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The Berry curvature is a geometrical property of an energy band which can act as a momentum-space magnetic
field in the effective Hamiltonian of a wide range of systems. We apply the effective Hamiltonian to a spin-%
particle in two dimensions with spin-orbit coupling, a Zeeman field, and an additional harmonic trap. Depending
on the parameter regime, we show how this system can be described in momentum space as either a Fock-Darwin
Hamiltonian or a one-dimensional ring pierced by a magnetic flux. With this perspective, we interpret important
single-particle properties, and identify analog magnetic phenomena in momentum space. Finally, we discuss the
extension of this work to higher-spin systems, as well as experimental applications in ultracold atomic gases and

photonic systems.
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I. INTRODUCTION

Energy bands with a nontrivial geometry in momentum
space are currently of great interest in many fields of physics.
The Berry curvature is a geometrical property of an energy
band which can be viewed as an artificial magnetic field in
a general effective quantum Hamiltonian where the roles of
momentum and position are reversed [ 1-6]. This has important
physical consequences in the anomalous Hall effect [7-9], in
the collective modes of an ultracold atomic gas [10,11], and in
the semiclassical dynamics of a wave packet [12—17].

Local geometrical properties, such as the Berry curvature,
can also be related to global topological invariants, underlying
the quantum Hall effect [ 18] and topological insulators [19,20].
Thanks to recent advances, geometrically nontrivial energy
bands have now been created in photonic systems [21-24] and
ultracold gases [25-28], where the Berry curvature [29,30] and
topological invariants [31,32] have been measured directly.

The consequences of the Berry curvature as a momentum-
space magnetic field have been well studied semiclassi-
cally [2,8,9,12,33-36], but the general effective Hamiltonian
can also be exploited as a fully quantum theory [5]. The effec-
tive Hamiltonian describes a single particle in a geometrically
nontrivial energy band with an additional external potential.
Consequently, analog magnetic phenomena in momentum
space can be explored in the quantum mechanics of single
particles in a wide range of systems; for example, the
eigenstates of the Harper-Hofstadter model in an external
harmonic trap can be recognized as Landau levels on a torus
in momentum space in certain parameter regimes [5].

In this paper, we demonstrate that a momentum-space
effective magnetic Hamiltonian captures many key features of
a single particle in two dimensions with spin-orbit coupling,
a Zeeman field, and an additional harmonic trap. Spin-orbit-
coupled systems are an important area of current theoretical
and experimental research [37-46]. Recent experiments have
realized one-dimensional (1D) spin-orbit coupling in an ultra-
cold gas [47,48], while various extensions to two dimensions
have been proposed [49-52]. At the single-particle level,
the effective momentum-space magnetic Hamiltonian has
previously been applied to a system with spin-orbit coupling
and a harmonic trap, but without a Zeeman field [42,53-57].
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The addition of a Zeeman field considerably enriches the
single-particle phase diagram, revealing a wealth of analog
magnetic phenomena. In this paper, we show, for example,
that the effective Hamiltonian can be mapped onto either a
Fock-Darwin Hamiltonian or a 1D ring pierced by a tunable
magnetic flux in momentum space depending on the regime
of parameters. In real space, a ring pierced by a magnetic flux
supports equilibrium persistent currents even in the ground
state; we discuss too how this phenomenon has a direct analogy
in momentum space.

The structure of this paper is the following. First, we intro-
duce the effective momentum-space magnetic Hamiltonian for
a general system, then we present the model of a spin-orbit-
coupled spin-% particle in two dimensions with a Zeeman field
and a harmonic trap. We focus separately on the quantum
mechanics of a particle in two parameter regimes: first, when
the effective Hamiltonian is analogous to the Fock-Darwin
Hamiltonian, and second, when the momentum-space physics
can be understood as that of a 1D ring pierced by a tunable
magnetic flux. We then extend this discussion to higher spin
systems and, finally, explore experimental considerations for
observing these analog magnetic effects.

II. EFFECTIVE MOMENTUM-SPACE
MAGNETIC HAMILTONIAN

The effective momentum-space magnetic Hamiltonian can
be derived from a generic Hamiltonian: 'H = Hy + W(r),
where Hy is either translationally invariant or periodic in
real space and W(r) is a weaker additional potential. For the
purposes of this paper, H, will describe an atom with spin-orbit
coupling, with an additional harmonic trap W(r) = %I{I‘Z of
trapping strength «.

The eigenfunctions of H for band index o and momentum
p are |xq,p). We write these as |xq p) = %lap), with V the
normalizing volume, to give the Bloch states |op) which have
a position dependence that is spatially periodic. (We set i = 1
throughout.) For the spin-orbit-coupled systems of this paper,
‘Hy is translationally invariant. Then, the Bloch state |ap) is
a spinor 7,(p), which is independent of position. (The case

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.91.033606

PRICE, OZAWA, COOPER, AND CARUSOTTO

when H is periodic in real space was previously discussed in
Ref. [5] and references within.)

The energy bands of H, are characterized both by an
energy dispersion E,(p) and by the geometrical properties
of the eigenstates making up the band. In this paper, we focus
on two-dimensional (2D) systems, although the extension to
geometrical properties in three dimensions (3D) is straightfor-
ward. These geometrical properties are encoded in the Berry
connection A, (p) and Berry curvature Q,(p) [1,58]:

a
Aup) = i{eplolap), (D
p

Qu(p) = Vp x Au(p) - 2. 2)

We note that while the Berry connection is gauge dependent,
the Berry curvature is independent of the gauge choice.

The eigenfunctions of Hj are used as a basis in which to
expand the eigenstates of the full Hamiltonian H as |W) =
Y Zp Yo (P)| Xa,p)» Where ¥, (p) are expansion coefficients.
In general, the additional potential W(r) mixes different
states | xop). However, provided that the additional potential is
sufficiently weak that it does not significantly couple different
energy bands, we can assume that the occupation of only
band « is non-negligible. Under this so-called single-band
approximation, the effective quantum Hamiltonian is

H = Eo(p) + W[r + Ay (p)], 3)

which is equivalent to a magnetic Hamiltonian with the roles
of position and momentum reversed. In particular, the Berry
connection A, (p) acts like a magnetic vector potential in
momentum space, redefining the relationship between the
canonical position r and the physical position r + A, (p)
[2,8,9].

To illustrate the duality between real-space and momentum-
space magnetism even more clearly, we focus hereafter on the
case of an additional harmonic trap W(r) = %/crz. Then, the
effective Hamiltonian can be written as

. 2
k[iVp +2Aa (p)] ’ @

which is analogous to the textbook magnetic Hamiltonian of a
charged particle in an electromagnetic field [59]:

[V, — eA)]?
2M

where ®(r) is a scalar potential, M is the particle mass, e is

the particle charge, and A(r) is the magnetic vector potential.

In these equations, the roles of kinetic and potential energy are

reversed, and the harmonic trapping strength « is equivalent to

the inverse particle mass M -113].

7:[ = Ea(p) +

H= + ed(r), 5)

III. SPIN-ORBIT-COUPLED SPIN-% PARTICLE
WITH A HARMONIC TRAP

We consider a spin—% particle in two dimensions with
Rashba spin-orbit coupling, a Zeeman field, and a harmonic
trap. The single-particle Hamiltonian is

1 -
HZH()"'EKI' 1,

2
| L A N A
Ho = 50714 Mpx0y — pybi) — AG, (6)
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where 6, , . are the Pauli matrices, 1 is the 2 x 2 identity
matrix, A is the Zeeman field, and A is the spin-orbit-
coupling strength. Henceforth, we introduce the dimensionless
parameters ¢ = A’M/A and x = % (where w = \/k/M),
which compare the spin-orbit coupling and the harmonic
trapping strength, respectively, to the Zeeman field. We note
that the limit of a vanishing Zeeman field is captured by
¢, x — oo while ¢/ is kept finite.

A. Energy bands and eigenstates of H,

Without a harmonic trap, the Hamiltonian reduces to H,
which has two energy bands [60]:

2
E+(p) = 2”—M +W2p + A2, (7

where o = £ are the band indices. For all parameters, the
upper band E,(p) has a single minimum at p = 0. The
lower-energy band E_(p) can be tuned between two regimes,
illustrated schematically in Fig. 1. When the spin-orbit cou-
pling is weak compared to the Zeeman field ¢ = A2M /A < 1,
the lower band also has a single minimum at p = 0. In the
opposite limit when ¢ = A2M /A > 1, the lower band has a
ring of minima at |py| = /A2M?2 — A2/)12. We refer to these
as the single minimum and ring minima regimes, studied in
detail in Secs. IV and V, respectively.

