to
the outcoupling process of atoms from the reservoir and can
be controlled in a time-dependent manner (e.g., through the
variation of the intensity of a radio-frequency field in the case
of Refs. [5,7]). We suppose that the source is adiabatically
switched on from zero to a maximal value of κ , i.e.,

lim
t→∞ κ(t) = κ. (2)

This Hamiltonian is similar to a Bose-Hubbard (BH) system
describing an optical lattice in which only the lowest band
in the Brillouin zone is considered. For the case where the
on-site potential and interaction strength vanish, the dispersion
relation is identical to the one of the free lattice and is given
by

E(k) = −2J cos(k), (3)

with a wave number k/δ. In the limit |k| � 1, we have E(k) =
−2J + Jk2 which, apart from a constant shift, corresponds to
the dispersion relation of a free atom.

The scattering configuration of an atomic quantum dot is
modeled by two sites with nonzero on-site potential. Between
these two sites, we allow atoms to interact as depicted in
Fig. 1(b). This can be justified if, for instance, the waist
of the elongated optical beam is particularly narrow at the
position where the quantum dot is located. The perpendicular
confinement is then rather strong and it is likely that collisions
occur between atoms. Formally, this model can be encoded as

Vl = V (δl,l0 + δl,l0+LD ), (4a)

gl = g

LD−1∑
j=1

δl,l0+j , (4b)

where l0 ∈ Z is arbitrary and LD is the length of the quantum
dot. We set LD = 6 in the rest of the paper.

III. TRUNCATED WIGNER METHOD FOR OPEN
BH SYSTEMS

Phase-space methods were introduced by Wigner [26,27]
and Moyal [28] and their development started in the 1960s
with successful applications in quantum optics by Glauber [40]
and Sudarshan [41]. These methods allow one to go beyond
the mean-field GP description by, essentially, sampling the
initial quantum state by classical fields. The prescription to
sample the initial state and the equation of motion are not
unique. In this paper we choose the truncated Wigner method
(TW). The evolution of the system is then given by a classical
equation of motion similar to the GP equation. In particular,
the TW method maps the density matrix of the system onto a
quasidistribution function fulfilling a Fokker-Planck equation.
It is then possible to replace this equation with a system of
Langevin equations that can be numerically solved by a Monte
Carlo method. This section is devoted to generalizing the TW
method to open systems.

A. Truncated Wigner method for BH systems

Let us consider a general Bose-Hubbard system with on-site
two-body interaction. Denoting by A = {S,0, ± 1, ± 2, . . . }
the ensemble of sites of the BH system, the many-body
Hamiltonian of the system can be written as

Ĥ =
∑
α∈A

[∑
α′∈A

hαα′ â†
αâα′ + gα

2
n̂α(n̂α − 1)

]
, (5)

where we defined by âα and â†
α the annihilation and creation

operators, respectively, on the site α of the chain, and by n̂α =
â†

αâα the corresponding number operator. The matrix elements
hαα′ represent on-site energies as well as possible hoppings
between the sites. We impose hαα′ = h∗

α′α to ensure that the
Hamiltonian remains Hermitian. This general form makes our
description also valid for more involved connections between
different sites of the grid, such as small-world networks
[42–45].

The general idea of the Wigner approach is to map the
evolution of the density matrix prescribed by the von Neumann
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equation

i�
∂ρ̂(t)

∂t
= [Ĥ,ρ̂(t)] (6)

to the evolution of the Wigner function W ≡ W({ψα,ψ∗
α},t)

that is defined in the phase space spanned by the classical
amplitudes ψα associated with each site α. The Wigner
function represents a quantum quasiprobability distribution
and is defined as

W({ψα,ψ∗
α},t) =

∏
α∈A

1

π2

∫∫
dλαdλ∗

αe−λαψ∗
α+λ∗

αψα

× χW ({λα,λ∗
α},t), (7)

which is the Fourier transform of the characteristic function

χW ({λα,λ∗
α},t) = Tr

[
ρ̂(t)

∏
α∈A

eλαâ
†
α−λ∗

α âα

]
. (8)

The classical amplitudes ψα and ψ∗
α are complex canonical

variables representing coherent states in phase space. The
evolution of the Wigner function is then given by

i�
∂W
∂t

=
∑
α∈A

[
−

∑
α′∈A

(
hαα′

∂

∂ψα

ψα′ − h∗
α′α

∂

∂ψ∗
α

ψ∗
α′

)

− gα

(
∂

∂ψα

ψα − ∂

∂ψ∗
α

ψ∗
α

)
(|ψα|2 − 1)

+ gα

4

(
∂2

∂ψ2
α

∂

∂ψ∗
α

ψα − ∂

∂ψα

∂2

∂ψ∗2

α

ψ∗
α

)]
W. (9)

Numerical integration of this equation is practically impossible
since the dimension of the phase space is very large.