Without a Zeeman field, the lower band is always in the
ring minima regime, and the two energy bands are degenerate
at p = 0. Introducing a Zeeman field lifts the degeneracy and
breaks time-reversal symmetry. Then, the Berry curvature is

(a) 0 5
------------ e Qo (p)
O X 2
_ 2¢z2 "
2 E_(p)
w
s 2GR
(b) . )
0 Po p

FIG. 1. (Color online) A schematic indicating the key character-
istics of the energy dispersion and the Berry curvature of the lower
band in (a) the single minimum regime for ¢ = A>M/A < 1 and (b)
the ring minima regime for ¢ > 1.
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nonzero and can be calculated from the spinor eigenfunction
of the lower band:

1 A . At a) PPRFAT
n-p) = \/— —| ! A , (8

2 N 2 p2)L2 + A2 e

where p = (p,p) are the polar coordinates in momentum
space. The Berry curvature (2) is [60]

AZA

_z(kzpz + A2)32° ©

Q_(p) =
This is plotted schematically in Fig. 1. We note that a
particle with Dresselhaus spin-orbit coupling A(p.6, + p,6y),
instead of Rashba A(p,6, — p,6,), would have the same band
structure (7) but opposite Berry curvature (9). All the following
results can be translated from a Rashba to a Dresselhaus
spin-orbit-coupled particle by reversing the sign of the Zeeman
field A.

B. Effective momentum-space Hamiltonian

We now add an external harmonic trap to H,, and assume
that the harmonic trapping strength is sufficiently weak that
a single-band approximation is valid. This constraint will be
discussed quantitatively in the following sections. Following
the derivation outlined in Sec. II, we combine Eqs. (7) and (4)
to write the effective Hamiltonian for the lower-energy band

k[iVp + A_(p))°

H=E_(p)+ 5
2 . 2
p k[iVp+ A_(p)]
— = /a2pr A2 . (10
M p-+ A+ > (10)

where A_(p) is the Berry connection (1) associated with
the Berry curvature of the lower-energy band (9). This
Hamiltonian will be discussed in more detail in Secs. IV and V
for the single minimum and ring minima regimes, respectively,
where we will show that key properties of this system can be
understood in terms of artificial magnetic fields in momentum
space.

C. Numerical calculations based on the full Hamiltonian H

Throughout this paper, we will compare analytical re-
sults from the effective magnetic Hamiltonian in momentum
space (10) with numerical calculations based on the full
Hamiltonian (6). To perform these calculations, we expand (6)
in the basis of single-particle 2D harmonic oscillator states [57]
as

H = w(ahaq + ala, + D1 - A6,
+aVMol6,@} — aq) +6_(ag —a))), (1)
where 64 = %(6)( £i6y) are the spin ladder operators, and

where we have introduced the 2D raising and lowering
operators

1 1
a9 = —(ay — idy), Qg = —=(ay +idy),  (12)

V2 V2
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in terms of the standard 1D ladder operators

. Mo (| n i (13)
ay = — | X+ —Ps
2 M wp
(and similarly along y). Each 2D harmonic oscillator basis

state is characterized by two quantum numbers: a radial

quantum number n = dl,&d + dg&g and an azimuthal angular

momentum quantum number m = &j,&d — ayQ,.

In this basis, we numerically diagonalize the Hamilto-
nian (11) to find the eigenspectrum and eigenstates. The
effect of the spin-orbit coupling is to couple a ladder of
spin-up states with m units of azimuthal angular momentum
to a second ladder of spin-down states with m + 1 units.
Within each ladder, the radial quantum number runs from
n=20,1,...,00, so that each ladder contains an infinite
number of states, equispaced in energy by 2Aw. To perform
numerical calculations, we impose an energy cutoff on the
basis states, ensuring the cutoff is sufficiently high that all
results are converged within the accuracy shown.

The numerical eigenstates are obtained as a superposition
of the 2D harmonic oscillator basis states. To study the spatial
properties of an eigenstate, we discretize and superpose the
appropriate basis states over a finite lattice of points. We
require that the lattice spacing is sufficiently small for results
to converge within the accuracy shown. For the calculations
in this paper, we chose a discretized grid of 240 by 240
points, with a spacing of 0.02ly, where lo = /T/Mw is the
characteristic real-space length scale of the harmonic trap.

D. Overview of the numerical energy spectrum
of the full Hamiltonian H

Figure 2 shows the low-energy numerical spectrum of
the full Hamiltonian (11) with the minimum energy of the
lower band min(E_) subtracted. We indicate with a vertical
dotted line the crossover between the single minimum and ring

FIG. 2. (Color online) The low-energy numerical spectrum ad-
justed for the minimum energy of the lower band min(E_) as a
function of ¢ = A2M /A, for x = 0.2. We have included states with
aradial quantum number n = 0,1 and an azimuthal quantum number
—3 < m < +3. The energy of each state is obtained by numerically
diagonalizing (6) over a basis of 150 states. To emphasize key
features, we then subtract the minimum energy of the lower band (7)
from the total energy of each state. The vertical dotted line marks
the crossover from the single minimum (¢ < 1) to the ring minima
regime (¢ > 1).
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minima regimes, where the functional form of the minimum
energy also changes (as shown schematically in Fig. 1).

The numerical states can be labeled by the two quantum
numbers n and m. By subtracting min(E_), we emphasize the
key features of the numerical spectrum. In particular, deep
in the single minimum regime, where ¢ = A’M/A < 1, the
principal energy splitting is between the groups of states with
different values of (2n + |m|), with a smaller splitting within
each group between states with different m. In the opposite
limit, far into the ring minima regime ¢ >> 1, the principal
energy splitting is between groups of states with different
values of n, with a smaller splitting within each group between
different m states. We shall now show that these hierarchies
of energy scales can be understood analytically through the
effective momentum-space magnetic Hamiltonian (10).

IV. SINGLE MINIMUM REGIME: FOCK-DARWIN STATES

A. Effective momentum-space Hamiltonian
in the single minimum regime

When ¢ = A2M/A < 1, we assume that the behavior of
the particle is entirely described by the single-particle states
close to the single minimum at p = 0. The band gap at the
minimum is 2A, and we assume this is much larger than all
other energy scales in the system, justifying a single-band
approximation. The energy band structure is characterized by
the effective mass M*:

2

E_(p) ~ Eo+ % (14)
o] M (15)
C[2E-(p)/%pllpey 10

where Ey = — A is the energy of the lower band at p = 0. The
band structure is also described by the value of Berry curvature
at the minimum (9). For a sufficiently large Zeeman field A, the
Berry curvature of the energy band is approximately uniform:

Q(p) ~ Qo = AA __x (16)
p) =3d = 2(A2p2 + A2)32 T AL

p=0
The uniform Berry curvature €2y can be expressed in terms

of a Berry connection (1). Choosing the symmetric gauge, we
express the Berry connection as

1 (TP
A_(p) = EQO Dx |- (17)
0

We substitute Egs. (15) and (17) into the effective momentum-

space Hamiltonian (10) to find
2

K

p L X

2M* 2

+iA_(p) - Vp + (A-(p)]

2 K 82 32
o o332

H ~ Ey+ [-V:+iVy-A_(p)

2M*  2\dp?  9p?
4 (8% ") @ s
2 Py ape TP p, ) T8O
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Introducing the angular momentum operator

a a
—Px—), 19)

L.=@xp).=il py—
2= ( P =i (py . op,

we rewrite the effective Hamiltonian (18) as

- k[ 8> 92 K20 »
R 5( L 1)t
2\ap2  op? 2 F

1/ 1 K 5\ o
+5 (5 + 5% (20)

This effective Hamiltonian was derived from a specific
model (6), but similar results would hold for any system under
the single-band approximation where the particle is confined
near a minimum in a geometrical energy band where the
Berry curvature can be approximated as flat. As we shall now
discuss, this Hamiltonian is the momentum-space analog of
the well-known Fock-Darwin magnetic Hamiltonian in real
space.

B. Fock-Darwin Hamiltonian

The Fock-Darwin Hamiltonian describes a charged particle
moving in a uniform real-space magnetic field BZ and a
harmonic potential. This theoretical model was first proposed
over 80 years ago, independently by both Fock [61] and Dar-
win [62]. Since then, despite its simplicity, the Fock-Darwin
Hamiltonian has found important practical applications, for
example, in describing few-electron quantum dots under
relatively weak magnetic fields [63—66]. In these systems,
the additional energy required to add one more electron to
a quantum dot can be modeled, in certain regimes, as that
of adding a noninteracting particle, described by the Fock-
Darwin Hamiltonian, plus a constant interaction energy [67—
69].

The Fock-Darwin Hamiltonian follows straightforwardly
from the general magnetic Hamiltonian (5) in real space with
an additional harmonic potential

—eA)Y 1
:%-F—K,I’z

1 82+82 +EBﬁ+l ,_|_e2B2 2
= —_—— —_— _ —_ —| Kk 7 ,
2M \ 9x2  9y? 2M 2 aM

21

HFD

where &’ is the strength of a harmonic trap with frequency «’,
and we have chosen the symmetric gauge for the magnetic
vector potential

1 -y
A(r) = > Bl x |. (22)
0

Comparing Eqgs. (20) and (21), we see that the two Hamilto-
nians have the same form (up to minus signs and an energy
shift Ejp). Translating between these Hamiltonians, the roles
of position and momentum are reversed. In particular, the
particle mass M and the harmonic trapping strength «’ in
real space are replaced by, respectively, the inverse harmonic
trapping strength x ~! and the inverse effective mass (M*)~! in
momentum space. The Berry connection .A_(p) is analogous
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to the magnetic vector potential eA(r), while the Berry
curvature 2 plays the role of the uniform magnetic field e B.

C. Fock-Darwin eigenstates and eigenspectrum

We use the duality between Eqs. (20) and (21) to translate
the known energy spectrum and eigenstates of the Fock-
Darwin Hamiltonian from real space into momentum space.

Ignoring the angular momentum term, the Fock-Darwin
Hamiltonian (21) is that of a 2D harmonic oscillator with a
shifted frequency
k1

+ 19
where w, = eB/M is the cyclotron frequency. As the 2D
harmonic oscillator eigenstates are also eigenstates of L., the
full Fock-Darwin eigenspectrum follows directly as [61,62]

= (@2n+ 1+ [mDhor + tmo,, (24)

wp = (23)

where n is the radial quantum number, and m is the
azimuthal quantum number. From the analogy between the
real-space Fock-Darwin Hamiltonian and the effective energy
band Hamiltonian, we translate this energy spectrum into
momentum space:

Ev = @11+ mhy 4 <0 Lotk
n,m — n m M* 4 me 0 0>

where k€2 is the analog cyclotron frequency. The energy
spectrum is

Enm 2 1 1
" @n 1+ my -0+ S e o L

(25)

in terms of the dimensionless parameters defined above.
Similarly, we can write the Fock-Darwin states analytically,
as these are 2D harmonic oscillator states in real space, with
a modified characteristic length scale I = /«k'/wp [67,68].
Translating between real space and momentum space, the
analytical form of the eigenstates in momentum space is

n! p\m\
tmga
Wn m(p (p) 7T(n + |m|)! l(‘mH'l)

x e PRI (p?12), (26)
where L\ are the generalized Laguerre polynomials and
! (O
=—|(1— 27
lo [( O+ ¢ 27)

is the characteristic momentum scale, analogous to [r. As
¢ — 0, the characteristic momentum scale reduces to the
inverse simple harmonic oscillator length: I — 1/ly. This
corresponds to the limit in which the effective Hamilto-
nian (20) is that of a simple harmonic oscillator in momentum
space with no artificial magnetic field.

These analog Fock-Darwin states (26) are characterized in
momentum space by the qualitative features of 2D harmonic
oscillator states in real space. The quantum number n counts
the number of radial nodes lying away from the origin, while a
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nonzero angular momentum |m| introduces an additional node
at p = 0. States with +m and —m are the same up to a phase
factor e*"¢_ while increasing values of |m| lead to wider dips
in the density around the origin [68].

D. Comparison of analytical and numerical results

We now compare the analytical Fock-Darwin eigenspec-
trum and eigenstates in momentum space, presented above,
with the numerical calculations outlined in Sec. III C, based
on the full Hamiltonian (6).

In the analytical eigenspectrum (25), the energy splitting
between different values of (2n + |m|) is larger than the
splitting between different m as { < 1 in the single minimum
regime. This separation of scales is displayed in the numerical
energy spectrum in Fig. 2. As can be seen from Eq. (25), the
magnitude of these energy scales is controlled by x, which
measures the strength of the harmonic trap relative to the
Zeeman field. In the effective Hamiltonian, we have used the
single-band approximation, which assumes that the harmonic
trap does not significantly couple the two energy bands. The
minimum band gap is 2A at p = 0, and so we take y < 2 to
ensure our analytical interpretation is valid.

In the limit that ¢ — 0, the Berry curvature vanishes and
the energy spectrum is that of a simple 2D harmonic oscillator
in the absence of a magnetic field:

En,m - IIllIl(E,)
w

- 2n+ 1+ |ml), (28)

where min(E_) = E| is the energy offset from the minimum
energy of the lower band. When the Berry curvature is zero,
the states with the same value of (2n + |m|) are degenerate.
This behavior can be clearly seen in the ¢ — 0 limit of the
numerical low-energy spectrum in Fig. 2.

As ¢ increases, the momentum-space magnetic field splits
the degenerate eigenstates. In the simplest case, for two
eigenstates with the same value of n and +m, the energy
splitting is given by

En,m En,—m — lmxg (29)
w 2

The splitting of states with n = 0,m = 1 could be ex-
perimentally measured in the splitting of the dipole mode
frequency of an ultracold gas [10,11]. This is because, for
the special case of the dipole mode, interactions drop out
and the dipole mode of this system can be understood at this
single-particle level [11].

The analytical prediction (29) is compared with numerical
results in Fig. 3 for a range of parameters. As can be seen,
the agreement with numerics is excellent for small values
of parameters x, ¢, n, and m, but breaks down as these
parameters are increased. This is because we have assumed
that the system is well described by an effective mass and a
uniform Berry curvature, both defined at the minimum p = 0.
In fact, there will be higher-order terms which are not captured
by our analytical Fock-Darwin spectrum (25). We expand
both the effective mass approximation and the Berry curvature
to next highest order, assuming that the eigenstates vary on
the characteristic momentum scale p o lg. The next-order

033606-5



PRICE, OZAWA, COOPER, AND CARUSOTTO

“{0.015

T

L oot}

=1

| < -

/g 0005 P A ‘77) ‘ ‘:“ll“|l|““1‘
§ | 71 Larger n
= 0 ‘

(@) 00 05, 1.0
3 0.15

7

< 0.1y

=]

|

— 0.057

2 9

(b) 0.0

FIG. 3. (Color online) The energy splitting between states with
+m and —m for (a) x = 0.01 and (b) x = 0.1. Solid lines are the
analytical Fock-Darwin results [Eq. (29)]. Dashed lines are numerical
calculations from the full Hamiltonian (6). Multiple dashed lines
of the same color represent states with different values of n. The
agreement between analytics and numerics is best for small y, ¢, n,
and m.

corrections scale as

SE. 1 10*E_(p) . 2y
= 0 ——
w w4! op p=0 (1—§)+%
132Q_(p) X
90 =3 5| 6’ ]
P e (1—0)+ G-

which decrease as ¢,y — 0. The corrections will also be
smaller for lower values of n and |m|, where the states are more
localized in momentum space. Our analytical interpretation
therefore best describes numerics when the parameters are
small. We note that §2_ has the opposite sign to 2y and
therefore will reduce the effective momentum-space magnetic
field and the splitting between states. This is observed in Fig. 3,
where the numerical results universally lie below the analytical
prediction.

In the limit ¢ — 1, the discrepancy between analytics
and numerics can be large, as shown in Fig. 3. This is
because there is a transition in this limit between the single
minimum and ring minima regimes where the effective mass
M* — oo. The divergence of the effective mass is analogous
to a vanishing harmonic potential in the real-space Fock-
Darwin Hamiltonian (21), where the Fock-Darwin states tend
towards Landau levels. However, as seen from the corrections
discussed above, the energy dispersion also provides an
effective quartic trapping in momentum space, which does
not vanish as ¢ — 1.

The above observations are supported by a comparison
of the analytical wave function (26) with the numerically
calculated eigenstate of the full Hamiltonian (6) along p, = 0

PHYSICAL REVIEW A 91, 033606 (2015)

0.08

0.00
*271'/10
(a)
—An. & Nu. ¢ =0.1
~Nu. ¢=0.6
0.04 —An. (=10.6
o A\ |-Nu. ¢=0.9
~ 7\ |—An. (=0.9
@ \
il
0.0
=21/l 0 2m /1y

by

FIG. 4. (Color online) Quantitative comparison between the an-
alytical (An.) Fock-Darwin eigenstates (26) and numerical (Nu.)
eigenstates of the full Hamiltonian (6) for (a) n =0, m =0 and
(b)n =0,m = 1for x = 0.1 and over a range of ¢.

for different values of ¢, shown in Fig. 4. As can be seen, the
agreement again improves for lower-energy states and as ¢
decreases. In particular, as ¢ — 1, the additional quartic po-
tential from the energy band dispersion becomes increasingly
important. Thanks to this additional trapping potential, the
wave functions are more tightly confined in momentum space
than expected from the simple Fock-Darwin description. This
is illustrated in Fig. 4, where for small { = 0.1, the theoretical
and numerical results are indistinguishable. For large { = 0.9,
conversely, theory and numerics quantitatively disagree, and
the theoretical prediction overestimates the spread of the wave
function in momentum space.