The so-called truncated Wigner approximation consists in
neglecting the third-order derivatives in Eq. (9). The resulting
equation is commonly called the truncated Wigner equation
and corresponds to a Fokker-Planck equation with only a drift
term. It can be shown [46] that this approximation is valid if
there is locally a large number of atoms in the waveguide. The
evolution of the Wigner function can be mapped to a set of cou-
pled Langevin equations where the canonical variables ψα ≡
ψα(t) and ψ∗

α ≡ ψ∗
α (t) are now time dependent. They satisfy

i�
∂ψα

∂t
=

∑
α′∈A

hαα′ψα′ + gα(|ψα|2 − 1)ψα. (10)

The mapping gives another set of equations for the evolution
of ψ∗

α which correspond to the complex conjugate of Eq. (10).
For the specific case of our guided atom-laser configuration,

we can now write the final set of equations of motion for the
sites representing the waveguide and the site corresponding to
the source as

i�
∂ψl

∂t
= (Vl − μ)ψl − J (ψl+1 + ψl−1)

+ gl(|ψl|2 − 1)ψl + κ(t)ψSδl,lS , (11a)

i�
∂ψS

∂t
= κ∗(t)ψlS . (11b)

It is nearly identical to a discrete GP equation except for a
slightly different interaction term.

B. Initial state

The initial Wigner function W({ψα,ψ∗
α},t0) represents the

initial quantum state of the system and has to be sampled by
the classical fields ψα . The latter can, for instance, represent
coherent, thermal, squeezed, or Fock states [47] and its
time evolution is governed by classical trajectories evolving
according to Eqs. (11). We consider that initially, at t = t0, the
waveguide is empty and the ground state of the reservoir trap
is macroscopically populated with a large number N of atoms
at zero temperature. The Wigner function can then be written
as

W = WG({ψl,ψ
∗
l },t0) × WS(ψS,ψ

∗
S ,t0), (12)

at time t = t0, where WS(ψS,ψ
∗
S ,t0) and WG({ψl,ψ

∗
l },t0)

correspond to the Wigner function of the source of atoms
and the waveguide, respectively.

Since the waveguide is initially empty, the corresponding
Wigner function has the form [48]

WG({ψl,ψ
∗
l },t0) =

∏
l∈Z

(
2

π

)
exp(−2|ψl|2). (13)

We can therefore sample the initial state with complex
Gaussian random variables. More precisely, the initial values
of the amplitudes ψl can be written as

ψl(t = t0) = 1
2 (Al + iBl) , (14)

where Al and Bl are real, independent Gaussian random
variables with unit variance and zero mean, i.e., for each
l,l′ ∈ Z we have

Al = Bl = 0, (15a)

Al′Al = Bl′Bl = δl,l′ , (15b)

Al′Bl = 0, (15c)

where the overline denotes the average of the random variables.
As a consequence, each site l of the grid representing the empty
waveguide has the average atom density |ψl(t0)|2 = 1/2.

We are now considering the source part which represents a
BEC with a high number N of atoms such that it can be safely
described by a coherent state |ψ0

S 〉. The initial Wigner function
WS(ψS,ψ

∗
S ,t0) therefore reads

WS(ψS,ψ
∗
S ,t0) =

(
2

π

)
exp

( − 2
∣∣ψS − ψ0

S

∣∣2)
. (16)

As N is very large, the relative uncertainty of both the
amplitude |ψ0

S | = √
N and the associated phase of the source

are negligibly small. We therefore treat the source term
completely classically, i.e., we set ψ0

S = √
N .

Supposing, in addition, that the coupling κ(t) tends to zero
such that N |κ(t)|2 remains finite, we can safely neglect the
depletion of the source or any back-action of the waveguide to
the source since ψS(t) = √

N (1 + O(|κ|2)) at any finite time
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t > t0. This allows us to solely focus on the evolution of the
field in the chain. The equation to solve reads

i�
∂ψl

∂t
= (Vl − μ)ψl − J (ψl+1 + ψl−1)

+gl(|ψl|2 − 1)ψl + κ(t)
√

Nδl,lS . (17)

One can notice that if |ψl |2 is very large, we recover the discrete
GP equation.

C. Observables

It can be shown [49] that the time-dependent expectation
value of the symmetrically ordered product of the operator âl

and â
†
l is of the form〈{∏

l∈Z
(â†

l )rl â
sl

l

}
sym

〉
t

=
∏
l∈Z

∫
dψldψ∗

l (ψ∗
l )rlψ

sl

l

×W({ψl,ψ
∗
l },t), (18)

where {(â†
l )rl â

sl

l }sym denotes the symmetrically ordered prod-
uct, i.e., the average of (rl + sl)!/(rl!sl!) possible orderings of
rl creation operators and sl annihilation operators. For instance,
setting rl = 2 and sl = 1 we have

{(â†
l )2âl}sym = 1

3 [(â†
l )2âl + â

†
l âl â

†
l + âl(â

†
l )2]. (19)

Equation (18) allows us to calculate the expectation value of
observables on a particular site. Specifically, the expectation
value of the total density nl(t) and the total current jl(t) on a
site l are given by

nl(t) = 〈n̂l(t)〉 = 〈â†
l (t)âl(t)〉 = |ψl(t)|2 − 1/2, (20)

jl(t) = 〈ĵl(t)〉 = iJ

�
(〈â†

l+1(t)âl(t) − â
†
l (t)âl+1(t)〉)

= iJ

�
(ψ∗

l+1(t)ψl(t) − ψ∗
l (t)ψl+1(t)), (21)

where the overline denotes the statistical average over all
classical initial states. In addition, we can determine the
coherent part of the density ncoh

l (t) as well as the coherent
part of the current j coh

l (t) through

ncoh
l (t) = |〈âl(t)〉|2 = |ψl(t)|2, (22)

j coh
l (t) = iJ

�
(ψ∗

l+1(t) ψl(t) − ψ∗
l (t) ψl+1(t)). (23)

In the mean-field limit, the coherent part of the density and the
current correspond to the usual GP density and current. We
can also identify the incoherent part as the difference of the
total and coherent parts of the density and the current:

nincoh
l (t) = nl(t) − ncoh

l (t), (24)

j incoh
l (t) = jl(t) − j coh

l (t). (25)

The situation evidently simplifies in the special case of a
waveguide without any on-site potential or interaction between
the atoms. In this case, the GP as well as the TW evolution

equations reduce to the standard one-body Schrödinger equa-
tion and hence the coherent and total densities in the waveguide
are identical. The stationary density n∅ is given by

n∅ = lim
t→∞ |ψ(t)|2 = lim

t→∞ |ψ(t)|2 − 1/2 = N |κ|2
4J 2 − μ2

, (26)

and the stationary current j∅ is given by

j∅ = N |κ|2/�√
4J 2 − μ2

. (27)

D. Truncated Wigner for open systems

We are able to represent the infinite chain in terms of a
finite open system if we assume that the on-site potential
and the contact interaction are nonvanishing only in a finite
region of space. This finite region will be named the scattering
region and the regions on the left- and the right-hand side
of it are called the left and right leads, in close analogy to
electronic mesoscopic physics. Without loss of generality, we
shall assume that the scattering region is defined in the interval
l ∈ {1, . . . ,L} on the grid. The dynamics in the leads is linear
and can therefore be solved analytically. We then find that the
evolution equation can be written as [39]

i�
∂ψl

∂t
= (Vl − μ)ψl + gl(|ψl|2 − 1)ψl + κ(t)

√
Nδl,lS

−J [ψl−1(1 − δl,1) + ψl+1(1 − δl,L)]

−2i

�
(δl,1 + δl,L)J 2

∫ t

t0

dt ′ M1(t − t ′)ψl(t
′)

+δl,1χ1(t) + δl,LχL(t), (28)

for the site l within the scattering region (l = 1, . . . ,L) with

χ1(t) = 2J

0∑
l′=−∞

Ml′−1(t − t0)ψl′(t0), (29a)