V. RING MINIMA REGIME

A. Effective momentum-space Hamiltonian in
the ring minima regime

For strong spin-orbit coupling or a weak Zeeman field,
{ =AM/A > 1 and the lower-energy band of H, has a
ring of degenerate minima. The effective momentum-space
Hamiltonian in this regime has previously been studied for the
special case of a vanishing Zeeman field A = 0 [42,53-57].
We now generalize the effective Hamiltonian to include a
Zeeman field, revealing a rich phenomenology.

We assume that the trap is much weaker than the energy
difference AE = [E_(po) — E_(0)] (Fig. 1), allowing us to
assume that, at low energies, a particle is confined to the ring of
minima. Under this constraint, the single-band approximation
is automatically justified, as the energy of the lower band at
the origin E£_(0) is always less than or equal to the minimum
energy of the upper band E (p). When the particle is confined
around the ring, we can make a separable ansatz for the wave
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function [42,70]

Ja(P)
VP
where G,,(¢) obeys an angular and f,(p) a radial effective
Hamiltonian (and the functions are indexed by m the azimuthal
quantum number and n the radial quantum number, respec-
tively). We now discuss these two contributions to the energy
separately.

Vum(P) = Gu(p) (30)

1. Angular effective Hamiltonian

The Berry curvature of the lower-energy band is peaked
around p =0 where the band gap is smallest (Fig. 1).
Increasing the Zeeman field widens the band gap and spreads
out the Berry curvature in momentum space. The ring of
minima defines a closed contour in momentum space. If
adiabatically transported around the ring, a single particle
gains a geometrical Berry phase [1]

b = / Q_(pdS =—rx |:sign(A) — §:|, 3D
N

where the surface S is bounded by the ring. This gauge-
invariant phase can be recognized as the analog of the magnetic
flux ed = e fs B(r)dS in momentum space.

In the limit that A — 0, the momentum-space magnetic
flux @ is equal to m and is concentrated at p = 0, where
the two bands are degenerate [42,53-57]. When A # 0, the
flux can be tuned by varying the strength of the spin-orbit
coupling or the Zeeman field. However, for a spin—% particle,
the flux is limited to —7 < ® < 7. To understand this, we
recognize that the geometrical Berry phase arises from the
rotation of the particle’s spin as it travels around the ring
of minima. Mapping the path around the ring onto the Bloch
sphere (Fig. 5), the Berry phase (31) is equivalent to half of the
solid angle enclosed by the path. For this model, the maximum
possible value is 4, corresponding to the spins lying in the
xy plane when ¢ — oo. In Sec. VI, we shall discuss how this
limitation may be overcome by using higher-spin systems.

FIG. 5. (Color online) Left-hand side: the orientation of the local
spin vector for (above) intermediate and (below) large ¢ around the
ring of minima for A > 0. Right-hand side: the mapping of the local
spin vector onto the spin-% Bloch sphere. As ¢ — oo, the spins at
Po lie in the xy plane, and the mapped path traverses the equator on
the Bloch sphere. This corresponds to the maximum possible Berry
phase |®| = & for this model.
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The Berry phase can also be directly related to the Berry
connection as

¢ = %A(p) -dl, (32)

where the line integral is around the ring of minima. The Berry
connection of the particle confined to the ring is

Apo.g) = =, 33)
21 po
for A > 0. Alternatively, this functional form could be derived
directly from the spinor (8), by evaluating the Berry connection
at p = (po,¢) and performing algebraic manipulations.
We note that if the sign of the Zeeman field is reversed,
A < 0, the orientation of the local spin vector on the Bloch
sphere begins from || ) as ¢ increases (instead of from |1) as
shown in Fig. 5). However, the spinor (8) has a singularity
when p =0 and A < 0, corresponding to the || ) state; this
singularity must be removed for Eq. (32) to hold. This can
be done by gauge transforming the spinor, multiplying it by a
factor of e ~'#, so that the singularity is instead at |1). The, the
above form of the Berry connection (33) can again be derived.
From this Berry connection, we write the angular effective
Hamiltonian (10) as

k(i@ >\’
7 =—<——+ ) (34)
7 2\podp  2mpo

where all contributions from the lower band dispersion E_(p)
are included in the radial Hamiltonian below. As we shall now
discuss, this is the momentum-space analog of the Hamiltonian
for a particle on a 1D real-space ring pierced by a magnetic
flux.

2. A 1D ring pierced by magnetic flux

In real space, the eigenspectrum and eigenstates of a single
charged particle on a 1D ring pierced by a tunable magnetic
flux are well known, and the flux has important physical
consequences in both persistent currents and Aharonov-Bohm
oscillations [71,72]. The Hamiltonian of a particle on a 1D
ring threaded by magnetic flux @’ is [73]

o L i 9 ed )\ 35)
"T oM\ r06  27r)
where 7y is the radius of the ring and (r,0) are polar coordinates
in real space. Comparing Egs. (34) and (35), we see that these
are analogous Hamiltonians with the roles of position and
momentum reversed.
The eigenstates of Eq. (35) in real space are [73]

Ym = J%eime , (36)

while the energy spectrum is

1 '\’
/
Efmg(m—a;,)’ Gn
where we have introduced the magnetic flux quantum &j, =

27 /e (as we have set i = 1). The energy spectrum is parabolic
in m, and periodic as the magnetic flux varies by ®j,.
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We translate these results from the real-space Hamiltonian
into momentum space. Then, we find that the eigenstates of
Eq. (34) are

Gu(p) = e, (38)

while the energy spectrum is

L ( ® )2 (39)
m= 5|\ M- — )
2p3 (o)

and the analog of the “magnetic flux quantum” &y = 2. In
terms of our dimensionless parameters, this is

En ! {m + ! [sign(A) ! ] }2 (40)
; .
The radius of the momentum-space ring varies as the flux is
tuned. Consequently, the energy is not a unique function of @,
which it is in real space (37), but depends on which parameter
is used to tune the flux. For example, the flux may be tuned to
|®/Dy| — % by increasing the spin-orbit-coupling strength:
A2M — oo. Then, the radius of the momentum space ring
goes to infinity, and E,,/w — 0. Alternatively, the flux could
be increased by reducing the Zeeman field to zero. Then, the
momentum-space radius tends to a constant: py —> /C/x.
The energy spectrum is then [53-57]

E,. w n 1\? @1
H [ — p—
o sso22m\"T2)

where we have chosen sign(A) = 1 to avoid ambiguity when
A = 0. This corresponds to choosing the spinor in the gauge
of Eq. (8).

The single-particle ground states without a Zeeman field are
the degenerate eigenstates with m = 0 and —1 [53]. Including
a Zeeman field breaks time-reversal symmetry and lifts this
degeneracy; for —% <®/Py < %, the ground state is always
m = 0 [74]. As it is experimentally more relevant to consider
A = 0 rather than A2M — oo, we hereafter focus on tuning
the flux via the Zeeman field.

3. Radial effective Hamiltonian

We assume that the particle is well described by the
properties of the ring of minima. Radially, we apply the
effective mass approximation, expanding the energy band
structure around this radius as

N (p = po)*
E-(p) > E-(po) + — =

1 M
M* = e =———. (‘2
[0°E_(p)/0°p] Ipl=po 1-1/¢
Under these assumptions, f(p) obeys a radial effective
Hamiltonian (10):

- K 92

1 2
~—— 4 —(p—po) +E_(po), (43
=35 (p— PP+ E_(po).  (43)

2M*

as the radial component of Berry connection is zero. This is the
Hamiltonian of a 1D simple harmonic oscillator in momentum
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space [42,70]. The eigenstates are therefore

1 1\ -
fu(p) = —(—) e PP H, (p/ pr), (44)
V2! \mpi
where H, are the Hermite polynomials and the characteristic
momentum scale is

1/ M\ V4
P1=£<ﬁ> . (45)

As ¢ increases, the effective mass M* tends towards the
bare particle mass M from above (42), and the characteristic
localization of the wave function in momentum space: p; —
1/1y. This dependence on the harmonic oscillator length is
because a weaker harmonic trap in real space corresponds to a
smaller kinetic energy in momentum space, and hence a more
localized wave function in momentum space.