χL(t) = −2J

∞∑
l′=L+1

Ml′−L(t − t0)ψl′(t0), (29b)

and

Ml(τ ) = il

2

[
Jl−1

(
2Jτ

�

)
+ Jl+1

(
2Jτ

�

)]
eiμτ/�, (30)

where Jl is the Bessel function of the first kind of the order l.
As no approximation has yet been made, Eq. (28) repro-

duces the true evolution of the infinite nonlinear system under
consideration described by Eq. (17). The integral term in the
third line of Eq. (28) exactly describes the decay into the left
and right leads and therefore yields a perfectly transparent
boundary condition that is defined on the first and last site of
the scattering region. The terms χ1(t) and χL(t) in Eq. (28)
account for the propagation of the initial quantum fluctuations
that arise in the framework of the TW approximation and that
eventually, during the time propagation, enter in the scattering
region. These terms χ1(t) and χL(t), considering the initial
emptiness of the leads in the TW prescription [see Eqs. (14)],
take the form of quantum noise entering the system. The
autocorrelation functions related to these noise terms are given
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by

χ∗
1 (t)χ1(t + τ ) = χ∗

L(t)χL(t + τ ) = −iM1(τ ). (31)

The integral term in Eq. (28) renders the numerical
simulation rapidly inefficient because the whole integral has
to be recomputed at every time step. The most efficient way
to avoid this problem in the numerical computations [39] is
to remove this integral term and replace it by smooth exterior
complex scaling [35–37,50–54]. The evolution of the finite
open system is now governed by the following equation:

i�
∂ψl

∂t
= (Vl − μql) ψl + gl(|ψl|2 − 1)ψl

+κ(t)
√

Nδl,lS + 2J
(
ql + q−1

l

)
ψl

−J

[
1

ql+1
+ 1

2

q ′
l+1

q2
l+1

]
ψl+1

−J

[
1

ql−1
− 1

2

q ′
l−1

q2
l−1

]
ψl−1

+δl,1χ1(t) + δl,LχL(t), (32)

where ql is a smooth function of the site index l. In the
scattering region (1 ≤ l ≤ L) we impose ql = 1, while ql

is smoothly ramped to eiθ within the left (l < 1) and the
right (l > L) leads where θ is an arbitrary positive angle.
The function q ′

l represents the discrete derivative of ql with
respect to l. If ql = 1, the Hamiltonian is not Hermitian any
longer and the outgoing atoms are absorbed without reflection,
provided that the discrete function ql is sufficiently smooth
(i.e., ql+1 − ql � q ′

l � ql). This approach was successfully
tested in Ref. [39] for the case of a linear and a nonlinear
Schrödinger equation with or without quantum fluctuations as
described in Eqs. (15) and (29).

IV. TRANSMISSION ACROSS A QUANTUM DOT

A. Transmission spectrum

We now study transport across a symmetric double-barrier
potential that can be seen as a resonator. Hence, in the absence
of interaction, we know that the transmission spectrum will
give rise to a series of Fabry-Pérot or Breit-Wigner peaks
at resonances. As explained in Ref. [21], the presence of
atom-atom contact interaction bends these peaks. Depending
on the strength of the nonlinearity within the resonator,
bistability can occur as seen in Fig. 2. This bistability can
be seen as an artifact of the mean-field approximation since
many-body quantum scattering processes are linear from a
microscopic point of view and, as a consequence, we expect
a unique many-body scattering state to establish. On the other
hand, bistability-related features are indeed expected to be
encountered in certain experimental conditions, e.g., if the
chemical potential is varied in a time-dependent manner. In
that case, it should be possible to populate the upper branch
of the resonance peak on a finite (but potentially limited) time
scale, as shown in Refs. [21,23].