The spectrum of (43) is the well-known ladder of harmonic
oscillator states:

1 K
E, = — E_(po), 46
<n+2),/M*+ (Po) (46)
which, in terms of our dimensionless parameters, is
E, 4 1 1 1 1/¢ N 1 A7)
o \"72 2 2\x /)

This reduces, in the limit of A — 0, to the previously known
result [42,53-57,70].

B. Comparison of analytical and numerical eigenspectra

We now compare the analytical eigenspectrum in mo-
mentum space, with the numerical calculations outlined in
Sec. III C, based on the full Hamiltonian (6).

The total energy E,, = E, + E, in the ring minima
regime is found from adding Eqs. (40) and (47):

%—_1<£+L)+<+l) l_i
o 2\x ix " ¢?

+ ! {m + ! |:Sign(A) 1“2 (48)
; .
-z U2 ¢

For large ¢ > 1, the spacing in n of the radial harmonic
oscillator levels dominates over the energy splitting in m.
This separation of scales is observed in the numerical energy
spectrum in Fig. 2.

Guided by the nearly flat energy dispersion in m, the single-
particle Hamiltonian without a Zeeman field has previously
been mapped to a 2D Landau level Hamiltonian at large spin-
orbit-coupling strength [42,56]. The radial quantum number
serves as the Landau level index, and the n = 0 manifold
has been termed the lowest Landau level. This description
is reasonable provided that the angular momentum is small
compared to ¢/ x.

In Fig. 6, we separate out the angular energy from
the numerical results, in order to compare numerics with
the energy spectrum of a momentum-space ring pierced
by magnetic flux (40). We tune the flux by varying A,
while keeping ¢/x constant and large; the A =0 limit is
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FIG. 6. (Color online) A segment of the energy spectrum as a
function of the momentum-space magnetic flux, tuned via the Zeeman
field. In the limit A — 0, ®/ Py — —%, for £ /x = 100. The dashed
lines indicate the analytical predictions from Eq. (40). The solid
lines are extracted from numerics by calculating computationally the
total energy and then subtracting the theoretical radial energy E, /w
(Eq. (47)].

captured by —®/ Py = % As can be seen, there is excellent
agreement between numerics and analytics at high flux for
these parameters. As flux increases, ¢ becomes larger, as
does, consequently, the energy barrier in the center of the
ring AE = [E_(po) — E_(0)]. This barrier should be large
compared with the harmonic trapping energy to justify our
approximation that the particle is confined at the bottom of
the ring. This approximation, and hence also the single-band
approximation, improves as ¢ increases and ¢ /x increases.

C. Persistent currents

A remarkable feature of a quantum ring (or cylinder)
threaded by a magnetic flux is the possibility of persistent
charge currents, even in the ground state. These currents are
an equilibrium property of the single-particle eigenstates; they
flow without dissipation and reflect the phase coherence of
the electron wave function around the ring. In bulk super-
conductors, macroscopic coherence is a key attribute of the
superconducting wave function and persistent currents have
been an important area of research since the 1960s [75-77].
In recent years, this study has naturally been extended to
Bose-Einstein condensates, where superfluid persistent mass
currents in ring traps have also been experimentally studied by
rotating or stirring the atomic cloud [78-81].

Perhaps more surprisingly, persistent currents can exist in
resistive rings, provided the phase coherence length is larger
than both the elastic mean-free path and the circumference of
the ring [82,83]. In these systems, persistent currents initially
proved challenging to study experimentally because of deco-
herence from inelastic scattering and because of the necessity
of using indirect experimental probes in order to preserve phase
coherence of the electrons. However, persistent currents have
now been extensively investigated in both mesoscopic metal
rings [84—-89] and semiconductor rings [90-92].

The phenomenology of persistent currents is further en-
riched by the inclusion of spin. In an inhomogeneous magnetic
field, the spin of an electron with either spin-orbit coupling
or a Zeeman interaction will rotate around the ring, and the
electron can gain a spin Berry phase [1]. This geometrical
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phase can be controlled by engineering the form of the
magnetic field, with possible future applications in spintronic
devices [93-95]. The spin Berry phase can be reexpressed in
terms of a spin-dependent artificial magnetic gauge potential,
which can generate persistent charge and spin currents around
the real-space ring [93,96-99]. (While spin-orbit coupling
alone is sufficient to generate a real-space Berry phase around a
ring, only a persistent spin current is produced as time-reversal
symmetry is not broken [98,99].) Persistent spin currents of
bosonic excitations have also been theoretically studied in
Heisenberg rings [100], and it has been proposed that persistent
mass and spin currents may be created in ultracold gases using
optically generated artificial magnetic fields [101,102].

We demonstrate that this physics is even more general
than hitherto studied. Just as a real-space Berry phase or
magnetic flux generates real-space currents, here we show
how a momentum-space Berry phase can lead to eigenstates
with the analog of persistent currents in momentum space.

1. Persistent currents in momentum space

In real space, the persistent current around a 1D ring pierced
by magnetic flux can be calculated from the expectation value
of the azimuthal velocity for a single particle: Iy = (ry)/2mry.
Due to the presence of the magnetic vector potential, the
velocity operator must be defined with care from the magnetic
Hamiltonian (35) as

10 1 ad @’
=t L () )
eaAg M}’O

The average persistent current is then

5, = o) ! (m eqy). (50)

- 21y - 271Mr§ h CPT{)

Analytical calculation from the effective Hamiltonian. By
analogy in momentum space, we consider the operator defined
from the effective Hamiltonian (34) as

. oH,

be aA, lPo dp  po Py’ ©1)
where we have used that only the angular effective Hamiltonian
depends on the angular Berry connection.

We calculate the expectation value of (51) with respect to
the low-energy eigenstates. We assume that ¢ is large, so that
the single particle is always in the n = 0 radial ground state,
then the eigenstate (30) can be written as

Jo(p)

m >~ Gy
Yom(P) (@) N

) oM o= (P=p0)*/2p} (52)

1
- <\/2n3/2p1p

Calculating the expectation value of (51) with respect to these

states, we find
. K [
(Pp) = —|m— 30 ) (53)

033606-9



PRICE, OZAWA, COOPER, AND CARUSOTTO

with a “current” around the momentum space ring:

) (o}
I(p — (pw) _ K . (m _ _) (54)
21 po 27 pg [OX

As in real space, the ground state m = O supports a nonzero
equilibrium “current” that is directly proportional to the
momentum-space magnetic flux threading the ring. When A =
0, the system is time-reversal symmetric and the “current” in
the m = O state is equal and opposite to that in the m = —1
degenerate state.

The role of the Berry connection in the effective Hamilto-
nian is to capture the behavior of the spinor wave function.
From n_(p), we can understand the physical basis of the
persistent current in momentum space. In the ring minima
regime, N; = %(1 + 1/¢) of the particles are in one spin state
carrying zero units of azimuthal angular momentum when
m = 0, while N, = %(1 — 1/¢) of the particles are in the other
spin state, carrying one unit (8). The addition of these two
contributions underlies Eq. (53) derived above.

Numerical calculation from the full Hamiltonian. To com-
pare this with numerical calculations, we must consider the
relevant operators defined from the full Hamiltonian (6). To
do so, we consider adding a fictitious momentum-space gauge
potential A, (p) in the full Hamiltonian in momentum space
and then taking

M
Po = 704,
9 1 82 1 (i d 2
= Hy— k[ a, )
3A¢[ ’ 2K8p2+2k<p8¢+ ¢) ]AM
3 .
=it %] (55)
p gy

We calculate the expectation of this operator with respect to
the momentum-space wave function of the full Hamiltonian.
In Fig. 7, we compare the effective Hamiltonian ap-
proach (53) with numerics. As can be seen, the numerical
and analytical results are in excellent agreement for large ¢/ x
above |®/®p| >~ 0.1. In this regime, the harmonic trapping

N0 0.25 0.5
—&/®

FIG. 7. (Color online) The azimuthal “velocity” in momentum
space as a function of the flux for the five lowest-energy states —2 <
m < 2 and n = 0. The flux is varied by tuning the Zeeman field A,
while holding the ratio { /x = 100 fixed. Dashed lines are analytical,
while solid lines are numerical results.
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strength is small compared with the energy barrier in the center
of the trap and the approximations made analytically are valid.

2. Persistent spin currents in momentum space

As mentioned above, when the spin of a particle rotates
around a real-space ring, the spin Berry phase can lead to
a persistent spin current in addition to the usual persistent
current [93,96-99]. In momentum space, by analogy, the
momentum-space Berry phase (Fig. 5) can generate persistent
spin “currents” around the momentum-space ring.