We now discuss the effects of the interaction on the Fabry-
Pérot peaks beyond the mean-field GP description. We fix
the maximal coupling strength between the source and the

FIG. 2. (Color online) Transmission across the quantum dot con-
figuration versus μ/2J for N |κ|2 = J 2, g = 0.2J , V = J . The
smooth black curve corresponds to the mean-field (GP) calculation,
the jagged red curve to the TW method, and the green dots to the
MPS method. We can see that for the GP method, bistability occurs
for the first resonance. The dashed black line depicts states that are
not accessible during a time-dependent loading of the waveguide.
The TW and MPS curves are in good agreement and exhibit an
imperfect transmission at resonances. The incoherent part of the
transmission is represented by a light orange line. This curve shows
that an appreciable amount of incoherent atoms are generated at the
resonances, demonstrating a departure from of the GP model. The
MPS method becomes numerically inefficient near the band edges,
i.e., for μ ≈ −2J .

waveguide to N |κ|2 = J 2. In Fig. 2, we plot the transmission
across the quantum dot against the chemical potential with an
interaction strength g = 0.2J and an on-site potential V = J .
The total transmission T is determined by comparing the total
current in the downstream region to the stationary current
(27) obtained in the case of a perfectly homogeneous and
interaction-free waveguide:

T = lim
t→∞ j (t)/j∅. (33)

It can be decomposed into its coherent T coh and incoherent
T incoh part by respectively comparing the coherent and
incoherent current to the free current (27):

T coh = lim
t→∞ j coh(t)/j∅, (34a)

T incoh = lim
t→∞ j incoh(t)/j∅. (34b)

In the mean-field description, we observe that the GP curve
is bent and features bistability as it was shown by Paul et al.
[21]. This curve has been obtained by solving the stationary
GP equation in the same way as it was done in Ref. [22]. The
dashed black curves correspond to solutions of the stationary
GP equation that are unstable (middle branch of the resonance
peak) or inaccessible through a time-dependent loading of the
waveguide at constant chemical potential (upper branch of the
resonance peak).

To benchmark our TW calculations, we compare the total
transmission given by Eq. (33) to the one obtained by a
genuinely quantum simulation using the MPS method [55–57].
This method is based on the density-matrix renormalization
group [58] (DMRG) which uses renormalization techniques
to express in an optimized way the density matrix of a block
within the system under consideration. The states produced
by this process belong to the class of matrix-product states
[55–57], which offer a highly optimized way of treating the
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full problem as long as no highly entangled states are present.
When the number of atoms is quite low and the system is very
small, the full Hilbert space can be efficiently truncated by
removing the degrees of freedom that are not involved in the
dynamical evolution of the system. Such an optimized method
enables us to numerically simulate the atomic quantum dot.

The results which are displayed in Fig. 2, show a good
agreement between the TW and MPS methods. Both methods
clearly show that the transmission is not perfect at resonance,
meaning that full resonant transmission is prohibited. The
light orange curve in Fig. 2 displays the incoherent part
of the transmission. We can see that about 10–20% of the
transmission comes from incoherent atoms at the resonances,
which appears to be a consequence of the enhanced atomic
density within the quantum dot at resonance. Indeed, in
contrast to the coherent part of the transmitted beam, the
incoherent atoms may exit the quantum dot to either one of the
leads. They thereby inhibit perfect transmission of the atomic
beam at resonance.

B. Energy distribution of the transmitted atoms

We are now interested in signatures of inelastic scattering
in the transmitted beam. To this end, we take a large but finite
number of sites Lft = 1000 in the transmitted region and define
â(k) as

â(k) = 1√
Lft

LD+2+Lft∑
l=LD+2

âle
−ikl , (35)

corresponding to the annihilation operator associated with
the momentum eigenstate eikl within the right lead. Noting
that [â(k),â†(k)] = 1 from this definition and following the
procedure explained in Sec. III C, we can calculate the steady-
state average total and coherent number of atoms moving with
a wavenumber k/δ (with δ the grid spacing) through

n(k) = 〈n̂(k)〉 = 〈â†(k)â(k)〉 = |ψ(k)|2 − 0.5, (36a)

ncoh(k) = |〈â(k)〉|2 = |ψ(k)|2, (36b)

with

ψ(k) = 1√
Lft

LD+2+Lft∑
l=LD+2

ψle
−ikl . (37)

Since all the transmitted atoms have k > 0, we define the total
nE and coherent ncoh

E average number of transmitted atoms
moving with energy E by

nE ≡ n(kE), (38a)

ncoh
E ≡ ncoh(kE), (38b)

where kE is obtained by inverting the dispersion relation (3):

kE = arccos(−E/2J ). (39)