To proceed, we must include the spin degree of freedom
explicitly. We can approximate the low-energy momentum-
space eigenstate of the full Hamiltonian as

Yo (P) = Yom(P)n-(P) (56)

for A > 0, where vy, is the expansion coefficient (52)
satisfying the effective Hamiltonian and n_(p) is the spinor
of the Hamiltonian in the absence of the harmonic trap H).

In general, a proper definition of the spin current density
is challenging as the spin is not conserved in the presence of
spin-orbit coupling. This issue has been extensively debated
in the literature for real space (see, for example, Ref. [103]
and references therein), where different definitions have
been suggested. We note that in this model, the momentum
dependence of the local spin vector along z is

W (P)E, Yo (P) e/t (57)

1
p /p2)L2+A2

which is independent of the polar angle ¢. This means that
the z component of the spin is constant at fixed radius p, such
as around the ring of minima. We define a 1D azimuthal spin
current density J; as the evaluation of the operator pj 6,, with
respect to the 1D eigenstates at the ring radius G, (¢)n—(po,¢)
for A > 0. We integrate around the ring of minima to find

/Zn Jidg = L[m(l + l) —(m+ 1)(1 — 1)}
o YT 2 ¢ c) ]

This has a clear physical interpretation in the same terms as
the persistent current discussed above: N; = %(l +1/¢) of
the particles are spin up, with m units of azimuthal angular
momentum, while N, = %(1 — 1/¢) of the particles are spin
down, carrying m + 1 units.

We repeat the above calculation for A < 0, where the
1D eigenstates are G,,(¢)e " *n_(po,9). [The gauge transfor-
mation is required to derive the chosen form of the Berry
connection (33) as discussed above.] The 1D spin current is
now

/h Jidg = i[(m—1)<1 —1) —m(l+l):|
o YT 2 ¢ ¢ )

This is because reversing the sign of A also flips the sign
of ¢ =A*M/A. Now, N, = %(l — 1/¢) of the particles are
spin up, carrying m — 1 units of azimuthal angular momentum
around the ring, while N; = %(1 + 1/¢) of the particles are
spin down, carrying m units.
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3. Consequences of momentum-space persistent
currents in real space

Persistent currents around the momentum-space ring will
also have physical consequences in real space. The analogy
with charged particles in mesoscopic real-space rings would
correspond to the momentum-space behavior of the system
which has been little studied.

Real-space magnetic moment. We begin from the real-space
azimuthal velocity operator 9y, where 6 is the polar angle
in real space. This must be defined with care as the spin-
orbit coupling acts as an additional gauge field, modifying
the physical velocity. We introduce a fictitious gauge potential
Ay into the full Hamiltonian (6), in real space, and derive the
velocity operator as

1 0H ila.

g = ——— =——-—1-146,,
e dAp | 4,0 Mr 06

. 0 e—i9
or = (eie 0 )v (58)

where we have introduce the radial Pauli matrix &,. The first
term can be called the “kinetic” contribution, while the second
term will be referred to as the “spin-orbit” contribution. We
calculate the real-space magnetic moment as

Mz o< Mup(rig), (59)

where up = 1/(2M,) is the Bohr magneton, M, is the electron
mass, and we have taken h = e¢ = 1.

To proceed, we Fourier-transform the real-space operators
into momentum space:

. i 0 .
rvg = ———1
M dg
—ip(1 @ .y
_)\( 0 e “’(;w%—l@))
i 10 .9 ’
ew(—;w—i-l%) 0

(60)

where ¢ is the polar angle in momentum space, and the first
(second) term is the kinetic (spin-orbit) term.

To calculate the kinetic contribution, we take the ex-
pectation value of the operator with respect to the wave
function (56):

. 0
= (Wom | —11Wom)
dp

_ /Do dp —A+CmA DV A?
0 2p14/T/ pEAE + A2

(61)

In the limit that the wave function is strongly localized

radially around py, i.e., when p; — 0 as the flux is large or

the harmonic trap is weak [Eq. (45)], we can approximate this
integral using the Laplace method as

A 2m + 1
4§ )

2,/ P22 + A2 2
1 1

, 9 .
— (Yo | — 1|Wom) =~ —
e

PHYSICAL REVIEW A 91, 033606 (2015)

Repeating this calculation for the opposite Zeeman field A <
0, we find

(W) iiqf’ ~ l(1 1) (63)

Combining these two results, and comparing with Eq. (31),

we write this as
NN d
—i(—1)~|{m-—. (64)
dp o

This is similar to Eq. (53) calculated above as the Berry
connection in the effective Hamiltonian is capturing the
behavior of the spinor wave function (which leads to the term
o).

§imilarly, we can calculate the spin-orbit contribution,
again applying the Laplace approximation to the resulting
integrals. We then find that

(O]
— MXré,) =~ —m — sign(A) — —. (65)
o)

The total real-space magnetic moment is then

e —"C—B = MB[—Sign(A) - 2%} (66)

for all low-energy states, independent of the azimuthal quan-
tum number m. The magnetic moment is maximal in the
limit of vanishing flux and tends to zero as |®/®y| — %,
corresponding to an increasing spin-orbit coupling and/or a
vanishing Zeeman field. We find that this analytical result
is in good agreement with the numerical calculations, for
|®/Dy| > 0.1, for small values of m, and large values of ¢/ x.

The real-space magnetic moment (66) can alternatively be
derived semiclassically as the magnetic moment of a wave
packet [104] confined to the 1D ring in momentum space. We
note that the semiclassical magnetic moment was previously
studied for a 2D electron gas in a Zeeman field with Rashba
spin-orbit coupling in Ref. [105], where equilibrium real-space
edge currents in the presence of a confining potential were also
discussed.

Real-space spin density profiles. As introduced above, ana-
log persistent currents in momentum space can be understood
in terms of the atom number in each spin component. In real
space, this can be measured directly in the density profile of
the two spin components.

To lowest order in the momentum, we can approximate the
spinor as n_(¢, p) =~ n_(@, po); this approximation improves
as A — 0. By neglecting the momentum dependence of the
spinor, we can apply the approximate identity [70]

/ dg.Jqe= P2 g (qr/1o) ~ /27 poloe™" 5 1 (por),

where J,, is a Bessel function of the first kind and where we
have used that p; >~ 1/1y. This approximate identity is valid
provided that pgly > m, implying the “thin-ring limit” where
the harmonic trap strength is much larger than the single-
particle angular energy E,, [70]. Under these conditions,
Eq. (56) can be Fourier-transformed to find the approximate
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FIG. 8. (Color online) Comparison between Eq. (67) (An.) and
numerical (Nu.) real-space wave function for ®/®d; = —0.45 and
®/Py = —0.25, with ¢ /x = 40 and m = 0. (a) The density of spin-
up atoms and (b) the density of spin-down atoms for a cut along
y = 0. As the density profiles are rotationally symmetric, the full
distribution can be found by rotation around the z axis.

real-space wave function

efrz/Zlg pOA

\/Zloﬁ /p(Z)XZ+ A2
AJ"\/m im6
x |:—Oe Jm(Por)] ) (67)

Wy () >~ i™

.Po)»
et(m—H)@ -]m+1 (Por)

This analytical result is compared with numerics from the
full Hamiltonian in Fig. 8 for two values of the flux for
the m = 0 state. There is excellent agreement at high flux
where the above approximations for the analytical wave
function are most appropriate, but there is also good qualitative
agreement with key features at lower flux values.

The azimuthal angular momentum of the spin state is
reflected in the real-space density profile through the Bessel
function J,,. In particular, if the spin component carries no
angular momentum, there is a maximum in the density at
r = 0, otherwise there is a node in the density at the real-space
origin (Fig. 8).

The real-space wave function was previously studied for
a vanishing Zeeman field, where the degenerate ground
states m = 0 and —1, have been termed half-quantum vortex
states [53]. This description refers to half of the atoms being
in an s state with no units of angular momentum, while the
other half are in a p state with one unit. As the local spin
vector winds radially outwards, the real-space wave function
can also be described as a nontrivial topological skyrmion-like
spin texture [53].

Introducing a small Zeeman field tunes the number of
particles between the two spin states (Fig. 8), without changing
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the qualitative features of the wave function. By imaging the
real-space spin-up and -down density profiles, experiments
could extract both the azimuthal angular momentum of each
spin species as well as the proportion of particles in each
component. In Sec. VII, we shall discuss further experimental
ways to observe the effects we describe.