In Fig. 3(a) we plot the transmission versus the normalized
chemical potential of the incoming atoms with V = 4J ,
g = 0.02J and N |κ|2 = J 2. We can the see the appearance
of well-resolved resonance peaks. Compared to Fig. 2 the
visibility of the peaks is enhanced, which is expected as the
enhancement of the potential barrier forming the quantum dot

n
c
o
h

E
n

E

FIG. 3. (Color online) (a) Transmission spectrum of the quantum
dot geometry with V = 4J , g = 0.05J , N |κ|2 = J 2 computed by the
GP (black line, following the same color convention as in Fig. 2) and
the TW prescription (red line for the total transmission and orange
line for the incoherent part of the transmission). The panels below
show the energy distribution of the outgoing flux according to the
TW calculation for an incident beam energy of μ/2J = −0.86 for
(b), μ/2J = −0.52 for (c), μ/2J = −0.37 for (d), μ/2J = −0.04
for (e), μ/2J = 0.47 for (f), and μ/2J = 0.87 for (g). The black
lines correspond to the coherent and the red lines to the total part
of outgoing atoms. The peaks designated by a black arrow arise
from collective oscillations about a single resonance as discussed in
Sec. IV C. The peaks designated by blue (gray) arrows arise from
atoms that have undergone a transition between two single-particle
levels of the atomic quantum dot.

leads to a greater lifetime of the corresponding quasibound
states [59]. In Figs. 3(b)–3(g), we plot the energy distribution of
the transmitted atoms. We can see the appearance of additional
peaks depending on the value of the chemical potential. For
Fig. 3(d), where the chemical potential μ/2J = −0.37 is far
away from any resonance, we can only observe one peak
corresponding to the coherent beam of atoms coming from
the source. In Figs. 3(b), 3(c), 3(e)–3(g) we can identify the
appearance of two types of peaks (designated by arrows of
different colors). As first type, we have two side peaks on
the left- and right-hand side of the main peak at the incident
beam energy, as seen for example in Figs. 3(b) and 3(g) (black
arrows). This will be further discussed in Sec. IV C. The second
type of peaks corresponds to inelastic scattering processes
of atoms that thereby undergo a transition between different
single-particle levels within the atomic quantum dot. They can
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be seen in Figs. 3(c)–3(f) (blue or gray arrows) and will be
discussed in Sec. IV D.

C. Collective oscillations

To understand the appearance of the two side peaks in the
immediate vicinity of the incident beam energy, we study a
leaky and driven single-level model with energy E0 and two-
body interaction between atoms with an interaction strength g.
In the Heisenberg picture, the evolution equation of the field
operator â ≡ â(t) related to the level reads

i�
∂â

∂t
= (E0 − iγ /2)â + gâ†ââ + [κb̂ + ξ̂ (t)]e−iμt/�, (40)

where b̂ corresponds to the annihilation operator of the source
which is coupled to the level with a coupling strength κ .
The use of an imaginary leaky term iγ /2 implies that the
losses are Markovian, which is justified in the limit of weak
coupling between the single-level system and the leads. As was
discussed in Sec. III D, reducing the infinite waveguide to a
finite open system introduces additional noise terms emerging
from the initial vacuum fluctuations outside the quantum dot.
Theses noise terms are accounted for by a time-dependent
noise operator ξ̂ (t) satisfying

[ξ̂ (t),ξ̂ †(t ′)] = ξ 2
0 δ(t − t ′), (41)

for some ξ0 ∈ R. For the sake of simplicity we consider here
a white noise. The commutation relations for the bosonic field
operators are given by

[â(0),â†(0)] = 1, (42a)

[b̂,b̂†] = 1. (42b)

This model has the same ingredients as the atomic quantum dot
system but offers the advantage of allowing analytical results.

For this particular system, we are interested in the appear-
ance of side peaks near the resonance for a weak atom-atom
interaction and large population of the single-particle level. As
a consequence, the truncated Wigner evolution equation of the
wave function ψ ≡ ψ(t) can be written as

i�
∂ψ

∂t
= (E0 + g|ψ |2 − iγ /2)ψ + [κ

√
N + ξ (t)]e−iμt/�,

(43)
where N is the number of atoms in the source and the
term |ψ |2 − 1 is well approximated by |ψ |2. The classical
equivalent ξ (t) of the quantum noise ξ̂ (t) has following
properties:

ξ (t) = 0, (44a)

ξ ∗(t)ξ (t ′) = ξ 2
0

2
δ(t − t ′), (44b)

in perfect analogy with the truncated Wigner prescription to
sample the initial quantum state with classical fields.