VI. HIGHER-SPIN SYSTEMS

In the ring minima regime, simple forms of the spin-orbit
coupling, such as 2D Rashba or Dresselhaus for spin-%
particles, limit the tunability of the flux to —% <o/P) < %
As mentioned above, this reflects the maximum value of
the Berry phase possible in these models. To further extend
the analogy with real-space magnetism, we show that the
momentum-space flux can be tuned over a larger range
in higher-spin systems. This may soon be experimentally
relevant thanks to recent proposals for how spin-orbit coupling
for higher spins might be generated using pulsed magnetic
fields [51,52] or the optical dressing of internal atomic
states [106].

We discuss a generalized Rashba spin-orbit coupling for
a particle in 2D with spin F [70]. The full Hamiltonian (6)
becomes

H="Hy+ Lerd,
? (68)
p>. A . . R
HO = wl + F(pxFy - Pny) - AFZ»
where I:"X,y,z are the spin-F matrices along the x, y, and
z directions. In this Hamiltonian, we have neglected the
quadratic Zeeman shift which may also be present for certain
atomic species [51,52].
The properties of this general model without a harmonic
trap are given in the Appendix. This system has 2F + 1 bands,
but the energy dispersion of the lowest band remains:

2

E_(p) = 2’)—M — VP Al (69)

with the ring of minima as before at py = / M?2A2 — A2/)2
provided that MA%/A > 1. The Berry curvature is [1]

AZA

Q-(p) = _F()\zpz T A2

(70)
and where Eq. (9) is regained for F = %

A. Single-minimum regime: Fock-Darwin

From Eq. (70), the higher spin F multiplies the value
of the Berry curvature at p = 0. As a result, the “cyclotron
frequency” entering Eq. (25) becomes

W, k20

= —Fxg, (71)
1) 1)

which scales the splitting between states with (2n + |m|). For

sufficiently large spins, the effects of the Berry curvature will

dominate over other terms in the energy spectrum. This will be

directly observable in the dipole mode splitting of an ultracold

atomic gas.
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In the limit of a very strong momentum-space magnetic
field, the confinement from the energy dispersion becomes
irrelevant and the free-particle behavior dominates. The states
may then be described as Landau bands [67] with an energy
dispersion

1
E=E)+ (N + z)wc, (72)

lm|—m

> and where

where the Landau level numberis N =n +
we have used that w, > w,, in (25).

The increase in ¢ can also be seen in the momentum-
space wave function, which has a characteristic length scale in

momentum space (27):

o Mo [ M +(Mw£20)2 174
TN R | M 4

1 N(zom e
—lo[(l O+F 1 } .
The wave function is more strongly localized as F increases for
given values of ¢ and y, due to the increase in the strength of the
momentum-space artificial magnetic field. One consequence
of this is that the Fock-Darwin description is valid over a larger
range of spin-orbit coupling strengths as the wave function is
well described by the properties of the band at p = 0.

(73)

B. Ring-minima regime

In the ring minima regime, the momentum-space artificial
magnetic flux is

o _271 Po
Dy Dy J

for the lowest band. This is because the Berry phase is F times
the solid angle enclosed by the evolution of the spin vector
around a path (Fig. 5) for a spin model of arbitrary spin [1]. In
the higher-spin Hamiltonian (68), the path taken by the spin
vector is independent of F, and the spin enters as a simple
multiplicative factor into the flux. The range of the flux is now
—F < ®/®) < F. The higher spin also affects the angular
energy (40):

E,, K o \?
-m (= =
w 2wp} [oN

= ;[m + F<si n(A) — l)ir (75)
(8- £ ¢/1°

X 94

1
Q_(p)pdp = —F(Sign(A) - E) (74)

as demonstrated in Fig. 9(a) for F = 3. Now that the flux can
be tuned past |®/Py| = %, the successive transitions of the
ground state between different values of m are apparent. As
for a mesoscopic normal ring, the transitions occur for half-
integer flux while the minimum energies occur for integer flux.
However, unlike a real-space ring, the energy is not perfectly
periodic with @ = 27 due to the variation in py with the flux.
In the special case that the Zeeman field vanishes, the energy

is
En o O iy, (76)

where we have again chosen sign(A) = 1 in this limit.
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FIG. 9. (Color online) (a) The analytical angular energy (75) for
¢/x =20 and F = 3, showing the successive ground states with
different values of m. The degeneracies between states occur at half-
integer values of the flux. (b) The analytical “velocity” for the ground
state (77) for the same parameters.

As previously studied for spin—%, a half-integer spin-orbit-
coupled system without a Zeeman field has a nontrivial Berry
phase of 7 modulo 27, and all states are doubly degenerate.
Conversely, for integer spin, the effect of F is simply to relabel
the integers m. This corresponds to a trivial Berry phase of 0
modulo 27. (The absence of a Berry phase for spin-1 systems
has previously been noted in Ref. [70].) In this case, the ground
state is always unique and has azimuthal angular momentum
m=—F.

Similarly, we can generalize the azimuthal “velocity” to
higher spins (53):

(Py) = £|:m 4 F(sign(A) _ l)} 77)
Po ¢

illustrated in Fig. 9(b). As the ground state transitions between
different states, the “velocity” of the ground state jumps. This is
analogous to the “sawtooth” behavior of the persistent current
in the ground state in mesoscopic real-space rings [73].

C. Single-band approximation

The effective momentum-space magnetic Hamiltonian re-
quires the validity of the single-band approximation. Here,
we discuss in detail this approximation in all regimes for a
general spin-F particle. (The conditions for a Spin—% particle
that have been discussed in the above text are regained by
setting F = %.) In the single-band approximation, we assume
that the harmonic trapping energy is much smaller than the
band gap between the lowest and second lowest bands. The
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second lowest band has energy

2 1

Ex(p) = Lo (- Vv PPAZ 4+ A2 (78)
2M F

Regime 1. For F = %org < %,there is asingle minimum

in the second lowest band at p = 0. The energy is

E> (O 1\1
20) =—<1——)—. (79)

w F)x
Provided that ¢ < 1, the lowest band is also in the single
minimum regime, with energy £_(0)/w = —1/x. Comparing

these energy scales, we see that the single-band approximation
is satisfied if 1 > F x. This requirement becomes harder to sat-
isfy for higher-spin systems and its experimental consequences
will be discussed in more detail in the following.

Regime 2. For either F =1 and ¢ > 1 or for F > 1 and
l1<¢ < % , the lower band will be in the ring minima regime
while the second lowest band will have a single minimum at
p = 0. In the ring minima regime, we require that the harmonic
trapping strength is small compared with the energy barrier
in the center of the ring. As this barrier is smaller than the
band gap [E2(0) — E_(po)] 2 [E—(0) — E_(po)], the single-
band approximation is automatically satisfied provided that
the trap is small compared with the energy barrier: [E_(0) —
E_(po)]/@ < 1. This requires

S ! + ! 1 (80)
XS5\ ¢ c ;
which is independent of the spin F. In the limit of a
vanishing Zeeman field for a spin-% particle, this condition
is approximately 2 < ¢/ .

Regime 3. For higher-spin systems, when % < ¢, the
second lowest band also has a ring of minima at
(F —1)? . A?
Pzz\/TM)& VR (1)
where the energy is
E 1 F—1)?
ap) _ 1 (F-1'¢ )
) 2x¢ 2F?

For large ¢, this minimum energy can be lower than the
energy of the lowest band at the origin. Then, the band gap is
smaller than the height of the barrier at the center of the ring
[Ex(p2) — E—(po)] S [E—(0) — E—(po)], and the single-band
approximation must be reinforced by ensuring that

(F=177¢
1< |1l——|—=—. 83
< [ |5y (83)
This requirement also becomes more stringent at larger F'; for
example, for F = 5, this requires that ¢ /x 2 5.5.

VII. EXPERIMENTAL CONSIDERATIONS

The physics described above may soon be realized ex-
perimentally thanks to recent proposals for how 2D Rashba
spin-orbit coupling may be added to an ultracold gas [49-52].
A Zeeman term could then be applied using an external
magnetic field, while a harmonic trap can be straightforwardly
added by means of additional laser beams. In this paper,
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we have focused on single-particle properties; these may
be explored with fermionic atoms, or with species where
the interaction strength can be tuned to zero by means of
a Feshbach resonance. The inclusion of interactions will in
general lead to other novel ground states, such as the so-called
skyrmion lattice phases [53,54,57,70,107].

There is also great interest in studying spin-orbit-coupled
systems in photonic systems. Recently, for example, a novel
spin-orbit-coupling Hamiltonian was experimentally realized
for polaritons in a hexagon of coupled micropillars [43].
If further advances create Rashba spin-orbit coupling, a
harmonic potential could be added in the cavity arrays of
experiments such as Refs. [24,43] by letting the cavity size
vary spatially. Photonics experiments also provide full access
to the wave function, which can be imaged in real (momentum)
space using the near-field (far-field) emitted light [24,108].

We now explore how observations of relevant quantities
may be used to study the momentum-space artificial magnetic
fields discussed above. We focus in turn on the single minimum
and ring minima regimes for the lowest-energy band.

Single minimum regime. In this regime, the momentum-
space magnetic field breaks the degeneracy of states with the
same azimuthal angular momentum. As previously studied, the
effect of the Berry curvature could be measured experimentally
in the dipole mode splitting of an ultracold gas even with
interactions [10,11]. Collective modes are powerful tools for
probing ultracold gases, as the oscillation frequencies can be
measured with high precision [109,110]. For 0 < ¢ < 1 and
x < 1, the upper bound on the dipole mode splitting for a spin-
% particle is w/w < 50% [11]. As we have noted above, for
a higher spin the “cyclotron” frequency scales with F', and the
dipole splitting increases. However, to satisfy the single-band
approximation x < 1/F, and so the overall upper bound on
the dipole mode splitting is not increased by higher spins.

The momentum-space magnetic field also affects the local-
ization of the low-energy momentum-space wave functions. As
discussed above, the momentum-space Fock-Darwin states are
2D harmonic oscillator states with a modified characteristic
momentum scale (73). This characteristic scale could be
probed in experiments via time-of-flight measurements which
map out the momentum distribution of the atomic cloud. The
scale is governed by two competing effects as ¢ is tuned: first,
the effective mass decreases, which spreads the wave function
out in momentum space, and second, the momentum-space
magnetic field increases, which localizes the wave function,
reducing its spread.

For 0 <¢ <1 and x < 1/F, the net effect of changing
the spin-orbit-coupling strength is always to increase the char-
acteristic momentum scale as the effective mass dominates.
However, the effect of the artificial magnetic field could be
isolated by measuring the variation in the spread of the wave
function as yx is varied. In the limit that { — 1, doubling x
would reduce the momentum space width of a wave function
by a factor of 1/+/2.

Ring minima regime. The momentum-space magnetic flux
can be measured in the dependence of the single-particle
energy spectrum on m. In general, the energy splitting of states
with +m and —m is maximal when the Zeeman field is tuned
to zero, then it is dw/w =2mF x /. For a spin—% particle
we require that ¢/x = 2, and so the splitting can be up to
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Sw/w < 50% x m. For a higher-spin F particle, the system
is in Regime 3 discussed above for a vanishing Zeeman field
and the single-band approximation requires that Eq. (83) is
satisfied. As a result, the maximum splitting between states
with +m and —m is

Sw (F — 1)

which can be a significant percentage of the harmonic trapping
frequency for suitable values of m. Another key experimental
signature of the momentum-space artificial magnetic flux is
the characteristic jumps in the azimuthal angular momentum
of the ground state as a function of momentum-space magnetic
flux (Fig. 9). These transitions could be inferred, for example,
from the variation in the ground-state energy with the flux.

As in real-space rings, the momentum-space magnetic flux
induces equilibrium persistent “currents” around the ring of
minima even when the azimuthal angular momentum quantum
number m = (. Physically, the origin of this analog magnetic
phenomenon is from the balance of different spin components
in the ground state, which carry different amounts of angular
momentum.

Persistent currents in momentum space could be investi-
gated, for example, in the semiclassical dynamics of a wave
packet. We assume the wave packet is prepared at an angle ¢,
on the 1D ring in momentum space, and centered around an an-
gular momentum m.. In the semiclassical approximation, the
wave packet moves around the momentum space ring at a rate

. K 0]
Pope = —\me—— ). (85)
Do o)

For a wave packet centered around m,. = 0, this increases as
|®/®dy| — F.In units of the trap frequency, the rate at which
the wave packet moves around the momentum-space ring of
minima scales as %\/X_/C in the limit of a vanishing Zeeman
field for a spin—% particle. To justify our approximations, we
also require that ¢/x 2 2 in the same limit, as discussed
above. Then, the rate would be py@, < ﬁzw. Alternatively,
persistent currents could be studied via the real-space angular
momentum of the wave function or inferred from measuring
the number of atoms in the different spin components.

VIII. CONCLUSIONS

In this paper, we have shown that a single-particle with
2D spin-orbit coupling in a weak external harmonic trap can
be described by an effective Hamiltonian in which the Berry
curvature acts as an artificial momentum-space magnetic field.
When the spin-orbit-coupling strength is weak compared to the
Zeeman field, the effective Hamiltonian is analogous to that
of the Fock-Darwin Hamiltonian for a particle in a real-space
harmonic trap and uniform magnetic field. From this analogy,
we have translated results more usually applied to quantum
dots to describe the momentum-space properties of a spin-
orbit-coupled atom.

In the opposite limit of strong spin-orbit coupling or a weak
Zeeman field, we have shown that the effective Hamiltonian is
analogous to that of a particle confined to a 1D ring pierced by a
real-space magnetic flux. Guided by this, we identify magnetic
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phenomena in momentum space, including a contribution to
the energy spectrum which is (almost) periodic as a function
of flux and persistent “currents” around the momentum space
ring of energy minima. We have also extended our approach
to higher-spin systems, and discussed relevant experimental
considerations for observing these effects.
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APPENDIX: ENERGY DISPERSION AND BERRY
CURVATURE IN HIGHER-SPIN SYSTEMS

We consider a higher-spin system with a single-particle
Hamiltonian without a harmonic trap, of the form

_pitp
- 2m

_ 7 L F
T 2m Fp ’

1
Ho + F[ax(p)Fx + ay(p)Fy +a;(p)F,]

(AD)

where F; is the ith component spin matrix with total spin F.
We note that this is not the most general form of a higher-spin
Hamiltonian, but can naturally include both the Zeeman field
and Rashba spin-orbit coupling in the vector a(p). The factor
of 1/F in the second term of the Hamiltonian is inserted for
convenience without loss of generality.

Choosing the quantization axis of the spin along a(p) (called
here the 7" axis), the Hamiltonian is

P o1
=—+ = Fy A2
Ho =2+ pla@)lFy, (A2)
where the matrix F, has the following form:
F 0 0 0
0 F-1 0 0
F. = 0 0 F-2 0 (A3)
: : : . 0
0 0 0 ... —F
The energy of the « band is
2
Ea®) = 2= + < Ja(p)| (A4)
* 2m F ’

where (m,my, ... ,mopy1) =(—F,—F +1,...,F). For the
specific case of Rashba spin-orbit coupling with a Zeeman
field, the vector (a,,ay,a;) = (—=Apy,Apy,—A) and the energy
of the o band is

2
Eq(p) = 2”— + 2 o2 + A2

- F (AS)

as is used in the main text.
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To calculate the Berry curvature, we express the o band
eigenstate of the general higher-spin system in terms of a
series of rotations from the spin-quantization axis z’:

—igF: g=i0F)|

lug) =e M), (A6)

where F,|m,) = my|m,) and the angles 6 and ¢ are the
spherical polar coordinate angles of a(p). The derivatives of
|uy) can be expressed as

Ouy ; 0 20 .
u _ —i€7l¢Fz _¢Fz + _Fy e*lQFy |ma>’
9P Opx Opx

oy ; d a0 .
" > = —je [—¢FZ + —Fvi|e_’9F»V|ma).
op, op, opy ~

(AT)

Hence, the Berry curvature for the o band is

,|:<8ua aua> <8ua Bu(,>:|
; _
opx | Opy opy | Opx
30 9 dp 90 ‘ ‘
b9 99 )<ma|e’”>er—’”>|ma>.

B _<8px ap,  p. op,

Using the Baker-Campbell-Hausdorff lemma eXYe™ =Y +
[X,Y]+ 5 [X.[X, Y]] + 3 [X,[X,[X,Y]]] + ..., and the spin

Q. (p)
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algebra [F;, F;] = i€;jx Fy, one can show that
e Fe ™ = F . cos@ + F, sin. (A8)

Since F, = (F, + F_)/2, where Fy are ladder operators,
(my| Fy|lmy) = 0. Therefore,

00 0¢ o¢ 00 )
Qy(p) = — 3 0. 3.3 (my|F,lmg) sin @
Px 0Py Px 0Dy
00 9 0¢p 00
= —( ¢ - ¢ —)ma sin 6. (A9)
dpx Opy  Opx Opy

For the specific case of a particle with Rashba spin-orbit
coupling and a Zeeman field, the rotation angles can be

calculated from a(p) as
A/ Pi+ P}

Px

sing = ————, sinf= .
JPitps VAP + A2
(A10)
Hence, the Berry curvature of the o band is [1]
Amg A
Qu(p) = e (Al

202+ p3) + 27

as stated in the main text.
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