Instead of determining the number of atoms at energy E

by means of a spatial Fourier transform in the transmitted
beam, we define it through a temporal Laplace transform of
the amplitude on the level under consideration. We define the

Laplace transform as

ψ̃(E) = 1√
�T

∫ ∞

0
ψ(t) exp

[
−

(
1

T
+ i

E

�

)
t

]
dt, (45)

for a fixed (and ideally very large) observation time T . The
number of atoms at energy E is calculated according to
Eq. (18) and reads

〈nE〉 = |ψ̃(E)|2 − 1
2 [ã(E),ã†(E)]. (46)

We are interested in collective oscillations of the conden-
sate. For that purpose, we assume that we are close to a
stationary state φ0 defined as the solution of the stationary
GP equation

(E0 − μ − iγ /2 + g|φ0|2)φ0 + κ
√

N = 0. (47)

We then decompose the wave function ψ(t) as ψ(t) = (φ0 +
δψ(t))e−iμt/� and linearize the resulting evolution equation for
δψ(t). We thereby obtain the Bogoliubov equations associated
with Eq. (43) which read(

� − E gφ2
0

−gφ∗2

0 −(�∗ + E)

) (
δψ̃(E)

δψ̃∗(−E)

)
=

( −ξ̃ (E)
ξ̃ ∗(−E)

)
(48)

after applying a Laplace transform according to Eq. (45), with

� = E0 − μ + 2g|φ0|2 − i

(
γ

2
− �

T

)
. (49)

Solving the system of equations (48), we find

|δψ̃(E)|2 = (|� + E|2 + g2|φ0|4)ξ 2
0 /4�

|(� − E)(�∗ + E) − g2|φ0|4|2 , (50)

which yields

|ψ̃(E)|2 = 1

�T

|φ0|2
T −2 + (E − μ)2/�2

+ |δψ̃(E − μ)|2. (51)

Following the same steps as in the previous lines, and
supposing that N → ∞, κ → 0 in such a way that N |κ|2
remains constant, we can compute the commutator of Eq. (46),
which is given by

[ã(E),ã†(E)] = (|� + E|2 − g2|φ0|4)ξ 2
0 /2�

|(� − E)(�∗ + E) − g2|φ0|4|2 . (52)

The total number of atoms at energy E finally reads

〈nE〉 = 1

�T

|φ0|2
T −2 + (E − μ)2/�2

+ g2|φ0|4ξ 2
0 /2�

|(� − E)(�∗ + E) − g2|φ0|4|2 . (53)

In Fig. 4, we plot 〈nE〉 for μ/E0 = 1.08 for an observation
time E0T = 500� and ξ0/E0 = 0.5. The interaction strength
is set to g/E0 = 0.02, the leak rate to γ /E0 = 0.001, and
the source of atoms to

√
Nκ/E0 = 0.05. We directly see

the spectral signature of collective oscillations for μ/E0 =
1.08 which is close to the nonlinear resonance (i.e., the
population of the single-level system is high). This is in
accordance with our previous findings for the quantum dot
where collective oscillations appear near the resonances [see
Fig. 5(a)]. The occurrence of these side peaks is, furthermore,
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theory
num. simulation
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100
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n
E
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(E − µ)/E0

FIG. 4. (Color online) Average number of atoms 〈nE〉 at energy
E for g/E0 = 0.02, γ /E0 = 0.001,

√
Nκ/E0 = 0.05, E0T = 500�,

and ξ0/E0 = 0.5. The presence of collective oscillations is clearly
manifested in the form of two side peaks appearing at E − μ ≈
±0.36E0. The (red) dots show the results obtained by numerically
integrating Eq. (40) and applying a Laplace transform according to
Eq. (45). They are in perfect agreement with the theoretical prediction
(black line) of Eq. (53).

in perfect qualitative agreement with the atom blockade study
of Carusotto in Ref. [19].

D. Bogoliubov excitations in the quantum dot

We are now interested in the Bogoliubov modes within
the multimode quantum dot configuration that we focus on in
this paper. To this end, we numerically solve the Bogoliubov
equations defined with respect to the stationary solution of the
effective GP-like equation (32). The stationary wave function
of Eq. (32) defined on the grid is given by φ0,l on site l. We
can solve the Bogoliubov equations

T y(n) = εny(n), (54)

Bog.

µ/2J = −0.86 µ/2J = −0.04

FIG. 5. (Color online) Energy distribution of the transmitted
beam for two different values of the chemical potential: μ/2J =
−0.86 for the upper panel and μ/2J = −0.04 for the lower panel. The
black vertical lines correspond to the expected Bogoliubov energies.
They are in good agreement with the TW calculations. The grey zones
correspond to the expected width of the peaks given by 2Im(εn). For
the upper panel, we see two side peaks around the chemical potential
creating a collective oscillation inside the quantum dot. For the lower
panel, we observe that, on top of the collective oscillation, inelastic
collisions occur transferring atoms in the second or fourth energy
level as depicted in the sketch on the top right side. The TW results
are well reproduced by the Bogoliubov theory.

where εn is the nth eigenvalue and y(n) the related eigenvector.
The matrix T is defined as

T =
(

L C
−C∗ −L∗

)
, (55)

with the matrix elements of L and C defined by

Lll′ = (Vl − μql + 2gl|φ0,l|2)δl,l′ − Jl′ (δl+1,l′ + δl−1,l′ ), (56)

Cll′ = gφ2
0,lδl,l′ , (57)

l,l′ = 1, . . . ,L and

Jl = J

[
1

ql

− 1

2

q ′
l

q2
l

]
, (58)

in the presence of SECS, see Eq. (32). Clearly, T is not
Hermitian. Hence, the corresponding eigenvalues εn are
complex, and their imaginary part is related to the width of
the corresponding resonance peak.

The numerically computed results are plotted for two
different values of μ in Fig. 5. The vertical black lines
correspond to the expected Bogoliubov eigenenergies Re(εn)
and the grey zones correspond to the expected width of
the peaks given by 2Im( εn). The upper panel shows the
results for μ/2J = −0.86 and we can see that collective
oscillations appear within the quantum dot in agreement
with the Bogoliubov theory. The lower panel corresponds
to a chemical potential μ/2J = −0.04 that is close to the
energy corresponding to the third resonance. It shows a richer
structure of peaks arising from the superposition of collective
oscillations and inelastic scattering. Indeed, two colliding
atoms at the incident energy μ/2J = −0.04 can exchange
energy through a collision process. After the collision, the first
atom can end up on the fourth energy level and the second
can end up on the second energy level as depicted in Fig. 5.
This gives rise to two additional peaks that are clearly of
non-Lorentzian shape. The results given in the TW calculation
are in very good agreement with the Bogoliubov calculation.

V. CONCLUSIONS

In the present work, we studied one-dimensional reso-
nant transport of Bose-Einstein condensates within a guided
atom laser configuration. For this purpose, we introduced
a generalization of the truncated Wigner method to open
systems. The reduction from an infinite system to a finite
scattering region introduces an additional term accounting
for quantum fluctuations which takes the form of a quantum
noise. We made use of smooth exterior complex scaling to
absorb the outgoing flux of atoms. This allowed us to study
resonant and nonresonant transport across a one-dimensional
atomic quantum dot beyond the mean-field Gross-Pitaevskii
description.

The truncated Wigner method was used to compute the
transmission across a quantum dot configuration. We observed
that perfect resonant transmission is inhibited due to incoherent
atoms creating a transmission blockade. This effect is in
quantitative agreement with a matrix-product state calculation.
The incoherent atoms originate from two different physical
processes. The first one is the creation of collective oscillations
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on an individual single-particle level within the quantum dot
leading to two side peaks in the direct vicinity of the incident
beam energy. The second one is related to inelastic collisions
of atoms where atoms are transferred to other energy levels
within the quantum dot.

The truncated Wigner method appears to be a very
convenient tool for studying the transport of interacting
Bose-Einstein condensates across more involved scattering
configurations such as one-dimensional disordered potentials.
This shall be discussed in a forthcoming publication [60].
The approach presented in this paper can, furthermore, be
extended to account for a more realistic description of the
experimental configurations at hand involving, for instance,

two reservoirs of N atoms at ultralow but finite temperatures.
This extension will then allow one to simulate source-drain
transport processes across quantum-dot-like configurations,
paving the way to a realistic theoretical study of atomtronic
devices or atomic transistors.
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